CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

A Simulation Framework to Model Accountability Controls for Cloud Computing

Nick Papanikolaou
Security and Cloud Lab
HP Labs
Bristol, United Kingdom
Email: nick@nick-p.info

Abstract—In this paper, we present an implemented system to
model and visually represent the functioning of accountability
mechanisms for cloud computing (such as policy enforcement,
monitoring, intrusion detection, logging, redress and remediation
mechanisms) over provider boundaries along the supply chain of
service providers. Service providers can use these mechanisms,
among others, in a variety of combinations to address data
protection problems in the cloud, such as compliance failures,
losses of governance, lock-in hazards, isolation failures, and in-
complete data deletion. The focus here is on technical mechanisms
for the purposes of simulation (the currently implemented tool
demonstrates policy enforcement, monitoring and logging); in
general, an accountability approach requires a combination of
technical measures and legal and regulatory support, of course.
We survey existing work on accountability in the cloud and dis-
cuss ongoing research in the context of the Cloud Accountability
project. We discuss modelling considerations that apply in this
context namely, how accountability may be modelled statically
and dynamically. Details of the current implementation of the
Accountability Simulation Engine (ASE), and the first version of
a graphical animation of data flows in the cloud, are described.

Keywords—accountability; data protection; modelling language;
simulation; visualisation; sticky policies; policy enforcement; log-
ging; redress

I. INTRODUCTION

In this paper, we present the background and modelling
considerations associated with Accountability Simulation En-
gine (ASE), a simulation framework to model and visualize
accountability mechanisms for cloud computing. We will dis-
cuss the motivation and objectives behind ASE, as well as
the features that have been implemented so far. As this is
still ongoing work, the primary purpose of the paper is to
inform the community and to impart some structure on the
development activities; a detailed discussion of future work
has also been included.

The starting point for this work is the realization that both
cloud computing service providers, as well as customers of
cloud computing services, need to have a good understanding
of the controls that may be used for managing data flows in the
cloud while complying with prevailing data protection laws,
rules and regulations, as well as industry standards, best prac-
tices, and corporate data handling guidelines in an efficient yet
demonstrable manner. The massive scale of cloud computing
infrastructures, as well as the enormous complexity of legal
and regulatory compliance across multiple jurisdictions, makes
this a significant and difficult challenge that service providers,
customers, regulators and auditors need to meet on a continual
basis.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

Thomas Riibsamen, Christoph Reich

Cloud Research Lab
Hochschule Furtwangen University
Furtwangen, Germany
Email: {ruet, rch} @hs-furtwangen.de

Accountability for cloud computing service provision is
emerging as a holistic approach to this set of issues, and
is being actively developed in the context of the Cloud Ac-
countability Project (A4Cloud) [1]. Drawing on a multitude
of sources, including legal and regulatory frameworks for
accountability, as well as technical solutions for achieving
data protection compliance, this project aims to provide cloud
service providers, auditors, regulators and others with a con-
crete set of tools for achieving accountability. The simulation
framework described in this paper is a research tool whose
purpose is to demonstrate how such tools might work, and
what problems they are intended to address.

As seen in Section II, accountability encompasses a number
of different controls that may be used by a cloud service
provider to ensure appropriate governance of their customers
data. By developing a simulation of how these controls might
or should function, we can reason about their necessity
and suitability to particular data handling scenarios. We are
mainly interested in technical, automated means of achieving
accountability; higher-level mechanisms (e.g., legal rulings
or precedents, new regulations, ethical guidelines) are only
implicitly modelled as rules incorporated in technical enforce-
ment mechanisms (such as privacy or access control policies).

In order to better understand what form of simulation
would be appropriate, we surveyed a number of existing
simulation tools and frameworks (Section III). We identified
two classes of tools discrete-event modelling formalisms
with mostly textual output, as well as visual simulation tools,
which permit rapid prototyping, and the creation of graphical
animations.

An important part of this work has been identifying what
components a suitable simulation model might include, as
well as what use cases and scenarios might best illustrate the
functionality of accountability mechanisms. These topics are
discussed in Section IV. It is interesting to note that there are
both static and dynamic aspects of accountability, and different
types of simulation are suited to these aspects.

