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Abstract — Data farming is a scientific methodology, which 
heavily depends on technical advances in high throughput 
computing to generate large amounts of data with computer 
simulation to investigate studied phenomena. Unfortunately, 
the availability of versatile data farming systems is very limited 
and none of existing tool enables integration with novel Cloud 
solutions. This paper presents a flexible platform for 
conducting large-scale data farming experiments on 
heterogenous computational infrastructure including: clusters, 
Grids and Clouds. Another important feature of the presented 
platform is the support of interactive data farming 
experiments, which includes an online analysis of partial 
experiment results and experiment extending capabilities. 

Keywords - scalability; data farming; software platform; high 
throughput computing. 

I.  INTRODUCTION 
In many disciplines of modern science, scientific 

discoveries are results of collecting and analyzing large 
amounts of data. In particular, an increasing popularity of 
conducting experiments, both physical and virtual, to 
understand studied phenomena leads to big data generation. 
A physical experiment often is too expensive to conduct it 
multiple times, e.g., when requires expensinve equipment 
such as airplane engines or battleships, thus computer 
simulations are performed instead. Technological advances 
in recent years have led to significant improvements in the 
computer simulation field, e.g., reduction of the required 
time to run a computer simulation and refinement of 
simulation models in regard to its complexity. One can now 
simulate complicated phenomena in minutes or hours instead 
of days or months, with an improvement of results quality 
and simulation complexity. 

Based on this technological progress, new forms of 
scientific methodologies have emerged, which are based on 
data-intensive computation and analysis. One such a 
methodology is called “The Fourth Paradigm” [1], in which 
new scientific findings are discovered by analyzing big 
amount of data coming from various scientific experiments. 
A complementary approach, which is gaining more and more 
popularity in recent years, is Data Farming [2], whose main 
objective is to develop a better understanding of landscape of 
possibilities as well as outliers that may be discovered 

through simulation. This is especially important when 
concerning a decision-making process regarding complicated 
nature of scenarios involving security forces. The origin of 
the Data Farming methodology is in USA Marine Corps, 
where it was proposed to enhance military strategies. Though 
today, it is used in other disciplines of science [3-4]. The 
basic idea behind Data Farming is to grow significant 
amount of data by performing large number of simulations of 
a studied phenomena, each with a slightly different input 
values. Simulation results are described by a vector of 
parameters, called Measures of Effectiveness (MoE), which 
is used to evaluate each simulation. A result vector is treated 
as a single point of possible output landscape. After 
gathering a number of such points, a scientist can perform 
analysis of existing trends or anomalies, based on which, 
new insights into phenomena can be obtained. 

A crucial requirement for conducting data farming 
experiments effectively is usage of high performance and 
throughput computer infrastructure. It is necessary to run a 
large number of simulations simultaneously and gathering 
output results. In addition, it is often required to integrate 
many heterogeneous computational infrastructures, when an 
experiment requires more computational power than a single 
computer centre can provide. Moreover, as new types of 
computational infrastructures are emerging, e.g., public 
Clouds, integration with existing infrastructures, e.g., Grid 
environments, becomes a major issue. Thus, a holistic 
platform, which will virtualize computational and storage 
resources, is required to conduct data farming experiment in 
an efficient way. In particular, it should automate all 
cumbersome technical aspects of infrastructure configuration 
and simulation running. Besides fulfilling functional 
requirements, such a platform should be scalable and 
adaptable to a changing state of knowledge about the studied 
phenomena, in order to be used in both small and large data 
farming experiments.  

The rest of the paper is organized as follows. In Section 
II, we present existing tools, which can be utilized for 
conducting data farming experiments. Section III describes 
our platform, called Scalarm, its main design principles and 
objectives. Then, in Section IV, an experimental evaluation 
of the presented platform is depicted. We conclude this paper 
in Section V. 
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II. STATE OF THE ART 
Although, Data Farming is becoming a popular scientific 

methodology lately, the software supporting this 
methodology is rather limited. One of the very few examples 
of such tools is OldMcData [5], which supports only two 
parts of a data farming experiment. It can prepare input a set 
of input vectors based on possible range of parameter values 
and selected design of experiment methods. Afterwards, it 
can schedule simulations to run on available computational 
resources with the Condor software [6], which can be 
configured to work with distributed resources and is able to 
move simulations’ output from distributed computational 
resources to a designated location. However, no method for 
data analysis is provided, which means that external tools 
have to be used. Moreover, running simulations is a batch-
like process, i.e., a whole package of inputs is submitted to a 
scheduler at once. The user can proceed to data analysis after 
the whole experiment is finished. There is no information 
about any partial results and the user cannot modify the 
parameter space of an experiment once submitted. Condor 
supports heterogeneous infrastructure integration, but it lacks 
the scaling feature in regards to application managers, which 
means the infrastructure delegated to perform the experiment 
has to be set before starting simulations and cannot be 
changed during the runtime. 

