CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Fuzzy Controled QoS for Scalable Cloud Computing
Services

Stefan Frey, Claudia Liithje, Vitali Huwwa, Christoph Reich
Furtwangen University
Cloud Research Lab
Furtwangen, Germany
{stefan.frey,claudia.luethje,vitali.huwwa,christoph.reich } @hs-furtwangen.de

Abstract—An important characteristic of cloud infrastruc-
tures is scalability on demand. A scalability service monitors
performance load metrics and decides to scale up or down, by
provision or revoke of cloud resources. This could guarantee
Quality of Service (QoS) and enforce Service Level Objectives
(SLOs). The approach of this paper shows that with additional
imprecise information (e.g. expected daytime performance) the
up and down scale mechanism of such an infrastructure can be
improved and SLA violation can be avoided.

Keywords—Cloud Computing; Scaling Service; Fuzzy Logic;
SLA; QoS

I. INTRODUCTION

Cloud computing offers customers resources on demand on
a self-service basis and gives them access to a large pool of
computational power and storage. Customers do not have to
manage and maintain their own IT assets and get charged by
cloud providers based upon the amount of resources used or
reserved. The fly in the ointment is the minimal guarantees
of Quality of Service (QoS) for the user’s applications. It
is common that big cloud providers like Amazon offer only
rudimentary service guarantees, like for example a guarantee
for 99,95% availability of their EC2 cloud service. In most
cases providers do not give any performance guarantees at
all. Cloud computing services, like the auto scaling service
of Amazon [1], scale the capacity of virtual machines (VM)
up or down automatically according to e.g. CPU utilization.
Such a service controls the number of VMs to maintain the
performance of a service that experiences hourly, daily, or
weekly variability in usage. The architecture of such a setup
can be seen in Figure 1 inside the blue dashed box. This
obviously has the potential to guarantee Key Performance
Indicators (KPIs) indirectly but KPIs such as e.g. request
response time which are typical Service Level Objectives
(SLOs) in a Service Level Agreement (SLA) are not controlled
directly.

Therefore, SLA violations can happen especially due to
peak demands, caused by all kind of reasons (e.g. product
launches, political statements, service advertisement, weather
changes, etc.), and the up scaling delay of the infrastructure
(e.g. VM start time, LB reconfiguration, infrastructure limits,
and economical limits to prevent extraordinary costs, etc.).
Other reasons for not matching the SLA guarantees could
be limitations, like the maximum number of VMs or non-
ideal load balancing algorithms, which are not considered in
the approach of this paper. Decent scaling is very important,

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

because the if scale down happens to early SLA violations
occure and if its set to late the customer will pay for resources
that are not utilized.

To minimize the number of SLA violations and to guar-
antee the QoS, an behaviour, load and performance prediction
model is needed. If one could predict the usage of an service,
looking ahead further than the infrastructure delay time, one
could guarantee the QoS for that specific service.

The rest of the paper is organized as follows. In Section
IT the related research efforts are discussed. Then a detailed
description of the problem of QoS in cloud computing can
be found in Section III. In Section IV, the specific approach
using fuzzy logic for controlling the scalable cloud service
is introduced. The proof of concept is reported in Section V.
Finally a conclusion is drawn and future work is suggested in
Section VI.

II. RELATED WORK

Since 2009 many teams are working on the problem to im-
prove the QoS for cloud computing. Armstrong and Djemame
tried to transfer the technologies of QoS from grid computing
to cloud computing as discussed in the paper “Towards quality
of service in the cloud” [2]. The paper of Rochwerger et al. [3]
discuss the funded project RESERVOIR, in which pooled
resources handle peaks and slopes of resources.

Another interesting appraoch is the Q-Clouds framework
described by Nathuji et al. [4]. This framework for the man-
agement of cloud servers enables the possibility to apply and
control QoS. The introduced Q-states provide the possibility
for users to define certain metric limits of SLOs, based on a
cost model. The more the customer is ready to pay, the less
likely is a SLA violation. The controller component uses a
MIMO (multi-input, multi output) model for the calculation
VM resources. So an input vector is defined by the platform
controller. Based on that the output vector delivers the pre-
dicted QoS values. Unlike to the approach of this paper they
basically use infrastructure metrics (e.g. performance, memory,
etc.) to control the QoS.