The next section details our model namely, what actors,
behaviours and relationships we have chosen to include. The
design choices are not definitive, and are likely to vary
across use cases. However, this section establishes which
kinds of issue could be demonstrated during a simulation,
and which responses or mechanisms are appropriate when an
accountability-based approach is taken. Section V describes
our current implementation of an accountability simulation
engine (ASE), which comprises (i) a domain-specific mod-

12

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

elling language for accountability scenarios, (ii) an actual
simulator for accountability related events, (iii) a web-based
user interface for inputting scenario descriptions and observing
simulation output, and (iv) a web service which links (ii) and
(iii) together. An example of ASEs functionality is given in
Section VI, with a simulation of the dynamics of a simple
cloud service provision chain. Finally, we conclude with a
discussion of future work; this includes prototyping a visual
animation of data flows using existing simulation tools and
extending the current implementation of ASE with graphical
output.

II. THE NEED FOR ACCOUNTABILITY IN THE CLOUD

As identified by Pearson [2], accountability “for complying
with measures that give effect to practices articulated in given
guidelines” has been present in many legal and regulatory
frameworks for privacy protection; certainly the notion origi-
nates from the data protection context, and carries with it the
idea of responsible data stewardship. The Galway project [3]
attempted to define accountability in this context as follows:

Accountability is the obligation to act as a responsible
steward of the personal information of others, to take responsi-
bility for the protection and appropriate use of that information
beyond legal requirements, and to be accountable for any
misuse of that information.

Pearson [2] observes that the key elements of notion of
accountability implied by this definition are transparency,
responsibility, assurance and remediation. In Pearson and
Wainwright [4] it is argued that, to support these elements, it
is possible to co-design legal and technical controls for cloud
service providers belonging to three categories (i) preventive
controls (e.g., risk analysis decision support tools, policy en-
forcement using machine-readable policies, privacy enhanced
access control and obligations), (ii) detective controls (e.g.,
intrusion detection systems, policy-aware transaction logs, and
reasoning tools, notification mechanisms), and (iii) corrective
controls (e.g., liability attribution tools, incident management
tools). Other categories of controls exist for different kinds of
participants in a cloud service provision ecosystem, including
end users and regulators.

Our interest is in creating a simulation framework, which
enables us to address concerns such as the following:

e What problems can arise in a cloud service provision
chain when controls such as those described above are
absent from service providers infrastructures;

e What benefits the adoption of such controls can have
on service providers operational responses to prob-
lems, such as data breaches;

e How accountability can be maintained along a supply
chain of cloud service providers;

e What potential impact the introduction of a new con-
trol can have on a service providers operations.

While the goal of designing the simulation is to demon-
strate the added benefits of adopting an accountability ap-
proach, in order to do so it is necessary first to identify the
problems and events of interest that this approach provides

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

responses for; both the events and the responses to these events
can then be explicitly accounted for in the simulation model.
Additionally, audit plans can be derived from this model more
precisely and more fully.

A. Data Protection Problems

Based on the risk categorization presented by Haeberlen et
al. in [5], we identify here five typical classes of data protection
problems that cloud service providers need to mitigate:

e Compliance failures

e Losses of governance (e.g., data breaches)
e Lock-in hazards

e Isolation failures

e Incomplete data deletion

Compliance failures. As mentioned in the introduction,
cloud service providers need to ensure compliance with pre-
vailing laws and regulations [6][7] in the jurisdictions where
customers data are stored. This is a non-trivial matter, given
that cloud data centres are located in multiple, different loca-
tions across the globe, and data often needs to be relocated
from one data centre to another for efficiency, bandwidth or
other considerations. To ensure compliance on an ongoing
basis, applicable local rules need to be checked before, during
and after data relocation and evidence has to be given by
audits. What makes this particularly complex is that rules are
not consistent everywhere, and often transformations need to
be applied to the data itself (e.g., in the case of anonymisation
of personal data) before a transfer can occur. Any failure to
comply with laws and regulations carries significant conse-
quences for the reputation and profits of a service provider;
therefore, it is of paramount importance to ensure immediate
corrective action if any case of non-compliance is detected
(e.g., by audits).

Compliance hazards are not confined to legal and regula-
tory requirements, of course; in order to maintain industrial
certifications and badges, service providers need to ensure
compliance with appropriate industry standards, whether spe-
cific to cloud computing practices, data handling practices, or
quality control, among other things. These are typical tasks of
a cloud audit system. Failure to maintain such compliance can
result in loss of accreditation and, again, loss of reputation for
a cloud service provider.

Losses of governance. As data flows from service provider
to service provider and beyond, problems can occur at the
boundaries: the controls employed by a service provider can
only directly ensure appropriate governance of data within the
boundaries of that providers infrastructure. The primary cloud
service provider within a service provision chain namely, the
main cloud service provider in a chain, interacting directly with
an enterprise customer loses control over data as it is handed
over to that customer. If an entity with malicious intent gains
control at the cloud service provider customer interface, this
loss of governance on the part of the cloud service provider
can have serious consequences for the confidentiality, integrity
and availability of the customers data. Data provenance mech-
anisms, which are not restricted to a single cloud service
provider might help to mitigate these problems [8].

