
Competitive P2P Scheduling of Users’ Jobs in 

Cloud  

Beniamino Di Martino, Rocco Aversa, Salvatore Venticinque, Luigi Buonanno 

Department of Information Engineering 

S.U.N. (Seconda Università di Napoli) 

Aversa (Italy) 

[Beniamino.DiMartino,Rocco.Aversa,Salvatore.Venticinque,Luigi.Buonanno]@unina2.it

 

 
Abstract— Existing distributed solutions for distributed 

computing (Grid, Cloud, etc.) pose a high threshold for 

potential customers. The reason deals with the technical 

background and effort that are usually required in order to 

successfully access the computing facilities, thus limiting their 

massive adoption. By exploiting the features offered by 

different distributed paradigms (P2P and Cloud), we propose 

here an approach that reverses the role of resource requestors 

and resource providers, allowing potential customers to access 

the distributed infrastructures in a user-friendly fashion. In 

the proposed scenario, the task of retrieving the user’s 

submitted jobs and configure accordingly the necessary 

resources is in charge of the providers, thus lowering the 

threshold required to successfully exploit the computing 

facilities. The experimental activities, described in the paper, 

validate the hypothesis that a competitive approach, in 

distributed scheduling environments, can decrease the 

threshold required to access the facilities and lead, if properly 

set up, to substantial performance gains. 

Keywords- P2P; cloud; competitive scheduling. 

I.  INTRODUCTION  

Cloud computing [26] is a recent model for enabling 
convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, 
storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction. On one hand, thanks to the 
virtualization technology, providers can rent their hardware 
resources in a very flexible way. On the other hand, users 
may have a dedicated data center as a service without the 
burden of buying and managing expensive hardware, but 
rather paying their utilization according to a pay-per-use 
business model. 

 Despite the benefits provided, many open issues have to 
be addressed with regard to this emerging computing 
paradigm. Some of them are portability of applications, lock-
in proprietary solutions, negotiation and check of SLAs 
(Service Level Agreement) with Cloud providers. Among 
the others, an open issue has affected most  of the distributed 
paradigms which have been spreading for the last few years: 
existing solutions require the customer to hold an advanced 

technical background in order to successfully exploit the 
computing facilities, thus limiting their massive adoption. 

The list of issues a potential user has to deal with 
includes: the discovery of the architecture that is compliant 
with the application requirements, the setup of the execution 
environment, the research of the most convenient offer, the 
configuration of the acquired resources, the tuning of the 
applications, the uncertainty of execution time due to a best 
effort policy for resource sharing, etc. 

Other distributed paradigms (e.g., inverted client-server 
systems [3]) do not pose such a high threshold to potential 
customers, but they do not encourage the intensive 
exploitation of resources.  

P2P (Peer-to-Peer) [23] refers to logical organization of 
computing entities where each individual knows its 
neighbors and can behave both as a server and a client. There 
are some relevant examples of P2P systems, oriented to 
parallel and/or distributed computing, which have been 
successful in their exploitation.  

In order to address the described issues, we propose a 
distributed paradigm that:  

 

 Aims at implementing the same ease of use of P2P 
file sharing applications. 

 Reverses the roles of requestors and providers, by 
charging the providers of all the overhead required to 
setup the execution environment, manage the job 
requirements, etc. In our model, clients just publish 
their jobs on the platform, specifying the software 
and hardware requirements, the application details, 
the deadline and the offered reward. Service 
providers, on the other hand, are in charge of 
discovering the published jobs and of addressing all 
the issues related to the jobs’ requirements 
management;  

 Adopts a competitive approach, where providers 
compete for satisfying the client’s requests and are 
awarded with credits in case of successful 
elaborations, thus optimizing client’s satisfaction and 
reducing the cost. 