The important next steps in the QoS for cloud com-
puting were developed by Ferretti/Ghini/Panerieri [5]. Their
paper presents an architecture, which provides cloud resources
dynamically. The developed middleware tries to avoid SLA
violations with the same use case as presented in this paper.
Therefore they split the problem into three components: The

150

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

host platform is an dynamic configuration, that should guar-
antee the requirement of the SLA. The monitoring component
is checking the host platform and its application to display
changes in the configuration and violation of the QoS require-
ments. The third component is responsible for the dispatching
and the load balancing. This component tries to keep the
required QoS. It is implemented in an intelligent way, to
distribute the available resources. It is distinct to load balancing
for requests and sessions. Different to this paper is that the
load balancer takes over the monitoring of the SLAs instead
of a separate module. Further the only metric that is used is the
actual request response time. Compared to our approach, there
can be considered mean value, derivation value, imprecise
information and admin control information.

Many recent works deal with computing resource allocation
in clouds focusing specific management objectives, such as
energy efficiency [6], fairness [7], economic fitness [8], and
service differentiation [9]. All of the above works however
deliver placement solutions. They do not consider the problem
of controlling a load balanced, scalable Cloud service.

Related research can be found in the area of forecasting
the load of electrical power in [10] and [11] where they use
social, economic, and weather condition factors. To achieve
QoS guarantees this paper uses such additional factors as well.

III. QOS IN CLOUD COMPUTING

A Service Level Agreement (SLA) is a contract between
customer and provider, that specifies service performance prop-
erties. These properties are called Service Level Objectives
(SLOs), which contain metrics called Key Performance Indi-
cators (KPIs) and the specific value to be guaranteed. These
performance metrics should be guaranteed over a relatively
long time interval and if a metric is violated commonly penalty
costs may have to be paid to the customer by the provider.

Compared to traditional data centers it is easier to guar-
antee QoS in cloud computing data centers, because of the
possibility to automate infrastructure administration and added
value services such as auto scaling. Today’s virtualization
technologies allow dynamic provisioning of virtual machines
(VM), networks, storage, etc. Therefore a completely auto-
matic, adaptable customer infrastructure is on the horizon to
react in real time to load changes.

Especially a scalable infrastructure can easily be provi-
sioned in the cloud service model Infrastructure as a Service
(TaaS), that allows automatic up/down scaling according the
actual load. This is a big step towards the possibility to
guarantee KPIs like the service request response time, that
is a widely used Key Performance Indicator and a common
Service Level Objective (SLO).

The approach presented in this paper improves the up and
down scaling by using additional information, like the expected
load at a certain daytime in the future, expected increase at
a specific future day because of special events, etc.. With the
additional information we trie to forecast the load and therefore
allow a better pre-acting up or down scale of the infrastructure
if needed.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

IV. Fuzzy CONTROL TO IMPROVE QOS CONTROL

Most approaches consider infrastructure sensor data like
bandwidth, request/response time, CPU usage, memory usage,
etc. to control the scaling infrastructure as seen in Fig. 1
dashed box. The approach of this paper is to use additional,
often imprecise information (e.g. weather) to improve the
management to meet QoS requirements stated in SLAs. These
imprecise factors (e.g. user wants scaling aggressive/moderate,
etc.), political factors (legal changes, political summits, etc.),
economic/market factors (product advertising, product launch,
etc.), other factors influencing the service usage (e.g. weather,
gossip, etc.) can not be modelled precisely.

Fuzzy logic allows to model imprecise information by the
user (service administrator) in the form of non-numeric lin-
guistic variables (e.g. age: young/old). These fuzzy inputs are
used in the fuzzy control system, that uses expert knowledge
to inference a fuzzy output. After defuzzifying this output to
a crisp value, then this controls the overall scale system how
big the up and down scale factor should be. For example,
if a customer wants to have an aggressive scaling control
the infrastructure will scaled up with e.g. 3 VMs otherwise
with only one VM at a time. The scaling domain expertise is
modelled in a knowledge base with fuzzy IF-THEN rules.

In the next Subsection IV-A the architecture of the fuzzy
scaling cloud service is described, followed by subsection
IV-B, discussing monitoring parameters, which will show the
wide variety of information to improve the cloud scaling
service. The last subsection IV-C presents the fuzzy control
module.