13

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

Lock-in Hazards. Cloud service providers can create vendor
lock-in issues for customers by forcing them to use particular
formats for data. If those formats are not widely accepted,
it may be very difficult to extract and convert the data for
use further down the cloud service provision chain. A hazard
can occur during an attempted conversion of data to another
format particularly if the format in which the data is stored
is encrypted, as such encryption is necessarily lost during the
process, thus revealing the data to a potential attacker.

Isolation failures. In a multi-tenanted cloud environment,
multiple customers data are stored on the same infrastructure
by a cloud service provider; a standard contractual requirement
in such a scenario is that isolation of different customers data
and operations is maintained; in the absence of such isolation,
attacks and hazards affecting one customer can affect another,
due to interactions occurring on the common underlying
infrastructure. Isolation failures can cause rapid propagation
of viruses, worms and similar infections, affecting multiple
customers data and damaging the cloud service providers
reputation.

Incomplete data deletions. Data retention laws, typically,
require cloud service providers to maintain customer data
for a certain period of time after service has terminated.
After this period has lapsed, the data has to be deleted from
the cloud service providers infrastructure and, depending on
the contractual terms applicable for the particular customer,
disposed of using particular technical means. Failure to delete
data in accordance with the relevant contractual terms can have
serious consequences, and could even cause integrity issues for
new customers using the same infrastructure if only partially
overwritten.

Data protection problems such as the above are illustrative
of issues that we need to instantiate in a simulation framework
for accountability in the cloud.

B. Addressing Data Protection Problems: Controls for Ac-
countability

While an accountability-based approach to data governance
combines a number of mechanisms, ranging from high-level,
legal obligations, all the way down to technical controls, our
interest is in demonstrating just the latter namely, how techni-
cal measures, particularly automated tools, can be introduced
into a cloud service providers infrastructure to address issues
such as those presented in the previous section. As we have
seen, we can classify controls into three categories, namely,
preventive, detective, corrective depending on whether they
are intended as measures to be deployed prior to or after a
problem occurs.

Next, we describe the types of controls that we are mod-
elling in the ASE framework.

Among preventive controls, we focus on policy enforce-
ment mechanisms, in particular tools that allow organisations
to ensure that pre-defined, machine-readable policies are en-
forced automatically within their information technology (IT)
infrastructures. For the purposes of simulation, we will define
accountability policies and the types of rules that may be
encountered in such policies.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

Detective controls usually take the form of background
processes or aspects in a system; such controls can be active or
passive, or some combination of the two. Active controls such
as monitoring or intrusion detection react to particular events
and patterns of behaviour, such as threats or data breaches.
Passive controls include, for example, logging tools, whose
function is to record all events that take place (with the source
of the event, type of event, and other details) so that a service
provider can (i) trace particular activities and identify sources
of problems (this relates to attribution capabilities needed for
accountability), (ii) prove compliance (with rules, regulations,
standards, best practices and more) to external parties such as
auditors. An example for such passive controls is Amazon’s
AWS CloudTrail [9], which provides cloud customers with an
API call history and logs.

For corrective controls, there is a lack of previous work;
mechanisms that are relevant are tools for providing redress
to customers in cases where data protection problems have
not been mitigated by preventive or detective controls. Inci-
dent management tools are relevant here, but exactly what
remedies or responses are appropriate for different types of
incidents remains an ongoing research challenge. For the pur-
poses of simulation using ASE, we will assume that financial
remedies (including payment of fines and other penalties
for service providers) are suitable responses. The introduction
of additional preventive measures, such as storage encryption
depending on the type and sensitivity of stored data may also
be a response. However, for the purpose of this paper, this is
out of scope.

III. REVIEW OF SELECTED CURRENT SIMULATION
TooOLS AND PLATFORMS

Although we have developed the ASE simulation frame-
work from the ground up, we have surveyed and experimented
with a number of existing simulation tools; only discrete-
event simulation tools have been considered, since our interest
is in understanding behaviours and mechanisms that can be
effectively modelled using this paradigm.

The tools of interest include software libraries providing
dedicated simulation functionality, such as built-in data struc-
tures for event queues, random number generation using differ-
ent probability distributions, timing information and more, as
well as visual tools for designing simulations using predefined
components.