Although, data farming oriented tools are rather limited in 
number, there are several tools, which can support different 
phases of the data farming process independantly. One of the 
most important phases of the process is simulation execution 
with high throughput computational infrastructure. There are 
several tools available for this task as this is a generic 
problem in many computational disciplines. Distributed 
Infrastructure with Remote Agent Control (DIRAC) [7] is a 
platform supporting computations with heterogeneous 
resources including local clusters, Grids and Clouds. It was 
originally developed to provide a complete solution for using 
the distributed computing resources of the LHCb experiment 
at CERN for data production and analysis. DIRAC provides 
an additional abstraction layer between users and various 
compute resources to allow optimized, transparent and 
reliable usage. It exploits the concepts of Workload 
Management System with Pilot Jobs, which increase 
computations efficiency and reliability. DIRAC utilizes an 
agent-based architecture, where agents are deployed on the 
worker nodes, building a dynamic overlay network of readily 
available resources. These agents, being actually a 
representation of available computing resources, intend to 
reserve computational power to run actual tasks, which are 
distributed using a custom scheduling method. By using the 
Pilot jobs and Workload Management System concepts, 
DIRAC implements redundancy at the computational task 
level, i.e., DIRAC guarantees that tasks will be run, and in 
case of any failure it will be rescheduled. In addition, these 
concepts allow aggregating in a single system computing 
resources of a different nature, such as computational grids, 
clouds and clusters, transparently for the users. DIRAC 
provides the data management functionality, however it is 

related to data distribution in a reliable manner among 
computational resources. It does not provide functionality 
required to analyse job results. Also, it does not have design 
of experiment methods built in for sampling input parameter 
value space, based on which computational jobs should be 
generated and scheduled. Thus, it can be only used as a part 
of a complete data farming platform, rather than being a 
complete solution for its own. 

Falkon, which stands for a “Fast and Light-weight tasK 
executiON framework”, is a framework for rapid execution 
of many tasks on compute clusters [8]. Falkon focuses on 
efficient task dispatching, and delivers dispatching 
performance better than other systems, i.e., upto 440 
tasks/sec. Furthermore, Falkon is highly scalable in terms of 
workers, which can be utilized to perform tasks, i.e., to over 
54,000. Thus, applications end-to-end run time can be 
reduced in some cases up to 90% relative to versions that 
execute tasks via separate scheduler submissions. To achieve 
such performance and high scalability, Falkon utilizes a 
concept of multi-level scheduling to separate resource 
acquisition from task dispatch. Moreover, a streamlined 
dispatcher is used, which improves performance but 
eliminates support for features such as multiple queues, 
prorities, accounting, etc. Falkon consists of a dispatcher, a 
provisioner, and multiple executors. The dispatcher accepts 
tasks from clients and schedules subsequent tasks to next 
available executors. The provisioner is responsible for 
creating and destroying executors on available computational 
resources. Executors run tasks received from the dispatcher. 
Each new executor registers with the dispatcher. 
Components communicate via Web Services (WS) 
messages, except for notifications are performed via a 
custom TCP-based protocol. Although, Falkon provides high 
throughtput and executors’ scalability, it lacks dispatchers’ 
scalability, i.e., performance of Falkon is constrainted by 
capabilities of the server, which runs the dispatcher 
component. Moreover, whole Falkon functionality is limited 
only to dispatching, hence no functionality related to 
parameter space generation or results analysis is provided. 

Since data farming is still a relatively uncharted territory 
none of existing tools provides functionality required for 
flexible running of various data farming experiments with 
different types of parameters and even simulation 
implementation technologies. 

III. SCALARM PLATFORM 
Due to lack of versatile software for conducting data 

farming experiments, we developed a new system from 
scratch, called Scalarm [9], which stands for Massively 
Scalable Platform for Data Farming. Scalarm intends to 
fulfill the following requirements: 

• support all phases of a data farming experiment, 
starting from a design of experiment phase, 
through simulation execution and progress 
monitoring, to statistical analysis of results, 
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• support different sizes of experiments from 
dozens to millions of simulations through 
massive scalability, 

• support for heterogenous computational 
infrastructure including private clusters, Grids 
and Clouds. 

