
CPU Utilization while Scaling Resources in the Cloud

Marjan Gusev, Sasko Ristov, Monika Simjanoska, and Goran Velkoski
Faculty of Information Sciences and Computer Engineering

Ss. Cyril and Methodius University
Skopje, Macedonia

Email: marjan.gushev@finki.ukim.mk, sashko.ristov@finki.ukim.mk, m.simjanoska@gmail.com, velkoski.goran@gmail.com

Abstract—CPU utilization in a virtual machine instance
directly impacts the overall cost for the cloud service provider
since it generates costs for power consumption and cooling.
We are interested to determine the total CPU utilization
behavior while scaling the number of CPU cores using the
same server load. The experiments are based on two simple
web services to utilize the virtual machine instance varying
the number of concurrent messages and their size. The goal
is to check if the total CPU utilization while scaling will
be sublinear (smaller than the number of cores), and if it
is greater than the CPU utilization when executed without
scaling (using only one CPU core) due to task scheduling,
coherence, etc. The experiments prove only that the total CPU
utilization will be sublinear. We observe a region (workload
with smaller number of concurrent messages) where the total
CPU utilization decreases while scaling, compared to the case
without scaling. We also determine the correlation between
the CPU utilization with message size and the number of
concurrent messages.

Keywords-Cloud Computing; Performance; Web Services; Web
Server.

I. INTRODUCTION

Cloud computing is a recent technological trend in which
resources, such as CPU and storage, are provided as general
utilities that can be leased and released on-demand by users
according to their requirements [1]. The cloud is a promising
approach for delivering ICT services by improving the uti-
lization of data centre resources [2]. Scalability and elasticity
are quality features in the cloud, since the cloud adjusts
itself to achieve better performance whenever it detects a
change in the environment [3]. Scaling the performance for
growing problem size is an imperative [4], [5]. However,
the resulting performance is not always acceptable for all
applications hosted in the cloud [6].

While the cloud customer cost depends on the resources
leased time, the cloud service provider cost mostly de-
pends on CPU utilization of the active (leased) resources.
That is, greater CPU utilization will increase not only the
cost for power electricity, but also for cooling. Activating
and utilizing more computing resources will increase the
monthly costs of cloud data-center (approx.40% of costs are
generated by power electricity and cooling). Reallocation
of virtual machines and switching off the idle servers will
save substantial energy [7]. Optimal resource allocation can

improve the performance using the same resources in the
cloud [8]. Saleh et al. [9] have demonstrated that using some
CPU utilization threshold to autoscale the resources is not
an accurate measure since it can provide high cost and poor
resource utilization.

Scaling the resources will reduce the CPU utilization per
core, but we are interested if total CPU utilization will be
also reduced or increased. We have set two hypotheses which
we would like to check:

H1 the total CPU utilization while scaling is sublinear
(smaller than the number of cores); and

H2 the total CPU utilization while scaling is greater
than the CPU utilization when executed without
scaling due to task scheduling, coherence, etc.

That is, we expect that the total CPU utilization will be in the
range of (U1, U1 ·n), where U1 denotes the CPU utilization
of virtual machine instance with one CPU allocated.

We realize several experiments to find the behavior of
CPU utilization when scaling is applied, i.e., more powerful
virtual machine instances (using more processor cores) are
activated. The experiments are based on measurement of the
CPU utilization while scaling from 1 to 2 and 4 CPU cores in
a virtual machine instance. We use two simple web services
to load the web server in virtual machine instances, i.e.,
Concat and Sort. The former concats two strings and the
latter sorts the concatenation of two input strings. Both are
memory demanding, and the second is also computationally
intensive. We analyze the CPU utilization by varying the
server load with different number of concurrent messages
and input string size.

The rest of the paper is organized as follows. Related
work is presented in Section II. In Section III, we describe
the methodology used for testing. The experiments and the
results are discussed in sections IV and V. In Section VI,
we derive conclusion and we present future work.