Discrete-event simulation is detailed in the authoritative
text by Law [10], which also includes a library for use in
C programs, named simlib. This enables one to make use of
commonly used data structures for simulation, as mentioned
above. There are other libraries with similar capabilities, and
indeed simlib has been rewritten and adapted for use in other
programming languages (e.g., Brian J. Huffman has produced a
Java version of the library [11]). We are also aware of the Java-
based Greenfoot framework [12], which allows simulations
to be prototyped easily; so far, we have not found a way to
turn Greenfoot code into web-based applications, which was
desirable for our purposes.

An interesting, more recent Java-based simulation library
that we experimented with is the agent-based simulation frame-
work MASON [13], which also includes graphical animation

14

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

capabilities. The distinctive feature of MASON is that it
allows one to produce animated graphical user interfaces to
demonstrate interactions in multi-agent systems. Since the
demonstrations we have been building are currently relatively
small-scale, as opposed to its usual applications, we abandoned
MASON early on. Nevertheless, its modular design and graph-
ical capabilities may well be used in future versions of the
accountability simulator.

Another approach that we considered included the
use of 1ndustr1a1 strenh%th visual 51mulat10n tools, such as
MATLAB' -Simulink [14] and Simio [15]. Using the
trial version of Simio M, we were able to produce a simple,
3D graphical animation of data flows between cloud service
providers, as shown in Figure 1. We were not able to simulate
accountability mechanisms using the trial version, as this

. 1 qe ™
would require building/coding a significant number of Simio
processes, a feature that is limited. This will be included in
our future work. However, we were able to gain visual insight
into the nature and purpose of the simulation, which will be
discussed in the next section.

tions 7% Dete| @ Doshbonrd | ¥ Resuls

L1 leomINAVERLS
\
‘!
\
o
\
\8
'
\ \\
\ 4
\ .JL
1
&,
L2
3

*

Figure 1. Screenshot of simulated data flows between cloud service providers

IV. MODELLING CONSIDERATIONS

As we have seen in previous sections, in order to build a
simulation of accountability in the cloud, we need to identify
a way to show (i) data protection problems that arise in cloud
ecosystems, and (ii) how accountability controls or mecha-
nisms work to mitigate and respond to these problems. The
objective of this work is to build a graphical simulation which
can provide insight for a variety of stakeholders, including
cloud service providers, regulators, auditors and even the
general public interested in how accountability can be achieved
in a complex chain of cloud service provision. But what should
be the underlying conceptual model of the simulation? There
are different aspects to consider here.

A. Static Modelling: Actors and Relationships

One aspect to consider is the set of relationships (and
the properties of these relationships) between different cloud
service providers in a service provision chain. From the
data protection point of view, there are different roles for
cloud service providers when it comes to handling personal

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

TABLE 1. THE POSSIBLE ROLES THAT THE DIFFERENT KINDS OF
ACTORS CAN TAKE ON IN A GIVEN SCENARIO AS PER OUR MODEL.

Possible Roles
Data subject

Data controller
Data processor

Actor Type
Individual
Cloud service provider

Third party Data controller
Data processor
Accountability Agent
Auditor (Auditor)
Accountability Agent
Regulator (Regulator)

Accountability Agent

data terms used in the European Data Protection Directive
95/46/EC [7] for these roles are data controller and data
processor. Depending on the service offering, providers may
take one or both of these roles, with complex and ambiguous
cases arising frequently. Modelling what this implies in terms
of concrete obligations for cloud service providers is what we
will refer to as static modelling of accountability.

The static modelling of a cloud service provision chain
involves identified actors, roles and responsibilities and the
relationships between them.

1) Actors, Roles and Responsibilities: In our model, in
a cloud ecosystem there are five different kinds of actors
individuals, cloud service providers, third parties, auditors
and regulators. We classify the different types of roles that
these actors may take on in a particular scenario into six kinds
data subject, data controller, data processor, accountability
agent, auditor and regulator. A particular scenario is defined
as a specified set of roles for a specified set of actors.

The possible roles that the different kinds of actors can
take on in a given scenario as per our model are defined in
Table L.

The roles that we have included take into account the
static modelling discussion in Section IV-A. Accountability
agent represents a role that is intended to encompass internal
oversight activities within an organization (e.g., self-auditing),
as opposed to the roles of auditor (an external entity perform-
ing an audit on behalf of enterprise) and regulator (typically
a government entity responsible for setting, implementing
and monitoring standards), which by definition correspond to
oversight external to an organization; note that we model two
classes of organizations here cloud service providers and third
parties, the latter being providers of non-cloud services. The
distinction becomes clearer when we consider relationships
that can exist between actors.