1 Load
| Balancer

laga/ T

Control action)
Req./Resp. Time

(aggresive, Jdelete VM
moderate) . .
Req./Resp. Timel Cloud . create/
Environment * mean | Management . remove VM
values * derviate System p
(temperature, Data o | 1
Daytime, ...) Collector < B 1
history l 1 Scale
Be data | (Gl Traditional Cloud
I 1_ _ _ ’_ _ __Sf\lirE S_yste_m_
v 1
. Fuzzy .
Fuzzifying =t Inference Defuzzifying
Knowledge
Base Fuzzy Control Modul

Fig. 1. Fuzzy Controlled Scaling Architecture

A. Fuzzy Controled Scaling Architecture

Figure 1 shows the architecture for a load balanced service
by automatically scaling up/down the infrastructure by start-
ing/stopping VMs. It consists of two new modules compared
to the traditional scaling infrastructure (blue box), the Data
Collector and the Fuzzy Control Module.

The Data Collector collects all information data, crisp (e.g.
cpu usage) and imprecise data (e.g. weather). The data is

151

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

categorized in infrastructure data (e.g. req./resp. time), history
data (e.g. req./resp. time 5 minutes ago), control action (e.g.
aggressive up/down scale), environment data (e.g. daytime),
and other information that might influence the load of the
service.

All collected data is input data to the Fuzzy Control
Module where the data is fuzzified, results propagated by the
fuzzy inference engine and quantified by defuzzification. The
defuzzified value (Number of VM to be started or stopped)
is put into the Scale Control module. This module generates
XML-RPC calls to the Cloud Management System.

B. Information Factors for Control

The relevant information to improve the up/down scaling
can be categorized into monitoring data: infrastructure, historic
infrastructure, time-dependent, and service-dependent sensor
data described in the following paragraphs in more detail.

a) Infrastructure Sensor Data: Table I lists factors that
can mostly be monitored using sensors placed in various lo-
cations in the cloud infrastructure. KPIs, like request response
time can easily measured at the load balancer (LB). Cloud
specific parameters, like start time of VMs, can be aquisitioned
at the cloud management system. If user service request types
should be categorized (typically a imprecise parameter), it is
best to ask the user admin of the cloud resource.

TABLE 1. INFRASTRUCTURE SENSOR PARAMETER
Parameter Example Cloud Source
KPI req./resp load balancer
cloud specific | VM start time, cloud management
indicators bandwidth system
request type long running req. | user

The quality of the cloud infrastructure or service implemen-
tation can be taken into account as well. The load balancing
control might be influenced by the basic robustness of the
overall infrastructure. The infrastructure robustness can be
modelled by an imprecise parameter e.g. strong, weak.

b) History Infrastructure Sensor Data: Table II lists
parameter that have been previously collected in a history
data base. The purpose is to calculate values like, mean
values, derivation values, etc. These statistical data can be good
indicators to improve the LB management.

TABLE II. HISTORY INFRASTRUCTURE SENSOR PARAMETER
Parameter Example Source
derivation KPI derivation req./resp history DB
mean value KPI | req./resp. mean value | history DB

Imprecise history parameters can be of interest as well.
Suppose a service depends on the weather condition (e.g.
online shop for winter tires), then a sudden change of the
weather condition from try to snowy condition makes it more
likely, that the load of such a service is higher.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

TABLE III. TIME-DEPENDENT SENSOR PARAMETER
Parameter Example Source
daytime end of work | user input
weekday Saturday calendar
holiday Christmas country holiday cal.
product events | new iPhone user input

c) Time-Dependent Sensor Data: Table III lists param-
eter that can influence the infrastructure management at a pre-
defined time.

The knowledge of the typical weekly usage for an service
(see Fig. 2) can be modelled and therefore the decision to scale
up or down strongly or weekly depending whether the change
is high or not.

16.0 k
12.0 k

.0 k

Controllers

Tue Mar Sun Sat Fri Thu led Tue

Fi

—

g. 2. Example: Weekly Load of the HFU Learning Management Platform

d) Service-Dependent Sensor Data: Table IV lists pa-
rameter that influence the control infrastructure depending on
the related service. Political parameters, like new legal issues
enforcing more logging at the service side. Market events,
like product launches, marketing events, new prices, etc. can
influence the usage of services. Gossip, modelled as good
news or bad news is influencing service usages. Importance
of service might need a more aggressive management to make
sure, that the SLA violations can be minimized.