A. Provided functionality 
Scalarm functionality focuses on conducting 

experiments, which follows the Data Farming methodology. 
In addition, Scalarm introduces an exploratory approach to 
experiment conducting. In a batch-like experiment 
execution, the user submits an experiment as a single 
package, waits for all simulations to compute, and then 
analyze obtained results. Based on the result analysis, new 
experiments are conducted to investigate interesting cases in 
more details. This loop can be reapeated several times. On 
the other hand, the exploratory approach enables users to 
expand the parameter space of running experiments, based 
on an on-line analysis of already computed simulations, e.g., 
with regression trees and MoE histograms. Hence, the user 
can specify only small parameter space at first, and expand it 
on-line later on, which is a more natural way of conducting 
such experiments.  

Supported use cases can be divided into three groups 
based on their expected results: experiment management, 
analysis and platform management. The first group includes 
activities related to preparation of new data farming 
experiments, their further monitoring and management, e.g., 
adding computational resources to execute simulations 

included in a concrete experiment. The second group, i.e., 
analysis, contains all actions, which intend to visualise and 
discover knowledge from simulations' results in form of 
various charts and graphs. Hence, they can be utilized to 
discover meaningful insight into studied phenomena. The 
last group, i.e., platform management, includes use cases, 
which are important for a multi-tenant environment to 
operate, but they do not support the data farming process 
directly, e.g., login. 

B. Architecture of the platform 
Selecting an appropriate architecture style for virtual 

platforms, which intend to be deployed at a large scale, is the 
basic problem of modern software engineering. At a high-
level of abstraction, Scalarm follows the “master-worker” 
design pattern, i.e., one part of the platform is responsible for 
scheduling the actual work to the other part of the platform. 

Scalarm’s architecture utilizes a service-oriented 
approach with an additional modification, which addresses 
the scalability requirement. To cope with the requirement, 
we do not operate on the level of components and services, 
which represent single instances only. Instead, we extended 
the meaning of an application's modularization unit to 
embrace the scalability feature. Thus, each Scalarm service 
can consist internally of a number of component’s instances, 
which provides exposed functionality, and a load balancer, 
which constitutes a single entry point to the service. An 
overview of the architecture is depicted in Fig. 1.  

 
 

Figure 1. A component diagram of Scalarm. 

146Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization



The Scalarm platform includes the following 
components: 

• Experiment Manager, which handles all 
interaction between the platform and actual 
users via a Graphical User Interface. On the one 
hand, it constitutes a gateway to the platform for 
analysts, i.e., provides a coherent view of 
information about all running and completed 
data farming experiments, and enables analysts 
to create new experiments or to conduct 
statistical analysis on existing ones. On the other 
hand, Experiment Manager is responsible for 
scheduling simulations to Simulation Managers. 

• Storage Manager is an equivalent of the 
persistence layer concept but in a form of a 
separate service. Other components, mainly 
Experiment and Simulation Managers use this 
service to store different types of data: structural 
information about each executed simulation and 
experiment, and actual results of simulations, 
which may be either binary or text data. By 
utilizing a built-in load balancer, Storage 
Manager can be treated as a virtually centralized 
but physically distributed single point of data 
storage, which facilitates the client side while 
preserving performance and scalability. 

• Simulation Manager is an intelligent wrapper 
for actual simulations, which can be deployed 
on various computational infrastructures, e.g., 
private cluster, Grids or Clouds. It can be treated 
as an implementation of the Pilot job concept, 
i.e., a special application that intends to acquire 
computational resources to run actual 
applications. However, while the Pilot job 
concept was created for Grid environments 
only, Simulation manager is infrastructure 
independent. The wrapper is responsible for 
preparing whole environment for a simulation, 
i.e., download necessary code dependencies and 
input parameter values. After a simulation is 
finished, Simulation Manager uploads results to 
the "master" part, i.e., log files and other binary 
outputs are sent to Storage Manager, while MoE 
values are sent to Experiment Manager along 
with information about simulation completion. 
As it can operate in a highly dynamic and 
unreliable environment, Simulation Manager 
supports fault tolerance for Experiment and 
Storage Managers failures as well as network 
connectivity issues. Moreover, to maximize 
resource utilization, Simulation Manager starts 
multiple simulations in parallel based on actual 
computational resource capabilities, i.e., 
additional simulations are started if it will not 
significantly decrease performance of already 
started simulations.  