2) Relationships: Cloud service providers are characterized
in the model by the kind of relationship they have with other
providers, in particular, what kind of service they offer to
others. A cloud service provider provides one of three kinds
of service: IaaS (infrastructure-as-a-service), PaaS (platform-
as-a-service), SaaS (software-as-a-service). These are the only
kinds of relationships considered here between cloud service
providers. Third parties are entities that enter into complex
contractual relationships with cloud service providers, rela-
tionships that are not of the same kind. Further investigation is
needed here; but, for the purposes of modelling and simulation
we do not need to restrict the kinds of relationship that third
parties may have (with each other and with cloud service

15

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

providers).

B. Modelling System Dynamics: Data Transfers and Account-
ability Mechanisms

While static modelling would enable us to simulate what
effect particular assumptions might have on the obligations of
a cloud service provider, modelling system dynamics enables
us to simulate data flows between cloud service providers,
data protection problems and their consequences when ac-
countability controls are in place (and similarly when such
controls have not been introduced). For a dynamic simulation,
the main entities that need to be modelled are personal data;
at each step of the simulation, personal data flow through
a chain/sequence of service providers, which are predefined,
and together constitute a model of a real-world cloud service
provision chain. The purpose of the simulation becomes to
show what happens to the data as they flow through the chain,
and what effect these flows have on properties of the overall
system.

So, what is our model? The entities modelled have been
discussed in the previous subsection, along with their relation-
ships; next, we discuss their expected behaviours, and the types
of issues or problems that can be simulated using our model,
and the responses that different entities can have and should
have to such problems if accountability is to be achieved.

1) Behaviours corresponding to different types of role:
First, consider the behaviours of individual data subjects. In
our model, a data subject is an entity that can engage in one
of the following actions at any time during a simulation:

e Create data (a datum is modelled simply as a pair of
strings an identifier and a value)

e Modify/edit data
e Delete data

e Change preferences regarding usage of data (initially,
a data subjects policy is simply a statement of for what
uses data can be processed, and whether the data can
be shared with third parties)

e Request summary of data and preferences held

For service providers, which are typically data controllers
or data processors, the following actions are possible:

e Store data

e Encrypt and store data

e Decrypt data

e Check preferences and share data

e Create new policy over data

e Generate log of activity over data

e Enable/disable logging mechanisms

e Enable/disable monitoring mechanisms

e Enable/disable policy enforcement mechanisms

Regulators and auditors are modelled as having the follow-
ing possible actions:

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

e Check compliance of data controller/processor with a
specified rule or set of rules

e Check compliance of organizational policies with min-
imum requirements

e Create new rules specifying allowed uses of cus-
tomer data, and penalties/remedies in case of non-
compliance or other problem

e Create new rules specifying mechanisms that must be
used to protect data subjects, and penalties/remedies
in case of non-compliance or other problem

e Enforce penalty or other remedy in case of non-
compliance or other problem

e Audit a data controller/processors system logs (esp.
check origin, route, destination of data; intended use;
protection mechanisms used, whether customers pref-
erences were enforced)

Accountability agents are initially to be modelled as a variant
of auditor, with the only difference that they cannot perform
enforcement, only (implicitly) inform the organization they are
associated with of any events of interest (e.g., failures, non-
compliance). Further work may reveal other actions/events of
interest.

2) Simulated Issues: In the simulation, we should be able
to represent and visualize some of the issues discussed previ-
ously in Section II.A. Compliance failures, data breaches and
direct attacks on a service providers infrastructure are specific
events that we have so far considered in this work.

3) Simulated Responses: In Table II, we can see how the
different accountability mechanisms considered in our model
can help to address the simulated issues. We note that this
list is not exhaustive, as it only includes the mechanisms
we have considered so far; other mechanisms could include,
for example, automated tools for punishment or remediation;
also, we have so far avoided detailing what types of rules are
allowed in policies. In the Cloud Accountability Project, which
is the context in which the simulation has been built, there
is an ongoing work on developing an accountability policy
language; for the purposes of our simulation, we have so far
assumed that rules restrict to whom and under what conditions
data can flow; the distinction between data controller and data
processor may well imply additional restrictions, and similarly
there are restrictions on when data can be transferred to third
parties (this is modelled as a preference that data subjects can
set).

As we can see from the table, when none of the ac-
countability mechanisms are enabled in a simulation, none of
the problems considered trigger any response (thus allowing
hazards and failures to occur). Of interest is the fact that
hazards can then propagate (cascade) from one provider to
another, and/or to any third parties. All other cases cause a
response, thus demonstrating how accountability mechanisms
work in practice.