II. RELATED WORK

Several papers analyzed CPU utilization on-premise and
in the cloud, while loaded the same web services with
various number of concurrent messages and message size.
Gusev et al. [10] determined that the number of concurrent
messages impacts directly to the CPU utilization for memory

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

demanding web services (Concat), while both the number
of messages and their size impact the CPU utilization for
both memory demanding and computation intensive web
services (Sort). They determined that CPU utilization is
always greater while hosted in the cloud compared to on-
premise, for the same load and maximum allocated resources
(4 CPUs). In this paper, we confirmed the same correlation
of CPU utilization and the input parameters, and not only
when maximum resources are allocated in particular virtual
machine instance, but also when allocated with 1 or 2
CPUs. Velkoski et al. [11] analyzed the CPU utilization for
the same (maximum) total amount of cloud resources, but
orchestrated in different number of virtual machine instances
with different size. They determined that allocating all
resources into one ”huge” virtual machine instance provides
greater CPU utilization compared to the case where the
same amount of resources are allocated to many ”small”
virtual machine instances for huge (the same) server load
(number of concurrent messages) regardless of their size. In
this paper, we analyze the CPU utilization of virtual machine
instances with different number of CPUs, i.e., scaling the
resources from 1 CPU to 2 and 4 CPUs, using the same
server load for each virtual machine instance.

The CPU utilization is important factor for overall system
performance and cost. Greater CPU utilization produces
higher response times for load dependent resources [12]. A
CPU bottleneck appears if its utilization goes beyond 80%
for a sustained period of time [13]. De Sousa et al. [14]
evaluated the CPU utilization of different virtual machine
instances on Eucalyptus [15] platform considering different
workloads with LINPACK as benchmark which solves dense
system of linear equations. In this paper, we load web
services hosted in different virtual machine instances on
OpenStack cloud.

Many factors impact the CPU utilization and different
server loads do not utilize the CPU equally. Even more,
not all virtualized CPUs share the whole physical CPU. The
small virtual machine instances of Amazon EC2 always get
40-50% of the physical CPU, while the most of medium
virtual machine instances get 100% CPU sharing [16]. Hov-
estadt et al. [17] found that CPU utilization are not displayed
accurately inside virtual machines instantiated with XEN,
KVM, and in Amazon EC2.

Vilutis et al. [18] propose some of the project executions
to be postponed in order to minimize the utilized resources
and thus to reduce the overall cost. Balancing the load
among more CPUs will also decrease their particular uti-
lization. Jayasinghe et al. [19] analyzed the scalability of
n-Tier applications while migrating in the cloud. They de-
termined variations in CPU utilization in different tiers while
scaling the resources. In this paper, we provide experimental
research to find the behavior of total CPU utilization for the
same load, but scaling the resources.

III. THE METHODOLOGY

This section presents the testing methodology used to
obtain reliable results in each test case.

A. Technical Details

Client-server web service architecture is used as a testing
environment. The server is deployed in OpenStack cloud
[20] using KVM (Kernel-based Virtual Machine) hypervisor
to instantiate virtual machine instances. The cloud nodes
are installed with Ubuntu Server 12.04 operating system.
Hardware computing resources consist of Intel(R) Xeon(R)
CPU X5647 @ 2.93GHz with 4 cores and 8GB RAM.
Virtual machine instances platform is Ubuntu Server 12.04
with Apache Tomcat 6.

The client uses SoapUI [21] to generate different server
load. The client and the virtual machine instances are placed
in the same LAN segment to minimize network latency [22].

B. Test Cases Definition

The Concat web service is memory demanding only
service. It accepts two input strings and returns their concate-
nation. The Sort web service accepts two strings and returns
their concatenation, alphabetically sorted, which makes it
computationally intensive besides the increased memory
demands.

Three test cases are defined scaling the number of CPUs
per virtual machine instance that hosts the web services, with
the following configuration:

• Test Case 1 - virtual machine instance with 1 CPU
(m1.small);

• Test Case 2 - virtual machine instance with 2 CPUs
(m1.medium); and

• Test Case 3 - virtual machine instance with 4 CPUs
(m1.large).