TABLE IV. SERVICE-DEPENDENT SENSOR PARAMETER
Parameter Example Source
politic EU summit news ticker
market price | Facebook share exchange feed
gossip new Facebook mobile | news ticker

control behaviour
(moderate/aggressive) user

service
importance

C. Fuzzy Control Module

The Fuzzy Control Module consists of four main fuzzy
control processes represented by the four sub-modules re-
spectively (see Fig. 1). The crisp and imprecise input data is
converted into fuzzy values for each input fuzzy set with the
Fuzzifying module. The decision making logic of the Fuzzy
Inference module determines how the fuzzy logic operations
are performed (SUP-MIN inference), and together with the
Knowledge Base module determine the outputs of each fuzzy
IF-THEN rules. Those are combined and converted to crisp
values with the Defuzzification module. The output crisp value
can be calculated by the center of gravity or the weighted
average and converted to the number of VM to started or
stopped.

It follows a closer look at the 3 processes fuzzification,
fuzzy inference and defuzzification.

152

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Fuzzification: Fuzzification is the process of decom-
posing the input data into fuzzy sets, with trapezoidal shaped
membership functions. Figure 4 shows a system of fuzzy
sets for an input with trapezoidal membership functions. Any
particular input is interpreted from this fuzzy set and a degree
of membership is interpreted. If the request-response-time, for
example, it set to about 100 request-per-seconds, the fuzzy
value loaddeviation is set to low.

Fuzzy Inference: The fuzzy values gathered from the
input data are processed by the inference engine using the
expert domain knowledge modelled as fuzzy IF-THEN rules.
The following fuzzy rules are examples how to state the
domain knowledge in the area of up and down scale control.

IF RegRespTime_rising=high AND
expected_ReqgRespTime_rising=high AND
product_launch=now AND

THEN
up_scale=very high

Defuzzification: After the fuzzy reasoning the resulting
linguistic output variable (e.g. scale up = high) needs to be
translated into a crisp value (e.g. number of VMs to be started
or stopped at time). Defuzzification maps the output from the
fuzzy domain back into the crisp domain. The most common
defuzzification methods is the Center-of-Area (C-0-A) often
referred to as Center-of-Gravity used in this approach and is
defined as follows:

o [pil@)rda 0
J wi(x)dz
where a* is the defuzzified output, u;(z) is the aggregated
membership function and x is the output variable. The C-o-
A method calculates the area under the scaled membership
functions and within the range of the output variable and
afterwards calculates the geometric center of this area.

V. PROOF OF CONCEPT BY SIMULATION

In this section we discuss and evaluate the simulation
results. The objective of the assessment was to verify whether
or not our approach will ensure QoS for a cloud service
better than conventional procedures. Hereafter we give a short
introduction in our Simulation Environment (see section V-A)
followed by the main features of our Simulation Scenarios
(see section V-B), thereafter we discuss the results that we
have obtained during several tests.

A. Simulation Environment

For feasibility testing, we created an simulation environ-
ment to be capable of validating the general fuzzy controlled
scaling architecture proposed in this paper. The simulator
therefore consists of four major components. Firstly, a request
generator module, which simulates the generation of requests
from an application to the cloud service. Here should be
stated, that in our simulation requests are generated with
an static workload. The second module is the load balancer
which receives the generated requests of the request generator
and distributes them to the pooled virtual machines. Here,

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

the time is measured from the generation of the request till
the execution inside a virtual machine is completed. This
request response time then is checked by the scaler module,
which decides either based on the fuzzy or the conventional
rules whether to scale the service up, down or wait. The
conventional rule set is an simple boundary system, where
when the measured average request response hits the upper
boundary a virtual machine gets started or when the lower
boundary is hit a virtual machine is stopped. In between both
boundaries the scaler waits.

usage

daylitne

Fig. 3. Expected Load During Daytime

=

G null low high

] 10

u

E

L=}

£

5

b

=

00 . y .

| 100 1opg \oad change

Fig. 4. Input Fuzzy Set for Load Deviation

The fuzzy set uses the same boundaries, but as an additional
decision factor, a prediction based on expert knowledge is
used.

Figure 3 shows the simplified load of an service during
daytime. Based on such knowledge an expert specifies whether
the load will be increasing at an high, regular or low rate. In
case of an high prediction the fuzzy scaler generally scales
up faster, which means it starts virtual machines on a lower
load and additionally starts up to two virtual machines based
on the load. Additionally it will scale down later, keeping a
higher pool of available virtual machines. The regular pre-
diction equals the conventional rule set, therefore resulting in
essentially the same behavior. A low prediction, is in principle
a reversed high prediction, which will change the behavior into
generally scale up later and scale down faster. And similar to
the high it is allowed to stop up to two virtual machines at
once.