 
In the next section, we discuss related work. The third 

section introduces a comparison of policies for resource 
sharing in centralized and P2P networks. In the fourth 

105

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



section, we present our competitive approach for job 
scheduling in P2P. In the fifth section, we provide a 
description of a prototype implementation and we show 
experimental results aimed at evaluating the effectiveness of 
the proposed solution. Finally, we present the conclusion. 

II.  RELATED WORK 

Cloud computing is an on-demand distributed paradigm 
that refers to providers offering a large pool of easily usable 
and accessible virtualized resources in a pay-per-use model 
[1]. The services can be delivered within different layers, 
that are usually classified as SaaS (Software as a Service), 
PaaS (Platform as a Service) and IaaS (Infrastructure as a 
Service) [24]. This paper mainly refers to SaaS and IaaS 
clouds. Cloud computing allows data centers to transparently 
offer services through the Internet by exploiting their 
computing and storage fabric of resources. In SaaS and IaaS 
clouds, applications and nodes are virtualized and 
dynamically provisioned on-demand as a personalized 
resource collection to meet a specific service-level 
agreement, which is established through a negotiation. A 
market-oriented resource management is necessary to 
regulate the supply and demand of Cloud resources [9], 
providing feedback in terms of economic incentives for both 
Cloud consumers and providers, and promoting QoS-based 
(Quality of Service) resource allocation mechanisms that 
differentiate service requests based on their utility [2]. Many 
research contributions aim at supporting the user with 
negotiation services based on Service Level Agreement that 
delegate to agents the discovery and agreement of the best 
offer from multiple providers [7], [11]. The main aim of this 
paper is to bring this mechanism a step further, by delegating 
this task to providers.  

Security is still a big concern in cloud frameworks. While 
in Grid [25] environments, indeed, both resources and users 
need to be registered and to get a digital certificate for 
authentication and authorization purposes, before they are 
allowed to start a session. This mechanism is feasible when 
the number of nodes are not many. Security in cloud 
computing infrastructures, instead, is still, mostly, a work in 
progress. Nevertheless, some analysis on this topic have been 
performed [17]. Furthermore, it must be said that the very 
subject of security is what is slowing down the adoption of 
cloud computing over other forms of distributed scheduling 
[18].  

Current P2P systems have the perk of allowing a very 
high number of users (hundreds of thousands is a common 
figure). They offer few services, without doing assumptions 
on the reliability of the peers themselves [14]. However,  it is 
very complicated to ensure a given QoS level [13] without 
any sort of distributed scheduling. From a security point of 
view, P2P systems are, by definition, environments where it 
is difficult to be aware of the identity and trustability of 
hosts: the chance of exploiting a malicious resource is 
intrinsically high. While this risk is largely accepted for file 
sharing systems, in order to make it acceptable for 
distributed computing many issues must be addressed to 
ensure the safety of both the code owner and the code 
executor.  

In [11], an architecture for the resource sharing on large 
scale networks has been described (CompuP2P). CompuP2P 
uses a protocol based on Chord [16] and detects a set of 
”dynamic markets”, each of them groups all the peers that 
are willing to buy or sell the same ”amount” of computing 
power. The main bottleneck is represented by a special peer 
(”Market Owner), that is responsible for the association 
between requests and offers of computing power. In [15], a 
solution for the scheduling of multiple applications, in a 
concurrent fashion, is proposed. Authors propose a 
decentralized scheduling pattern and do a comparative 
analysis of different heuristic logics. Many Grid solutions for 
task scheduling and workload distribution  exist. For 
example, Condor [12] is a high-throughput distributed batch 
computing system that provides job management 
mechanisms, scheduling policies, resource monitoring, and 
resource management. However, it can hardly be defined as 
a P2P system, cause of the presence of a central manager that 
accepts job submissions. Conversely, the objective of our 
research is to design a P2P infrastructure that is not relying 
on any centralized element and that enables a huge numbers 
of machines, which connect/disconnect dynamically to the 
network without any guaranties on their reliability, to easily 
access the resources offered by cloud providers.  