Each test case runs for 60 seconds. The test is repeated if
the server replies with an error. Web server is loaded with N
messages with parameters size of M bytes each. The range
of parameters M and N is selected such that web server
in virtual machine instance works in normal mode without
replying error messages. Parameter M is measured in KB
with the following values 0, 1, · · · , 9 for Concat web service
and 0, 1, · · · , 6 for Sort web service. Both web services are
loaded with N = 12, 100, 500, 750, 1000, 1250, 1500, 1750
and 2000 requests per second for each M . The values are
selected to avoid CPU saturation.

C. Test Data

The CPU utilization is measured for each parameter size
M , for different web service loads per second N , in each
test case. While testing, we use top Ubuntu based utility to
capture Tomcat process CPU utilization each 3 seconds, i.e.
20 values per test. An average utilization is calculated of all
20 values for eache test case for both Concat and Sort web
services distinctively.

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. Normalized CPU utilization U1 for Concat web service

D. Analysis of CPU Utilization

We use (1) to normalize CPU usage in range from 0% up
to 100%. The nominator is the sum of CPU usage Ui(n) of
all n CPU cores, and the denominator n denotes the scaling
factor, i.e., the number of CPUs used in particular test case
(n ∈ {1, 2, 4}).

Un =

∑i=n
i=1 Ui(n)

n
(1)

Furthermore, we define Relative Scaled CPU utilization
S(n) in (2) and calculate it for each test case in order to
test both hypotheses, i.e., if 1 < S(n) < n. U1 denotes the
CPU utilization without CPU scaling.

S(n) =

∑i=n
i=1 Ui(n)

U1
(2)

We also define Relative Multi-core Scaled CPU Uti-
lization in (3) and calculate it using relative scaled CPU
utilization of test cases with scaling factors n = 2 and n = 4.

Sm = S(4)/S(2) (3)

IV. EXPERIMENTS AND RESULTS

In this section, we exhibit the CPU utilization results
of testing the web services for each test case in order
to determine the correlation of CPU utilization with both
parameters M and N for both web services hosted on virtual
machine with particular number of CPU cores.

A. Test Case 1 - Without Scaling

Concat and Sort web services are hosted on 1 virtual
machine instance with 1 CPU core in this test case.

Figure 2. Normalized CPU utilization U1 for Sort web service

1) Concat Web Service: Figure 1 depicts the normalized
CPU utilization U1 for Concat web service.

The results show that the CPU utilization depends on the
number of concurrent messages N with huge increasing fac-
tor, and it proportionally increases when the input parameter
M increases, but with small increasing factor. The minimum
CPU utilization of U1 = 1.735% occurs for N = 12 and
M = 0, whereas maximum CPU utilization U1 = 99.23%
is measured for N = 2000 and M = 9, as expected.

2) Sort Web Service: Figure 2 depicts the normalized
CPU utilization U1 for Sort web service.

The results show that the CPU utilization strongly depends
on both input parameters N and M . The dependence is
expressed with huge increasing factor when changing the
parameter M from 0KB to 1KB, and also for M ≤ 2
and N ≤ 500. For the rest of the parameters, the increasing
factor is small and continuously incremental. The minimum
CPU utilization of U1 = 1.70% is measured at M = 0
and N = 12, whereas the maximum CPU utilization
U1 = 99.85% is measured for M = 6 and N = 2000.

B. Test Case 2 - Scaling Factor 2
Both web services are hosted on a virtual machine in-

stance with scaling factor 2, i.e., allocated with 2 CPU cores.
1) Concat Web Service: Figure 3 depicts the normalized

CPU utilization U2 for Concat web service.
The results show a minimum CPU utilization U2 = 1%

and maximum CPU utilization U2 = 85.43% for parameters
N = 12 and M = 0, and N = 1000 and M = 9,
respectively. The dependence is the same as for U1, except
for a small message size where it performs with decreased
CPU utilization.

2) Sort Web Service: Figure 4 depicts the normalized
CPU utilization U2 for Sort web service.

The normalized results show a minimum CPU utilization
U2 = 0.88% for M = 0 and N = 12, and maximum CPU
utilization U2 = 86.40% for M = 1 and N = 2000. The
dependence is also expressed as for U1.