• Information Manager is an implementation of 
the Service locator pattern, known from SOA-
based systems. It is a "well-known" place for 

each component in the system, which stores 
information about other components' locations. 

• Monitoring Manager constitutes a distributed 
monitoring system for the Scalarm platform. It 
contains two separated elements: sensors, which 
periodically sent monitoring data and a service, 
which stores this information. Sensors are built 
directly into each Experiment, Storage and 
Simulation Managers. It collects information 
about workload of Scalarm components, using 
operating system metrics, e.g., CPU and RAM 
memory utilization, as well as component 
specific metrics, e.g., response time of various 
requests. 

C. Supported applications 
Scalarm was originally evaluated in a multi-agent 

simulation area, with a goal of supporting a training process 
of security forces. A sample simulation scenario involved 
controlling the access of civilians to a military base camp 
during elections in a mission abroad. In this scenario, 
civilians were waiting in front of a camp entrance to an 
operation base with an intention to start a skirmish. From the 
security forces point of view, the goal of this scenario was to 
prevent the escalation of agression by effectivie negotiations. 
However, civilians may act differently, depending on input 
parameter values, hence actions performed by security forces 
should be adjusted to a concrete behaviour. A goal of a data 
farming experiment, which used this simulation scenario, 
was to find out how to minimize the number of injured 
civilians in such a scenario, regardless their behaviour. 

Scalarm facilitated the experiment at the following 
phases: 

• A design of experiment phase, whose result is a 
specification of the input parameter space. 
Scalarm provides a set of views, where an 
analyst specifies types of parametrization for 
each input parameter and design of experiment 
methods, which should be used. 

• Simulation execution on heterogenous 
computational infrastructure. Scalarm supports 
different types of computational infrastructures, 
i.e., common computational clusters available 
via SSH, Grid environments accessible via the 
gLite middleware [10], and public clouds 
supporting Amazon EC2 API. 

• Statistical analysis of results. Scalarm provides 
a set of built-in graphs, which can be created 
based on completed simulation results: 
histograms, regression trees and bivariate 
graphs. 

For more details about conducted data farming 
experiments regarding security forces, please refer to [11]. 
Though, Scalarm was evaluated with a particular type of 
simulations, it can be used in any other science discipline, 
where the Data Farming methodology can be utilized, e.g., 
materials science or life-science. 
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IV. EXPERIMENTAL EVALUATION 
To evaluate Scalarm, we conducted both functional tests 

of supporting different computational infrastructures and 
performance tests to measure the platform’s scalability. 

Functional tests concerned simulating a scenario 
described in Section III. Two standard HP ProLiant worker 
nodes (described in a following section) were used to run one 
instance of Experiment and Storage Managers. To run 
Simulation Managers, we used: 

• 9 worker nodes from a private cluster, 
• 50 Grid jobs scheduled to a Grid infrastructure, 
• 50 High-CPU Extra Large instances from 

Amazon EC2. 
In the experiment design phase, 14 from 92 of simulation 

input parameters (describing initial emotional state and other 
attributes of simulated entities) were set to the “Range” 
parametrization with 2^k method applied, which generated 
16 386 different cases to simulate. The utilized set of 
resources enabled us to execute more than 620 simulations 
simultaneously with more then 140 simulations complete in 
each minute. 

An output of each simulation included: a text file with 
less than 7 MB of simulation logs, and 44 different MoEs 
describing aggregated emotional states of different entity 
groups and statistic regarding the simulated scenario. 
Compressed logs were sent to Storage Managers, which had 
a disk array connected with 6 TB of total capacity.  

After several minutes of computations, an analysis of 
gathered results was conducted using histograms and 
regression trees. Based on this analysis, the experiment was 
extended with additional parameter values. A whole test was 
recorded and can be found online at [12]. 

The second set of tests concerned the platform’s 
scalability. We intended to evaluate scalability of the master 
part, which includes Experiment and Storage Managers, 
since running many independent workers is trivial. We used 
production infrastructure, however an empty simulation was 
actually performed to minimize the number of Simulation 
Managers required to saturate platform’s throughput, which 
was measured with completed simulations registered by 
Experiment Managers in a period of time. 

