
Massively Scalable Platform for Data Farming Supporting Heterogeneous
Infrastructure

Dariusz Król, Michał Wrzeszcz, Bartosz Kryza,
Łukasz Dutka

AGH University of Science and Technology
Academic Computer Centre Cyfronet AGH

Krakow, Poland
{dkrol, wrzeszcz, bkryza, dutka}@agh.edu.pl

Jacek Kitowski
AGH University of Science and Technology

Department of Computer Science and Academic Computer
Centre Cyfronet AGH

Krakow, Poland
kito@agh.edu.pl

Abstract — Data farming is a scientific methodology, which
heavily depends on technical advances in high throughput
computing to generate large amounts of data with computer
simulation to investigate studied phenomena. Unfortunately,
the availability of versatile data farming systems is very limited
and none of existing tool enables integration with novel Cloud
solutions. This paper presents a flexible platform for
conducting large-scale data farming experiments on
heterogenous computational infrastructure including: clusters,
Grids and Clouds. Another important feature of the presented
platform is the support of interactive data farming
experiments, which includes an online analysis of partial
experiment results and experiment extending capabilities.

Keywords - scalability; data farming; software platform; high
throughput computing.

I. INTRODUCTION
In many disciplines of modern science, scientific

discoveries are results of collecting and analyzing large
amounts of data. In particular, an increasing popularity of
conducting experiments, both physical and virtual, to
understand studied phenomena leads to big data generation.
A physical experiment often is too expensive to conduct it
multiple times, e.g., when requires expensinve equipment
such as airplane engines or battleships, thus computer
simulations are performed instead. Technological advances
in recent years have led to significant improvements in the
computer simulation field, e.g., reduction of the required
time to run a computer simulation and refinement of
simulation models in regard to its complexity. One can now
simulate complicated phenomena in minutes or hours instead
of days or months, with an improvement of results quality
and simulation complexity.

Based on this technological progress, new forms of
scientific methodologies have emerged, which are based on
data-intensive computation and analysis. One such a
methodology is called “The Fourth Paradigm” [1], in which
new scientific findings are discovered by analyzing big
amount of data coming from various scientific experiments.
A complementary approach, which is gaining more and more
popularity in recent years, is Data Farming [2], whose main
objective is to develop a better understanding of landscape of
possibilities as well as outliers that may be discovered

through simulation. This is especially important when
concerning a decision-making process regarding complicated
nature of scenarios involving security forces. The origin of
the Data Farming methodology is in USA Marine Corps,
where it was proposed to enhance military strategies. Though
today, it is used in other disciplines of science [3-4]. The
basic idea behind Data Farming is to grow significant
amount of data by performing large number of simulations of
a studied phenomena, each with a slightly different input
values. Simulation results are described by a vector of
parameters, called Measures of Effectiveness (MoE), which
is used to evaluate each simulation. A result vector is treated
as a single point of possible output landscape. After
gathering a number of such points, a scientist can perform
analysis of existing trends or anomalies, based on which,
new insights into phenomena can be obtained.

A crucial requirement for conducting data farming
experiments effectively is usage of high performance and
throughput computer infrastructure. It is necessary to run a
large number of simulations simultaneously and gathering
output results. In addition, it is often required to integrate
many heterogeneous computational infrastructures, when an
experiment requires more computational power than a single
computer centre can provide. Moreover, as new types of
computational infrastructures are emerging, e.g., public
Clouds, integration with existing infrastructures, e.g., Grid
environments, becomes a major issue. Thus, a holistic
platform, which will virtualize computational and storage
resources, is required to conduct data farming experiment in
an efficient way. In particular, it should automate all
cumbersome technical aspects of infrastructure configuration
and simulation running. Besides fulfilling functional
requirements, such a platform should be scalable and
adaptable to a changing state of knowledge about the studied
phenomena, in order to be used in both small and large data
farming experiments.

The rest of the paper is organized as follows. In Section
II, we present existing tools, which can be utilized for
conducting data farming experiments. Section III describes
our platform, called Scalarm, its main design principles and
objectives. Then, in Section IV, an experimental evaluation
of the presented platform is depicted. We conclude this paper
in Section V.

144Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

II. STATE OF THE ART
Although, Data Farming is becoming a popular scientific

methodology lately, the software supporting this
methodology is rather limited. One of the very few examples
of such tools is OldMcData [5], which supports only two
parts of a data farming experiment. It can prepare input a set
of input vectors based on possible range of parameter values
and selected design of experiment methods. Afterwards, it
can schedule simulations to run on available computational
resources with the Condor software [6], which can be
configured to work with distributed resources and is able to
move simulations’ output from distributed computational
resources to a designated location. However, no method for
data analysis is provided, which means that external tools
have to be used. Moreover, running simulations is a batch-
like process, i.e., a whole package of inputs is submitted to a
scheduler at once. The user can proceed to data analysis after
the whole experiment is finished. There is no information
about any partial results and the user cannot modify the
parameter space of an experiment once submitted. Condor
supports heterogeneous infrastructure integration, but it lacks
the scaling feature in regards to application managers, which
means the infrastructure delegated to perform the experiment
has to be set before starting simulations and cannot be
changed during the runtime.

Although, data farming oriented tools are rather limited in
number, there are several tools, which can support different
phases of the data farming process independantly. One of the
most important phases of the process is simulation execution
with high throughput computational infrastructure. There are
several tools available for this task as this is a generic
problem in many computational disciplines. Distributed
Infrastructure with Remote Agent Control (DIRAC) [7] is a
platform supporting computations with heterogeneous
resources including local clusters, Grids and Clouds. It was
originally developed to provide a complete solution for using
the distributed computing resources of the LHCb experiment
at CERN for data production and analysis. DIRAC provides
an additional abstraction layer between users and various
compute resources to allow optimized, transparent and
reliable usage. It exploits the concepts of Workload
Management System with Pilot Jobs, which increase
computations efficiency and reliability. DIRAC utilizes an
agent-based architecture, where agents are deployed on the
worker nodes, building a dynamic overlay network of readily
available resources. These agents, being actually a
representation of available computing resources, intend to
reserve computational power to run actual tasks, which are
distributed using a custom scheduling method. By using the
Pilot jobs and Workload Management System concepts,
DIRAC implements redundancy at the computational task
level, i.e., DIRAC guarantees that tasks will be run, and in
case of any failure it will be rescheduled. In addition, these
concepts allow aggregating in a single system computing
resources of a different nature, such as computational grids,
clouds and clusters, transparently for the users. DIRAC
provides the data management functionality, however it is

related to data distribution in a reliable manner among
computational resources. It does not provide functionality
required to analyse job results. Also, it does not have design
of experiment methods built in for sampling input parameter
value space, based on which computational jobs should be
generated and scheduled. Thus, it can be only used as a part
of a complete data farming platform, rather than being a
complete solution for its own.

Falkon, which stands for a “Fast and Light-weight tasK
executiON framework”, is a framework for rapid execution
of many tasks on compute clusters [8]. Falkon focuses on
efficient task dispatching, and delivers dispatching
performance better than other systems, i.e., upto 440
tasks/sec. Furthermore, Falkon is highly scalable in terms of
workers, which can be utilized to perform tasks, i.e., to over
54,000. Thus, applications end-to-end run time can be
reduced in some cases up to 90% relative to versions that
execute tasks via separate scheduler submissions. To achieve
such performance and high scalability, Falkon utilizes a
concept of multi-level scheduling to separate resource
acquisition from task dispatch. Moreover, a streamlined
dispatcher is used, which improves performance but
eliminates support for features such as multiple queues,
prorities, accounting, etc. Falkon consists of a dispatcher, a
provisioner, and multiple executors. The dispatcher accepts
tasks from clients and schedules subsequent tasks to next
available executors. The provisioner is responsible for
creating and destroying executors on available computational
resources. Executors run tasks received from the dispatcher.
Each new executor registers with the dispatcher.
Components communicate via Web Services (WS)
messages, except for notifications are performed via a
custom TCP-based protocol. Although, Falkon provides high
throughtput and executors’ scalability, it lacks dispatchers’
scalability, i.e., performance of Falkon is constrainted by
capabilities of the server, which runs the dispatcher
component. Moreover, whole Falkon functionality is limited
only to dispatching, hence no functionality related to
parameter space generation or results analysis is provided.