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Normalized CPU utilization U2 for Concat web service

Figure 4. Normalized CPU utilization U2 for Sort web service

C. Test Case 3 - Scaling Factor 4

Both web services are hosted on 1 virtual machine in-
stance with scaling factor 4, i.e., allocated with 4 CPU cores.

1) Concat Web Service: Figure 5 depicts the normalized
CPU utilization U4 for Concat web service.

Similar increasing factor is observed compared to U1 and
U2. The minimum CPU utilization U4 = 0.54% is measured
for N = 12 and M = 0, and maximum U4 = 63.18% is
measured for N = 1500 and M = 9. For small message size
it performs with decreased CPU utilization in comparison to
the both U1 and U2.

2) Sort Web Service: Figure 6 depicts the normalized
CPU utilization U4 for Sort web service.

The results show a minimum CPU utilization U4 = 0.33%
for M = 0 and N = 12, and maximum CPU utilization
U4 = 72.46% for M = 2 and N = 1750. The dependence
and the increasing factor are similar as for U1 and U2.

V. RELATIVE SCALED CPU UTILIZATION

In this section, we analyze the relative scaled CPU uti-
lization while scaling the resources in test cases for both

Figure 5. Normalized CPU utilization U4 for Concat web service

Figure 6. Normalized CPU utilization U4 for Sort web service

web services.

A. Relative Scaled CPU Utilization for Concat Web Service

This section presents the relative scaled CPU utilization
and relative multi-core CPU utilization for Concat web
service for scaling factors n = 2 and n = 4.

1) Scaling Factor 2: Figure 7 presents the results for
relative scaled CPU utilization S(2) for Concat web service.

We observe that S(2) < 2 for each N and M , i.e.,
the hypothesis H1 is satisfied. However, very unexpected
result is the region for smaller N regardless of M where
S(2) < 1, i.e., the total CPU utilization with scaling factor 2
is reduced compared to CPU utilization without scaling. We
can conclude that there is a region where the hypothesis H2
is not satisfied. Minimum and maximum values for relative
scaled CPU utilization are S(2) = 0.87 and S(2) = 1.73,
respectively.

2) Scaling Factor 4: Relative scaled CPU utilization S(4)
is depicted in Figure 8.

We also observe similar results, i.e., S(4) < 4 for each N
and M , i.e., the hypothesis H1 is satisfied. The same region

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 7. S(2) for Concat web service

Figure 8. S(4) for Concat web service

is observed where S(4) < 1 and the total CPU utilization
with scaling factor 4 is reduced compared to CPU utilization
without scaling. That is, the hypothesis H2 is not satisfied
in the same region as scaling with 2 CPUs. Minimum and
maximum values for relative scaled CPU utilization are
S(4) = 0.79 and S(4) = 2.56, respectively.

3) Relative Multi-core Scaled CPU Utilization Sm: Fig-
ure 9 depicts the relative multi-core scaled CPU utilization
Sm for Concat web service.

The similar conclusions can be derived as S(2) and S(4).
We found that Sm < 2 for each value of parameters M
and N , and also there is the similar region for smalled
N where Sm < 1. That is, the hypothesis H1 is satisfied
always, while the hypothesis H2 is not satisfied for smaller
N . Minimum and maximum values for relative multi-core
scaled CPU utilization are Sm = 0.87 and Sm = 1.54,
respectively.

B. Relative Scaled CPU Utilization for Sort Web Service

This section presents the relative scaled CPU utilization
and relative multi-core CPU utilization for Sort web service

Figure 9. Sm for Concat web service

Figure 10. S(2) for Sort web service

for scaling factors n = 2 and n = 4.
1) Scaling Factor 2: Figure 10 depicts the relative scaled

CPU utilization S(2) for Sort web service hosted on a
virtual machine with 2 cores.

We observe that the hypothesis H1 is also satisfied for
each N and M as for Concat web service, i.e., U2 < 2.
However, opposite to Concat web service, U2 > 1 for
Sort web service, i.e., the total CPU utilization is always
greater while scaling with 2 CPU cores. We can conclude
that the hypothesis H2 is also satisfied for each N and
M . The relative scaled CPU utilization is the smallest for
smaller parameters M and N . Minimum and maximum
values for relative scaled CPU utilization are S(2) = 1.03
and S(2) = 1.76, respectively.