A. Testing scenarios 
Our testing scenarios focused on evaluating how Scalarm 

handles experiments of various sizes with different amount 
of computational resources. The main measured parameter 
was the total execution time of each experiment. Scalarm has 
three main components, namely Experiment, Storage and 
Simulation Managers, which can be scaled. In presented 
tests, the number of Simulation Managers was 
experimentally selected to saturate platform’s throughtput. 
Hence, only numbers of Experiment and Storage Managers 
were used as parameters of performed tests. 

Regarding experiment sizes, i.e., the number of 
simulations within an experiment, we used the following set 
of values to present full capabilities of the platform: 100 000, 
200 000, 500 000, 1 000 000, 2 000 000, 5 000 000. 

Concerning computational resources, the parameter 
depicted the number of servers dedicated to run Experiment 
and Storage Managers. Our tests included the following 
values of this parameter: 1, 2, 4 and 8. However, each 
component run on a separate set of servers, which means that 
in each test, the total number of servers was doubled. 

B. Testing environment 
In case of performance tests, we used a computing cluster 

to run Experiment and Storage Managers to minimize the 
network latency. Simulation Managers were scheduled to a 
part of PL-Grid infrastructure located within the same site. 

To run each component, we used standard HP ProLiant 
worker nodes, connected with each other through a 10 GbE 
network switch, while connection between a worker node 
and switch was 1 GbE link. Each worker node has the 
following parameters: 

• 2x Intel Xeon CPU L5420 @ 2.50GHz  
• 16 GB RAM 
• 120 GB hard drive (5400 RPM) 

C. Evaluation results 
Aggregated test results are depicted in Fig. 2. Each line 

on the chart denotes a separate configuration of Scalarm used 
in tests, i.e., numbers of servers running Experiment and 
Storage Managers represented as a pair (<experiment 
managers count>, <storage managers count>). For each 
configuration, we measured total execution time in seconds 
for experiments of different sizes. 

 

 
Figure 2. Experiments' execution time for different Scalarm configurations. 

 
There are a few things worth noticing. First of all, the 

more resources Scalarm has, the better performance it 
provides. The performance gain varied depending on actual 
experiment size. Let's compare configurations (1,1) and 
(2,2). Execution time decreases by 53% for experiment size 
100 000, but only by, 31% for experiment size 1 000 000. 

The second notice concerns the execution time of 
experiments with an increasing size using the same 
configuration. Regardless the configuration, the execution 
time of subsequent experiments with an increasing number 
of simulations rises more than linearly. It is caused by an 
increasing effort of simulation information management. 
Each simulation is represented in Scalarm by a row in a non-
relational database. Performance of such databases depends 
on the IO subsystem, especially when concerning millions of 
rows. Hence, after exceeding some thresholds of a database 
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size (about a million of rows on a single server), database 
operations tend to take more than expected.  

Based on obtained results, we calculated speedup (1) and 
efficiency (2) metric using classical formulas. 

 Speedup(N) = T(1) / T(N) (1) 

 Efficiency(N) = Speedup(N) / N (2) 

Efficiency of Scalarm (depicted in Fig. 3) is greater than 
0.7 in most cases, which is a good result, especially when 
concerning a wide range of tested configurations. 
Furthermore, for some experiment sizes and the 
configuration consisted of 2 servers for Experiment and 
Storage Managers respectively, efficiency is greater than 1, 
which could be have been caused by data sharding between 
instances of a database on seperated servers, which enabled 
having all data in memory instead of using local disk. 

 

 
Figure 3. Scalarm efficiency for configurations including more than 1 

server per component. 
 
An average throughput for the Configuration (1, 1) was 

about 4776 simulations per minute. We estimated the 
number of Simulation Managers, which would be required to 
saturate Scalarm when running actual simulations by 
comparing to the throughput of running actual simulations 
and the throughput with an empty simulation. In the case of 
our simulation, we should have more than 120 000 of 
Simulation Managers running simultanously. This was the 
main reason why the scalability evaluation was performed 
with an empty simulation. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a versatile system for running 

large scale data farming experiments involving processing of 
a parameter space where custom design of experiment 
methods and interactive fine tuning of processed parameter 
space are required. The system is currently being evaluated 
for military mission planning support in order to improve 
behavior models for agent-based simulation component and 
to allow drawing conclusions regarding selected Measures of 
Effectiveness for higher echelons. 

The future work will include application of the platform 
in a metallurgy scenario [13], with focus on distributed 
semantic-based Virtual Organization collaborations [14]. 
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