Since data farming is still a relatively uncharted territory
none of existing tools provides functionality required for
flexible running of various data farming experiments with
different types of parameters and even simulation
implementation technologies.

III. SCALARM PLATFORM
Due to lack of versatile software for conducting data

farming experiments, we developed a new system from
scratch, called Scalarm [9], which stands for Massively
Scalable Platform for Data Farming. Scalarm intends to
fulfill the following requirements:

• support all phases of a data farming experiment,
starting from a design of experiment phase,
through simulation execution and progress
monitoring, to statistical analysis of results,

145Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

• support different sizes of experiments from
dozens to millions of simulations through
massive scalability,

• support for heterogenous computational
infrastructure including private clusters, Grids
and Clouds.

A. Provided functionality
Scalarm functionality focuses on conducting

experiments, which follows the Data Farming methodology.
In addition, Scalarm introduces an exploratory approach to
experiment conducting. In a batch-like experiment
execution, the user submits an experiment as a single
package, waits for all simulations to compute, and then
analyze obtained results. Based on the result analysis, new
experiments are conducted to investigate interesting cases in
more details. This loop can be reapeated several times. On
the other hand, the exploratory approach enables users to
expand the parameter space of running experiments, based
on an on-line analysis of already computed simulations, e.g.,
with regression trees and MoE histograms. Hence, the user
can specify only small parameter space at first, and expand it
on-line later on, which is a more natural way of conducting
such experiments.

Supported use cases can be divided into three groups
based on their expected results: experiment management,
analysis and platform management. The first group includes
activities related to preparation of new data farming
experiments, their further monitoring and management, e.g.,
adding computational resources to execute simulations

included in a concrete experiment. The second group, i.e.,
analysis, contains all actions, which intend to visualise and
discover knowledge from simulations' results in form of
various charts and graphs. Hence, they can be utilized to
discover meaningful insight into studied phenomena. The
last group, i.e., platform management, includes use cases,
which are important for a multi-tenant environment to
operate, but they do not support the data farming process
directly, e.g., login.

B. Architecture of the platform
Selecting an appropriate architecture style for virtual

platforms, which intend to be deployed at a large scale, is the
basic problem of modern software engineering. At a high-
level of abstraction, Scalarm follows the “master-worker”
design pattern, i.e., one part of the platform is responsible for
scheduling the actual work to the other part of the platform.

Scalarm’s architecture utilizes a service-oriented
approach with an additional modification, which addresses
the scalability requirement. To cope with the requirement,
we do not operate on the level of components and services,
which represent single instances only. Instead, we extended
the meaning of an application's modularization unit to
embrace the scalability feature. Thus, each Scalarm service
can consist internally of a number of component’s instances,
which provides exposed functionality, and a load balancer,
which constitutes a single entry point to the service. An
overview of the architecture is depicted in Fig. 1.

Figure 1. A component diagram of Scalarm.

146Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

The Scalarm platform includes the following
components:

• Experiment Manager, which handles all
interaction between the platform and actual
users via a Graphical User Interface. On the one
hand, it constitutes a gateway to the platform for
analysts, i.e., provides a coherent view of
information about all running and completed
data farming experiments, and enables analysts
to create new experiments or to conduct
statistical analysis on existing ones. On the other
hand, Experiment Manager is responsible for
scheduling simulations to Simulation Managers.

• Storage Manager is an equivalent of the
persistence layer concept but in a form of a
separate service. Other components, mainly
Experiment and Simulation Managers use this
service to store different types of data: structural
information about each executed simulation and
experiment, and actual results of simulations,
which may be either binary or text data. By
utilizing a built-in load balancer, Storage
Manager can be treated as a virtually centralized
but physically distributed single point of data
storage, which facilitates the client side while
preserving performance and scalability.