V. IMPLEMENTATION

We have implemented three software components as part
of the accountability simulator: a simulation engine, a web-
based animation of data flows between cloud service providers,

16

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

TABLE II. PROBLEM AND THE SPECIFIC RESPONSES TRIGGERED BY
ACCOUNTABILITY MECHANISMS IN THE SIMULATION MODEL
Problem Mechanism
None :1(;1:1?, enforce- Monitoring Logging
Patterns of non- All failures will
Compliance . . be logged and
il X All problems | compliance can h t di
ailure correspond to be detected for(:wn o audi-
specific policy — :
violations; Momtormg
Policy violation | Reraction
will be ;rnvi der:erwce All breaches
detected; .) will be logged
Data breach X Parties notified w1th untrustled and shown to
third parties .
. auditors
can provide
advance
warnings
trusion All attacks will

be logged and
shown to audi-
tors

Attack X systems can be
used to thwart

attacks

and a web service that draws data from the simulation engine.
Currently, we are continuing implementation work until all
three components have been fully integrated. In this section,
we present the functional structure of the simulator and then
detail each of the implemented components.

The input file is a description of a scenario to be simulated,
and is written in the accountability model description language,
described in the next section. A scenario consists of a specified
set of actors (so far, we have not made the distinction between
actors and roles in the language, but this is forthcoming in
future versions), a specified set of relationships, configuration
of options/parameters and the triggering of actions of particular
actors.

When an input file is supplied to the simulator (via a
web-based interface or through the command line), its con-
tents are parsed using the language interpreter, which invokes
appropriate methods in the accountability simulation engine.
The accountability simulation engine contains the current state
variables and the log of events executed so far; it constitutes
the backend of the application and is written in plain Java.

In order to feed the state of the simulation, timings and
outcomes to the web-based user interface, we have imple-
mented a RESTful web service using the Java-based Restlet
EE framework [16].

The initial version (designated vI) of the web-based user
interface was implemented using HTML forms, and the data
it receives from the web service consist of plain text strings
that are displayed and updated as the simulation progresses,
without any graphical animation.

The latest version (designated v2) of the web-based user
interface has been developed separately, as a graphical anima-
tion, and work is ongoing to link it up to the web service. This
will be discussed further in Section V-C below.

A. Accountability Model Description Language

Scenarios to be simulated are described by the user of the
simulator in a custom modelling language we have built for this
purpose. At this stage of development we have only included a
core set of commands and mechanisms that can be included in

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

scenarios, but we expect to add constructs in the language so
as to allow inclusion of detailed privacy policies, access and
usage controls, and other features. In particular, in the Cloud
Accountability Project there is ongoing work on developing a
dedicated accountability policy language, and it is likely that
the constructs of that language will be incorporated into the
language of the simulator.

Listing 1 shows the productions for the languages grammar,
using the syntax of the SableCC [17] parser generator that
we have been using to build the interpreter. The nontermi-
nals in the grammar are command (for top-level commands),
declare (used to declare actors of different types), type (rep-
resenting the different actor types, namely user, cloud service
provider, auditor and regulator), servicetype (for the different
types of cloud service), objectaction (this is for expressions
representing a property or action of a given actor), action
(properties or actions), mode (for data protection problems
that can be simulated using the trigger command), mech (for
accountability mechanisms that can be enabled or disabled
as needed). Commands setgraph, setpolicy and setconstraint
are experimental; the command graph allows us to access the
internal data structure of the accountability simulation engine
and visualize it using AT&T GraphViz [18].

B. Accountability Simulator (Backend component)

The accountability simulation engine is responsible for
maintaining and updating the current state of the simulation,
and currently its main visible function is to display that state
on the console or supply it (through a web service) to another
application.

We can denote the internal state of the simulation engine
by a tuple (see Equation 1)

(A, T, p,0,M,§) ey

where A is the set of actors that have been declared,
T is the set denoting the types of the actors, p is the set
of relationships between cloud service providers (the only
relationships modelled are between these types of actor), o
is the store of data values held by the different actors (indexed
by A), M is the set of accountability mechanisms enabled and
¢ is the output stream (this represents, e.g., the standard output
or a pipe to another application, or a web service).

command =

{ declaration } declare |

{ custdeclaration } customer lparen
[fst]: identifier [q]:comma
[snd]: identifier [z]:comma
servicetype rparen |

{action} objectaction |

{trig} trigger mode identifier |

{setgraph} setgraph arglist |

{setpol } setpolicy lparen identifier comma
str rparen |

{setcons} setconstraint Iparen [fst]: identifier
[q]:comma [snd]: identifier [z]:comma
str rparen |

{enablemech} enable mech |

{disablemech} disable mech |

17

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

{graphing} graph;

declare = {declplain} type identifier |
{ declqualified } type identifier str;