The simulator is based on a model in which a generated
request includes a static processing time of 100ms. The KPI,
is measured as the request/response time, based on the average
of the last 10 processed requests. Thereby the time is counted
form the generation of the request, till arrival of the response
after the processing at the load balancer. The QoS limit has
been set to 2000ms in this model and the conventional rule set
regulates at an average response time of 1500ms by upscaling
and at 1000ms by downscaling one virtual machine at a
time. To eliminate the influences of the test environment, like
processor fluctuations the factor of 10 was used to all above
described values.

153

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

load

Membership
o
a

0 5.000 10.000 15.000 20.000 25.000
x

A& norral & high & low

Fig. 5. Responsetime Fuzzy Sets

Figure 5 above shows the corresponding fuzzy set, where a
load of below 9,000ms is considered low and above 15,000ms
is high. In between stretches the range of normal load. These
fuzzy values are combined with the fuzzy prediction values to
create the set of fuzzy rules. To determine the suitability of
the procedure presented, different scenarios have been created
and tested with and without the fuzzy control mechanism.
Following the scenario with the specific pre-conditions and
characteristics is described and the obtained results a pre-
sented.

B. Simulation Scenarios

In the scenario the number of generated requests are
increased rapidly and kept on a high level for an minute then
to rapidly fall again. Figure 6 below shows the generated load
graph for this scenario and the settings are shown in Table V.

Simulation

—

Requests per second
[
5 8

00:00 00:30 01:00 01:30 02:00 02:30 03:00
Time (minutes:seconds)

— Reguests per second

Fig. 6. Generated Load Scenario 1

This scenario simulates a peak load which happens when
a service is facing an sudden demand. Such as accessing the
canteen online menu just before the lunch break. Peak loads
represent a problem in the real world, as countermeasures are
most difficult.

TABLE V. SCENARIO 1 VALUES
Parameter Value
min VMs 2
max VMs 10

runtime 180s

Figure 7 shows the simulation results with the conventional
rules. Here it can be seen that the simulation begins with the
minimum of 2 virtual machines in the pool. Until about 35s in
the simulation the load is low enough for this two machines to
cope with. After this point the average response time is rising
slowly up until 50s where the load gets increased more. From
this point, the response time increases sharply, until the first

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

boundary limit of 15,000ms is hit and an additional virtual
machine gets started.

Simulation
40.000 10

5
E 35.000

£ 30.000

st
5 8
2 2
2 8
3 8
SBUIYIR A [ENLIA

10,000

5.000

Average response ti

00:00 00:30 01:00 01:30 02:00 02:30 03:00
Time (minutes:seconds)

[Response time —Virtual Machine]

Fig. 7. Scenario 1 Conventional Results

The start of another VM is just not enough to improve
the response time significant. Throughout the simulation up
to 8 VMs are running simultaneously to manage the load.
Comparing these results with the fuzzy controled results,
where the prediction is set to low, shown in figure 8, it becomes
clear that they are pretty similar. This is because with an low
prediction, the limits for the up scale are corresponding to
those of the conventional rule. Therefore the regulation starts
on the same load adding VMs. When switching off VMs,
the fuzzy scaler depending on the load cuts off two VMs.
This behavior has however no effect on the in this simulation
already sinking response time, but it could save resources and
money in real life situations. In both cases the QoS limit of
20,000ms is exceeded.

Simulation
- 40.000 10

3
£ 35.000

15,000

SauIIE A [2NLIA

5.000

a
5
a
o
2
&
& 10.000
@
>
<

[}
00:00 00:30 01:00 01:30 02:00 02:30 03:00

Time (minutes:seconds)

[Response time — Virtual Machines]

Fig. 8. Scenario 1 Fuzzy Low Prediction Results

The large fluctuations seen at the peak of the load can
be explained by the forming the average response time. The
individual values between newly started and already longer
running VMs vary widely because of the waiting time of the
processing packets in the different VMs input queues.

Simulation

g)l

: i

@

s -

g .

£ s.000 S L“‘q

B - \

00:00 00:30 o100 01:30 02:00 0230 03:00
Time (minutes:seconds)

o~ wa e uw e
SBUIIE A [2NLIA

[Response time — Virtual Machines|

Fig. 9. Scenario 1 Fuzzy High Prediction Results

Figure 9 shows the results for the simulation with the fuzzy
scaler and an high prediction. Compared to the other two tests

154

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

we can clearly see that the QoS limit of 20,000ms is respected
this time. In general, we see that the response time runs in
a similar but shallower curve. This can be attributed to the
stronger up scale of starting two VMs simultaneously. This
marginal difference is sufficient to prevent the response time
from increasing over the QoS limit. The earlier intervention,
which is already engaged at a normal load, prevents the
requests from accumulating in the input queues of the VMs.
Overall, though, more resources are used than in the other
tests.