• Simulation Manager is an intelligent wrapper
for actual simulations, which can be deployed
on various computational infrastructures, e.g.,
private cluster, Grids or Clouds. It can be treated
as an implementation of the Pilot job concept,
i.e., a special application that intends to acquire
computational resources to run actual
applications. However, while the Pilot job
concept was created for Grid environments
only, Simulation manager is infrastructure
independent. The wrapper is responsible for
preparing whole environment for a simulation,
i.e., download necessary code dependencies and
input parameter values. After a simulation is
finished, Simulation Manager uploads results to
the "master" part, i.e., log files and other binary
outputs are sent to Storage Manager, while MoE
values are sent to Experiment Manager along
with information about simulation completion.
As it can operate in a highly dynamic and
unreliable environment, Simulation Manager
supports fault tolerance for Experiment and
Storage Managers failures as well as network
connectivity issues. Moreover, to maximize
resource utilization, Simulation Manager starts
multiple simulations in parallel based on actual
computational resource capabilities, i.e.,
additional simulations are started if it will not
significantly decrease performance of already
started simulations.

• Information Manager is an implementation of
the Service locator pattern, known from SOA-
based systems. It is a "well-known" place for

each component in the system, which stores
information about other components' locations.

• Monitoring Manager constitutes a distributed
monitoring system for the Scalarm platform. It
contains two separated elements: sensors, which
periodically sent monitoring data and a service,
which stores this information. Sensors are built
directly into each Experiment, Storage and
Simulation Managers. It collects information
about workload of Scalarm components, using
operating system metrics, e.g., CPU and RAM
memory utilization, as well as component
specific metrics, e.g., response time of various
requests.

C. Supported applications
Scalarm was originally evaluated in a multi-agent

simulation area, with a goal of supporting a training process
of security forces. A sample simulation scenario involved
controlling the access of civilians to a military base camp
during elections in a mission abroad. In this scenario,
civilians were waiting in front of a camp entrance to an
operation base with an intention to start a skirmish. From the
security forces point of view, the goal of this scenario was to
prevent the escalation of agression by effectivie negotiations.
However, civilians may act differently, depending on input
parameter values, hence actions performed by security forces
should be adjusted to a concrete behaviour. A goal of a data
farming experiment, which used this simulation scenario,
was to find out how to minimize the number of injured
civilians in such a scenario, regardless their behaviour.

Scalarm facilitated the experiment at the following
phases:

• A design of experiment phase, whose result is a
specification of the input parameter space.
Scalarm provides a set of views, where an
analyst specifies types of parametrization for
each input parameter and design of experiment
methods, which should be used.

• Simulation execution on heterogenous
computational infrastructure. Scalarm supports
different types of computational infrastructures,
i.e., common computational clusters available
via SSH, Grid environments accessible via the
gLite middleware [10], and public clouds
supporting Amazon EC2 API.

• Statistical analysis of results. Scalarm provides
a set of built-in graphs, which can be created
based on completed simulation results:
histograms, regression trees and bivariate
graphs.

For more details about conducted data farming
experiments regarding security forces, please refer to [11].
Though, Scalarm was evaluated with a particular type of
simulations, it can be used in any other science discipline,
where the Data Farming methodology can be utilized, e.g.,
materials science or life-science.

147Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

IV. EXPERIMENTAL EVALUATION
To evaluate Scalarm, we conducted both functional tests

of supporting different computational infrastructures and
performance tests to measure the platform’s scalability.

Functional tests concerned simulating a scenario
described in Section III. Two standard HP ProLiant worker
nodes (described in a following section) were used to run one
instance of Experiment and Storage Managers. To run
Simulation Managers, we used:

• 9 worker nodes from a private cluster,
• 50 Grid jobs scheduled to a Grid infrastructure,
• 50 High-CPU Extra Large instances from

Amazon EC2.
In the experiment design phase, 14 from 92 of simulation

input parameters (describing initial emotional state and other
attributes of simulated entities) were set to the “Range”
parametrization with 2^k method applied, which generated
16 386 different cases to simulate. The utilized set of
resources enabled us to execute more than 620 simulations
simultaneously with more then 140 simulations complete in
each minute.

An output of each simulation included: a text file with
less than 7 MB of simulation logs, and 44 different MoEs
describing aggregated emotional states of different entity
groups and statistic regarding the simulated scenario.
Compressed logs were sent to Storage Managers, which had
a disk array connected with 6 TB of total capacity.