{userdec} user |
{cspdec} csp |
{auddec} auditor |
{regdec} regulator ;

type =

servicetype = {iaastype} iaas |

{paastype} paas |
{saastype} saas;

objectaction = { actionref } identifier dot action;
action = {actionsenddata } senddata

lparen identifier comma str rparen |
{ evalstate } state ;

mode = {databreach} databreach |
{attack } attack ;
mech = {polenfmech} polenf |

{logmech} logging |
{monmech} monitoring;

Listing 1. SableCC grammar of the Accountability Simulator input language
(only the main productions are shown)

The output of the simulation depends on which account-
ability mechanisms have been enabled; if no mechanisms
are enabled (in which case the value of M above would be
the empty set, (), then there is no change in the output &
when a problem is triggered. However, when mechanisms are
enabled and a problem is triggered, the effect (as described in
Table II) is made visible on the output. In other words, the
Function of the simulator (see Function 2) can be summarized
operationally as a state transition of the form:

(A7T7p>0-aM7§) - (A5T7p70-/7M7§/) (2)

such that £’ differs from £ as it contains a notification of
a compliance failure, data breach or attack when the trigger
command is issued and one of the following is true:

({policyen forcement : enabled} € M) or
({logging : enabled} € M) or
({monitoring : enabled} € M)

It would not be difficult to use the above notation to derive
a full operational semantics for the simulator, but for our
purposes here it is sufficient to note that the main function
of the tool, which is to behave differently depending on which
type of problem is being simulated, and which mechanisms are
enabled. So far we have assumed ¢ represents textual output,
namely strings describing the overall system state, such as lists
of actors, their data values and more. Of course, the exact
output consists of messages corresponding to the responses
shown in Table II. In the next section we turn to work we
have done on developing a graphical visualization.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

C. Web-based Front-End

The vision for the web-based user interface has always
been to have a graphical animation of data flows between
individuals, cloud service providers, auditors and regulators
and third parties. Demonstrating flows of data and the changes
that occur to data and providers in the process emphasizes the
dynamic aspect of the simulation. A screenshot of our current
prototype of version v2 is shown in Figure 2.

@ Accountability Visualisation

Start Point.1
End Point: 2
Points: /15 [+
Line Color: | mumm
Speed: 1

Start

SaaS
PaaS

laaS

S

Figure 2. Visualisation front-end for the Accountability Simulator

It is very important to note that this version has been
developed as a separate, standalone animation. Thus, it has not
yet been linked to the web service component and, hence, the
main simulation engine. However, it does show an instantiation
of a random set of cloud service providers of different kinds
(IaaS, PaaS, SaaS, and how a data item can be routed between
providers. In the animation, the scenario is assumed to be
random, rather than specified in the accountability modelling
language; this is changing presently.

We expect to have dedicated controls (form buttons) to
trigger particular data protection problems, and panels showing
the responses produced by the simulator. In the screenshot
in Figure 2 two tabs are shown at the bottom. While the
(currently random) animation is shown on the Canvas tab, the
other tab (titled Scenario Description) will allow the user of
the simulation to supply an input file in future, written in the
accountability modelling language of Section V-A, and this
will be used to generate the animation in the next version.

VI. AN EXAMPLE INPUT FILE

Listing 2 shows an example input file that we have tested
with the current version of the simulator. It describes a scenario
in which there are two individual users, four cloud service
providers, an auditor and a regulator. The relationships between
the individuals and service providers are then declared. John
and Mary then create some data, which is sent and stored
on the specified service providers infrastructure. In line 15
a data breach problem is triggered; this has no effect when
simulated as no accountability mechanisms have been enabled;
the remaining lines enable different mechanisms, and trigger

18

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

a data breach and attack. Naturally, the simulator produces
a sequence of long warnings when interpreting lines 17, 20
and 22, as the policy enforcement, monitoring and logging
mechanisms kick in.

User john ”John Wayne”;

User mary “"Mary Wollstonecraft”;
CSP salesforce ” Salesforce .com’;
CSP amazon ”Amazon Web Services”;
CSP rackspace "Rackspace”;

CSP hpcs "HP Cloud Services”;
Auditor kpmg "KPMG”;

Regulator cnil "CNIL”;
Customer(john,amazon,SaaS);
Customer(mary, salesforce , SaaS);
Customer(rackspace,hpcs,laaS);
Customer(salesforce , rackspace ,PaaS);
john.Senddata(amazon,’somedata”);
mary.Senddata(hpcs,” marydata”);
Trigger Databreach salesforce ;
Enable Polenf;

Trigger Databreach salesforce ;
Enable Monitoring;

Enable Logging;

Trigger Databreach salesforce ;
amazon.State ;

Trigger Attack amazon;

Listing 2. Example script written in the accountability simulation language.)