2) Scaling Factor 4: The results for relative scaled CPU
utilization S(4) are depicted in Figure 11.

We can conclude that S(4) < 4 for all values of N
and M , i.e., the hypothesis H1 is also satisfied. Even
more, S(4) < 3 for each M and N . We found a region
for the smallest M and N where S(4) < 1, i.e., the
hypothesis H2 is not satisfied in this region. That is, the

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 11. S(4) for Sort web service

Figure 12. Sm for Sort web service

total CPU utilization is smaller while scaling the CPUs with
factor 4. The relative scaled CPU utilization increases for
greater M or N . Minimum and maximum values for relative
scaled CPU utilization are S(4) = 0.76 and S(4) = 2.92,
respectively.

3) Relative Multi-core Scaled CPU Utilization Sm: The
similar results are observed for relative multi-core CPU
utilization for Sort web service, as depicted in Figure 12.

There is a region for smaller M and N where Sm < 1,
i.e., the hypothesis H2 is not satisfied. For all other values
for N and M the relative multi-core CPU utilization is in
the range 1 < Sm < 2. That is, both hypotheses H1 and H2
are satisfied. A local extreme exists in point (M , N) = (1,
750) where Sm = 2.37 > 2. Minimum and maximum values
(excluding local extreme) for relative multi-core scaled CPU
utilization are Sm = 0.74 and Sm = 1.73, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, we measured and analyzed the CPU uti-
lization with two web services (Concat and Sort) hosted
on a virtual machine instance on the cloud, while the

number of CPUs was scaled from 1 to 2 and 4 CPU cores.
Web services were tested with different load determined
with various message parameter size M , and number of
concurrent messages N .

We have introduced a relative scaled CPU utilization
measure and a relative multi-core scaled CPU utilization for
the same server load over scaled resources. The methodology
is based on measurement of real CPU utilization and calcu-
lation of new relative measures to make better conclusions
for scaling.

The results show that normalized CPU utilization depends
mostly on the number of concurrent messages for Concat
web service, while Sort web service depends on both input
parameters.

Both expected and unexpected results are achieved for
relative scaled CPU utilization. It is sublinear for each
values of parameters N and M , proving the hypothesis H1.
However, contrary to the hypothesis H2, the results show
that there is a region where relative scaled CPU utilization
is smaller than 1, i.e., the total CPU utilization is even
smaller than unscaled test case. This region is determined
for smaller N regardless of M for Concat web service,
while the region for Sort web service is determined when
both input parameters are small.

CPU utilization has directly impact to the power con-
sumption, both for CPU working and cooling, which is a
significant part of cloud total cost. Therefore, reducing the
CPU utilization will greatly reduce the overall cost. In this
paper, we determine the correlation between CPU utilization
(cost) with the number of concurrent messages N and their
parameter size M using two different web services Concat
and Sort.

We will analyze the other performance parameters, such
as response time for both web services in order to determine
the tradeoffs between performance, cost and CPU utilization
while scaling the resources on the cloud. Another important
analysis will be performed to determine the platform impact
(various operating systems and web servers) on CPU utiliza-
tion in the cloud, using different clouds and hypervisors.

REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, 2010, pp. 7–18.

[2] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani,
H. De Meer, M. Dang, and K. Pentikousis, “Energy-efficient
cloud computing,” The Computer Journal, vol. 53, no. 7,
2010, pp. 1045–1051.

[3] L. Mei, W. Chan, and T. Tse, “A tale of clouds: Paradigm
comparisons and some thoughts on research issues,” in Asia-
Pacific Services Computing Conf., 2008. APSCC ’08. IEEE,
2008, pp. 464 –469.

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

[4] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “A performance analysis of EC2 cloud com-
puting services for scientific computing,” Cloud Computing,
2010, pp. 115–131.

[5] K. Xiong and H. Perros, “Service performance and analysis
in cloud computing,” in Services-I, 2009 World Conference
on. IEEE, 2009, pp. 693–700.