After several minutes of computations, an analysis of
gathered results was conducted using histograms and
regression trees. Based on this analysis, the experiment was
extended with additional parameter values. A whole test was
recorded and can be found online at [12].

The second set of tests concerned the platform’s
scalability. We intended to evaluate scalability of the master
part, which includes Experiment and Storage Managers,
since running many independent workers is trivial. We used
production infrastructure, however an empty simulation was
actually performed to minimize the number of Simulation
Managers required to saturate platform’s throughput, which
was measured with completed simulations registered by
Experiment Managers in a period of time.

A. Testing scenarios
Our testing scenarios focused on evaluating how Scalarm

handles experiments of various sizes with different amount
of computational resources. The main measured parameter
was the total execution time of each experiment. Scalarm has
three main components, namely Experiment, Storage and
Simulation Managers, which can be scaled. In presented
tests, the number of Simulation Managers was
experimentally selected to saturate platform’s throughtput.
Hence, only numbers of Experiment and Storage Managers
were used as parameters of performed tests.

Regarding experiment sizes, i.e., the number of
simulations within an experiment, we used the following set
of values to present full capabilities of the platform: 100 000,
200 000, 500 000, 1 000 000, 2 000 000, 5 000 000.

Concerning computational resources, the parameter
depicted the number of servers dedicated to run Experiment
and Storage Managers. Our tests included the following
values of this parameter: 1, 2, 4 and 8. However, each
component run on a separate set of servers, which means that
in each test, the total number of servers was doubled.

B. Testing environment
In case of performance tests, we used a computing cluster

to run Experiment and Storage Managers to minimize the
network latency. Simulation Managers were scheduled to a
part of PL-Grid infrastructure located within the same site.

To run each component, we used standard HP ProLiant
worker nodes, connected with each other through a 10 GbE
network switch, while connection between a worker node
and switch was 1 GbE link. Each worker node has the
following parameters:

• 2x Intel Xeon CPU L5420 @ 2.50GHz
• 16 GB RAM
• 120 GB hard drive (5400 RPM)

C. Evaluation results
Aggregated test results are depicted in Fig. 2. Each line

on the chart denotes a separate configuration of Scalarm used
in tests, i.e., numbers of servers running Experiment and
Storage Managers represented as a pair (<experiment
managers count>, <storage managers count>). For each
configuration, we measured total execution time in seconds
for experiments of different sizes.

Figure 2. Experiments' execution time for different Scalarm configurations.

There are a few things worth noticing. First of all, the

more resources Scalarm has, the better performance it
provides. The performance gain varied depending on actual
experiment size. Let's compare configurations (1,1) and
(2,2). Execution time decreases by 53% for experiment size
100 000, but only by, 31% for experiment size 1 000 000.

The second notice concerns the execution time of
experiments with an increasing size using the same
configuration. Regardless the configuration, the execution
time of subsequent experiments with an increasing number
of simulations rises more than linearly. It is caused by an
increasing effort of simulation information management.
Each simulation is represented in Scalarm by a row in a non-
relational database. Performance of such databases depends
on the IO subsystem, especially when concerning millions of
rows. Hence, after exceeding some thresholds of a database

148Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

size (about a million of rows on a single server), database
operations tend to take more than expected.

Based on obtained results, we calculated speedup (1) and
efficiency (2) metric using classical formulas.

 Speedup(N) = T(1) / T(N) (1)

 Efficiency(N) = Speedup(N) / N (2)

Efficiency of Scalarm (depicted in Fig. 3) is greater than
0.7 in most cases, which is a good result, especially when
concerning a wide range of tested configurations.
Furthermore, for some experiment sizes and the
configuration consisted of 2 servers for Experiment and
Storage Managers respectively, efficiency is greater than 1,
which could be have been caused by data sharding between
instances of a database on seperated servers, which enabled
having all data in memory instead of using local disk.

Figure 3. Scalarm efficiency for configurations including more than 1

server per component.