A comparison between the conventional rules and fuzzy
scaler with regular prediction is not necessary, because these
two sets are the same and thus generate the same results.

Over the running of all tests it has show that in all the
scenarios considered, the fuzzy scaler is beneficial. Although
this scaler uses in the high prediction more resources, for
which some could argument it will cost more money, is the
benefit in comparison greater, since a service in where less
resource are needed but has no decent response times makes no
sense to use. The low prediction did not improve the archived
response time but releases the allocated resources faster than
the conventional rules, therefore making it more economical.
By the above presented tests it could be shown that by simple
means, such as a fuzzy rule set and knowledge in form of an
prediction, the response time could be improved or resources
could be saved.

VI. CONCLUSION AND FUTURE WORK

The goal of this paper was to show how a common cloud
computing scaling service could be enabled to guarantee QoS
parameters. Especially the KPI, request-response-time, has
been the focus. The extended QoS provisioning architecture
with an fuzzy control module has been delineated. A detailed
description of possible new information to improve the scaling
control system has been discussed. The proof of concept
chapter showed that violation of SLAs could been avoided.

Future work is to proof this results within a real test
environments and to develop an easy to use user interface. This
shall allow users to specify imprecise information input and
expert knowledge. Additionally the expansion to other QoS
parameters, and further fuzzy input data has to be examined.

ACKNOWLEDGMENT

This research is supported by the German Federal Ministry
of Education and Research (BMBF) through the research grant
number 03FH046PX2.

REFERENCES

[1] Amazon auto scaling service. Online. Retrived 01.2013. [Online].
Available: http://aws.amazon.com/autoscaling/

[2] D. Armstrong and K. Djemame, “Towards quality of service in the
cloud,” 2009, pp. 226 — 240.

[3] B. Rochwerger, A. Galis, E. Levy, J. Caceres, D. Breitgand, Y. Wolf-
sthal, I. Llorente, M. Wusthoff, R. Montero, and E. Elmroth, “Reservoir:
Management technologies and requirements for next generation service
oriented infrastructures,” in Integrated Network Management, 2009. IM
’09. IFIP/IEEE International Symposium on, 2009, pp. 307 -310.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds,” in Proceedings
of the 5th European conference on Computer systems, ser. EuroSys ’10,
New York, NY, USA, 2010, pp. 237-250.

S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, “QoS-
Aware Clouds,” in Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing, ser. CLOUD *10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 321-328.

C.-T. Yang, K.-C. Wang, H.-Y. Cheng, C.-T. Kuo, and W. C. C.
Chu, “Green power management with dynamic resource allocation for
cloud virtual machines,” in Proceedings of the 2011 IEEE International
Conference on High Performance Computing and Communications, ser.
HPCC *11. Washington, DC, USA: IEEE Computer Society, 2011, pp.
726-733.

F. Wuhib, R. Stadler, and M. Spreitzer, “A gossip protocol for dynamic
resource management in large cloud environments,” vol. 9, no. 2, 2012,
pp. 213-225.

J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic
resource management in virtualized data centers using fuzzy logic-based
approaches,” vol. 11, no. 3. Hingham, MA, USA: Kluwer Academic
Publishers, Sep. 2008, pp. 213-227.

J. Rao, Y. Wei, J. Gong, and C.-Z. Xu, “DynaQoS: model-free self-
tuning fuzzy control of virtualized resources for qos provisioning,” in
Proceedings of the Nineteenth International Workshop on Quality of
Service, ser. IWQoS "11. Piscataway, NJ, USA: IEEE Press, 2011, pp.
31:1-31:9.

Y.-M. Wi, S.-K. Joo, and K.-B. Song, “Holiday load forecasting
using fuzzy polynomial regression with weather feature selection and
adjustment,” vol. 27, no. 2, may 2012, pp. 596 —603.

K.-B. Song, S.-K. Ha, J.-W. Park, D.-J. Kweon, and K.-H. Kim, “Hybrid
load forecasting method with analysis of temperature sensitivities,”
vol. 21, no. 2, may 2006, pp. 869 — 876.

155