[6] D. Durkee, “Why cloud computing will never be free,” Queue,
vol. 8, no. 4, Apr. 2010, pp. 20:20–20:29.

[7] A. Beloglazov and R. Buyya, “Energy efficient allocation of
virtual machines in cloud data centers,” in Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on, may 2010, pp. 577 –578.

[8] M. Gusev and S. Ristov, “The optimal resource allocation
among virtual machines in cloud computing,” in CLOUD
COMPUTING 2012, The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, 2012, pp. 36–
42.

[9] K. Saleh and R. Boutaba, “Estimating service response time
for elastic cloud applications,” in 2012 IEEE 1st Inter-
national Conference on Cloud Networking (CLOUDNET)
(IEEE CloudNet’12), Paris, France, Nov 2012, pp. 12–16.

[10] M. Gusev, G. Velkoski, S. Ristov, and M. Simjanoska, “Web
service CPU overutilization in the cloud,” in the 6th Interna-
tional Conference on Information Technology, ser. ICIT 2013,
Amman, Jordan, in press.

[11] G. Velkoski, M. Simjanoska, S. Ristov, and M. Gusev, “CPU
utilization in a multitenant cloud,” in EUROCON - Interna-
tional Conference on Computer as a Tool (EUROCON), 2013
IEEE, in press.

[12] Y. O. Yazir, C. Matthews, R. Farahbod, S. Neville, A. Gui-
touni, S. Ganti, and Y. Coady, “Dynamic resource alloca-
tion in computing clouds using distributed multiple criteria
decision analysis,” in Proceedings of the 2010 IEEE 3rd
International Conference on Cloud Computing, ser. CLOUD
’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 91–98.

[13] E. Ciliendo and T. Kunimasa, Linux Performance and Tuning
Guidelines, 1st ed. ibm.com/redbooks, Jul. 2007.

[14] E. T. G. de Sousa, P. R. M. Maciel, E. M. Medeiros,
D. S. L. de Souza, F. A. A. Lins, and E. A. G. Tavares,
“Evaluating eucalyptus virtual machine instance types: A
study considering distinct workload demand,” in CLOUD
COMPUTING 2012, The Third International Conference on
Cloud Computing, GRIDs, and Virtualization, 2012, pp. 130–
135.

[15] Eucalyptus Systems. Eucalyptus cloud. [Retrieved: March,
2013]. [Online]. Available: http://www.eucalyptus.com/

[16] G. Wang and T. S. E. Ng, “The impact of virtualization
on network performance of amazon EC2 data center,” in
Proceedings of the 29th conference on Information commu-
nications, ser. INFOCOM’10. Piscataway, NJ, USA: IEEE
Press, 2010, pp. 1163–1171.

[17] M. Hovestadt, O. Kao, A. Kliem, and D. Warneke, “Evalu-
ating adaptive compression to mitigate the effects of shared
I/O in clouds,” in Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, 2011, pp. 1042–1051.

[18] G. Vilutis, L. Daugirdas, R. Kavaliunas, K. Sutiene, and
M. Vaidelys, “Model of load balancing and scheduling
in cloud computing,” in Information Technology Interfaces
(ITI), Proceedings of the ITI 2012 34th International Confer-
ence on, june 2012, pp. 117 –122.

[19] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong, and
C. Pu, “Variations in performance and scalability when mi-
grating n-Tier applications to different clouds,” in Proceedings
of the 2011 IEEE 4th International Conference on Cloud
Computing, ser. CLOUD ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 73–80.

[20] OpenStack Cloud Software, “Openstack cloud,” [Retrieved:
March, 2013]. [Online]. Available: http://openstack.org

[21] SoapUI, “Functional testing tool for web service testing,”
[Retrieved: March, 2013]. [Online]. Available: http://www.
soapui.org/

[22] M. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Her-
icko, “Comparison of performance of web services, WS-
security, RMI, and RMI–SSL,” Journal of Systems and Soft-
ware, vol. 79, no. 5, 2006, pp. 689–700.

137Copyright (c) IARIA, 2013. ISBN: 978-1-61208-271-4

CLOUD COMPUTING 2013 : The Fourth International Conference on Cloud Computing, GRIDs, and Virtualization