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented the design and imple-
mentation of a simulator for accountability mechanisms in the
cloud. We have discussed data protection problems, and how
mechanisms for accountability such as policy enforcement,
monitoring and logging can help to address such problems;
the simulator we have built is a tool to assist understanding
and modelling of real-world scenarios and will hopefully be a
useful aid to cloud service providers, regulators and end users
as it is extended with more features.

Future work will focus on integrating the v2 web-based
UI with the accountability simulation engine and web service,
and enriching that Ul with more controls. Subsequently we
will work on animating the accountability mechanisms and
modelling additional ones.

It is also worth noting that a new EU Data Protection
Regulation will eventually replace the current directive, which
is under discussion in the European Parliament. This is likely to
include new accountability rules and obligations, and must be
taken into consideration in future work. For the purposes of this
paper, however, we have focused on modelling the dynamics
of accountability controls and how they impact data and data
flows in cloud infrastructure.

ACKNOWLEDGMENT

Nick Papanikolaou wishes to cordially thank Siani Pearson
and Nick Wainwright for their support and feedback during the
development of this work. Special thanks are due to Fabian
Reich, who spent a month at HP Labs working with Nick
Papanikolaou and actually coded version v2 of the web-based

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

GUI, navigating the vagaries of the HTML5 Canvas control.
This work is supported by the European FP7 Programme
A4CLOUD: Accountability for the Cloud and Other Future
Internet Services.

REFERENCES

[1] “Cloud accountability project (a4cloud),” http://www.adcloud.eu/, [re-
trieved: 2014.04.08] 2014.

[2] S. Pearson, “Toward accountability in the cloud,” Internet Computing,
IEEE, vol. 15, no. 4, pp. 64-69, July 2011.

[3] Centre for Information Policy Leadership as Secretariat to the Galway
Project, “Data protection accountability: The essential elements - a doc-
ument for discussion,” http://www.informationpolicycentre.com/files/
Uploads/Documents/Centre/Centre_Accountability_Compendium.pdf,
[retrieved: 2014.04.08] 2009.

[4] S. Pearson and N. Wainwright, “An interdisciplinary approach to
accountability for future internet service provision,” International

Journal of Trust Management in Computing and Communications,
vol. 1, no. 1, pp. 52-72, 01 2013.

[5] T. Haeberlen, L. Dupre, D. Catteddu, and G. Hogben, “Cloud com-
puting: Benefits, risks and recommendations for information security,”
enisa - European Network and Information Security Agency, Tech. Rep.,
2012.

[6] “Apec privacy framework,” http://publications.apec.org/
publication-detail.php?pub_id=390, [retrieved: 2014.04.08] 2005.

[7]1 “Directive 95/46/ec of the european parliament and of the council
of 24 october 1995 on the protection of individuals with regard to
the processing of personal data and on the free movement of such
data,” http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31995L0046:en:HTML, [retrieved: 2014.04.08] 1995.

[8] O. Q. Zhang, M. Kirchberg, R. K. L. Ko, and B. S. Lee, “How to track
your data: The case for cloud computing provenance,” HP Labs, Tech.
Rep., 2012.

[9] “Amazon aws cloudtrail,” https://aws.amazon.com/de/cloudtrail/, [re-
trieved: 2014.04.08].

[10] A. Law, Simulation Modeling and Analysis (McGraw-Hill Series in
Industrial Engineering and Management). McGraw-Hill Science/Engi-
neering/Math, 2006.

[11] B. J. Huffman, “An object-oriented version of simlib (a simple simu-
lation package),” Informs Transactions on Education, vol. 2, no. 1, pp.
1-15, 2001.

[12] M. Koelling, Introduction to Programming with Greenfoot: Object-
Oriented Programming in Java with Games and Simulations. Pearson
Education, 2009.

[13] “Mason multiagent simulation toolkit,” http://cs.gmu.edu/~eclab/
projects/mason/, [retrieved: 2014.04.08].

[14] “Matlab and simulink,” http://www.mathworks.co.uk/products/
simulink/, [retrieved: 2014.04.08].

[15] “Simio,” http://www.simio.com/, [retrieved: 2014.04.08].

[16] “Restlet framework,” http://restlet.org, [retrieved: 2014.04.08].

[17] E. Gagnon, “Sablecc, an object-oriented compiler framework,” http://
www.sablecc.org/, [retrieved: 2014.04.08].

[18] “Graphviz — graph visualization software,” http://www.graphviz.org,
[retrieved: 2014.04.08].

19