An average throughput for the Configuration (1, 1) was

about 4776 simulations per minute. We estimated the
number of Simulation Managers, which would be required to
saturate Scalarm when running actual simulations by
comparing to the throughput of running actual simulations
and the throughput with an empty simulation. In the case of
our simulation, we should have more than 120 000 of
Simulation Managers running simultanously. This was the
main reason why the scalability evaluation was performed
with an empty simulation.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a versatile system for running

large scale data farming experiments involving processing of
a parameter space where custom design of experiment
methods and interactive fine tuning of processed parameter
space are required. The system is currently being evaluated
for military mission planning support in order to improve
behavior models for agent-based simulation component and
to allow drawing conclusions regarding selected Measures of
Effectiveness for higher echelons.

The future work will include application of the platform
in a metallurgy scenario [13], with focus on distributed
semantic-based Virtual Organization collaborations [14].

ACKNOWLEDGMENT
The authors are very grateful to Łukasz Flis, Marek

Magryś and Patryk Lasoń from Cyfronet for help in
preparing the testing environment based on the PL-Grid
infrastructure. The research is partially supported by the
POIG.02.03.00-00-096/10 “PL-Grid PLUS” project. D. Król
thanks to the National Science Centre grant no.
2012/05/N/ST6/03461 for support. AGH-UST grant no.
11.11.120.865 is also acknowledged.

REFERENCES
[1] T. Hey, S. Tansley, and K. Tolle, “The Fourth Paradigm:

Data-Intensive Scientific Discovery”, Eds., Redmond, VA:
Microsoft Research, 2009, ISBN 978-0-9825442-0-4.

[2] A. Brandstein and G. Horne, “Data Farming: A Meta-
Technique for Research in the 21st Century”, in Maneuver
Warfare Science 1998, Marine Corps Marine Corps Combat
Development Command Publication, Quantico, Virginia,
1998.

[3] D. Moses, “Data farming helps hospital keep nurses at
bedside”, HealthCareITNews, [online:
http://www.healthcareitnews.com/news/data-farming-helps-
hospital-keep-nurses-bedside as of January 14, 2013]

[4] T. Beach, et al., “Application of Design of Experiments &
Data Farming Techniques for Planning Tests in a Joint
Mission Environment”, International Data Farming Workshop
15, November 2007.

[5] S. Upton, “Users Guide: OldMcData, the Data Farmer”,
Version 1.1, United States Marine Corps Project Albert.
Quantico, Virginia, 2010.

[6] T. Tannenbaum, D. Wright, K. Miller, and M. Livny,
“Condor: a distributed job scheduler”, Beowulf Cluster
Computing with Windows, MIT Press Cambridge, MA, USA,
2002, pp. 307 – 350, ISBN:0-262-69275-9.

[7] J. Saborido, F. Gomez-Folgar, J. L. Cacheiro, and R. G. Diaz,
“DIRAC Integration with Cloud Stack”, Proc. IEEE Third
International Conference on Cloud Computing Technology
and Science, 2011, pp. 537-541. ISBN: 978-0-7695- 4622-3.

[8] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,
“Falkon: a Fast and Light-weight tasK executiON
framework”, Proc. ACM/IEEE conference on
Supercomputing, 2007, pp. 1-12, ISBN: 978-1-59593-764-3.

[9] B. Kryza, D. Król, M. Wrzeszcz, Ł. Dutka, and J. Kitowski,
„Interactive Cloud Data Farming Environment for Military
Mission Planning Support”, Computer Science Journal, vol
13(4), 2012, pp. 89-100.

[10] gLite – Lightweigt Middleware for Grid Computing website,
[online: http://glite.cern.ch/ as of January 14, 2013]

[11] S. Dlugolinsky, et al., “Using parallelization for simulation of
human behaviour”. 7th International Workshop on Grid
Computing for Complex Problems, Bratislava, 2011, pp. 258-
265, ISBN 978-80-970145-5-1.

[12] Scalarm website – overview section, [online:
http://www.scalarm.com/overview.html as of January 14,
2013]

[13] J. Kitowski and B. Kryza, “Dynamic virtual organization
management framework supporting distributed industrial
collaboration”, Computer Methods in Materials Science, vol.
11(4), 2011, pp. 514-523.

[14] A. Mylka, A. Mylka, B. Kryza, and J. Kitowski, “Integration
of Heterogenous Data Sources in an Ontological Knowledge
Base”, Computing and Informatics, vol. 31(1), 2012, pp. 189–
223.

149Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