III. CRITICAL COMPARISON OF DIFFERENT 

APPROACHES FOR RESOURCES SHARING 

In the computational grids model, providers offer their 
services with a best effort policy and a collaboration pattern 
is usually adopted among different parties, which share their 
resources belonging to a virtual organization, in order to 
optimize the global performances. Grid clients compete to 
use the resources: this model exploits the competition of 
clients and the collaboration of servers.  

According to a common opinion, the business Grid 
model was unsuccessful because providers are business 
competitors and, usually, do not collaborate. However, even 
if theoretically the market should rely on the competition of 
providers, often, in real-world scenarios, sellers cooperate 
rather than competing while, at the same time, trying to 
create competition among buyers.  

It is a model similar to the one that is currently adopted in 
the automotive, where different companies share engines and 
other components, or in the insurance field, where prices are 
fixed above a threshold using a behavior that is, at least, at 
the edge of the law. Great companies have much interests 
and resources to organize themselves for collaborating. Even 
if powerful ones should give they usually take, by choosing 
to collaborate, rather than fighting, when it means a bigger 
return. Collaboration of providers is exploited to take.  

In volunteer computing, clients are asked to donate CPU 
cycles when their computers are idle.    

Users’ resources are then managed and exploited by 
powerful big organizations. In fact, they have the capacity to 
exploit all the limited resources shared by a huge number of 
distributed users. The lack of this kind of organization 
ability, and, at the same time, the great capability of users in 
terms of availability is evident in real life and in distributed 
computing. In volunteer computing, collaboration among 

106

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



users is exploited to give. The most well-known case of 
volunteer computing is the SETI@Home project  [3].  

P2P is a successful example of decentralized resource 
sharing among clients. In P2P file sharing systems, users 
compete to download files from the available sources and are 
asked to share their data (“collaborate”) in change of credits 
that can be spent for acquiring download privileges. 
Competition is easier to be implemented, because 
organization  is not required. Competition among users is 
exploited to take, while the collaboration is used to give.  

Cloud computing is a new paradigm that was born in a 
business context. The business model is pay per use and it is 
not based on resource sharing. A limitation of this approach 
is that, if a user chooses a solution from a particular provider, 
he will be locked by that choice because of the lack of 
portability. 

In this scenario, it would be useful to design a 
technological solution that implements a business model 
aimed at optimizing the QoS at user side, and to maximize 
the incomes at server side. 

A free market model, that exploits the competition of 
sellers  to give computing power and collaboration of users 
to take it, could be the best solution. 

Our approach proposes the utilization of a P2P model 
that allows the users to collaborate by publishing their jobs 
as “calls for proposal” (cfp), in the same way as it occurs in 
file sharing systems. On the other hand, the business model 
is based on the competition among servers, which seek  
shared proposals and try to answer as soon as possible in 
order to obtain the offered reward. 

IV. P2P COMPETITIVE SCHEDULING OF USERS’ 

JOBS 

In this section, we propose a competitive approach for 
P2P distributed computing, whereas the roles of involved 
parties are inverted if compared to the Grid, Cloud 
computing or web services models: clients publish jobs on a 
P2P network overlay (“call for execution”) while the servers 
look for these and compete to deliver the results. Calls for 
execution describe the requirements of the application, the 
credits the user would pay and, optionally, a deadline before 
which the results should be available.  

While in the Grid model, and in traditional architectures 
for distributed scheduling, the job owner is in charge to 
choose the execution node, to check its compliance with the 
application requirements and to ask for the execution, in the 
proposed model these issues must be managed at  server 
side. We think that the proposed approach would be very 
effective in the Cloud market, where providers can set up 
virtual, specialized environments for the execution of 
different jobs and use the idle ones to satisfy the user’s 
request. Virtualization is commonly used by Cloud providers 
to improve the throughput of their hardware resources: 
thanks to the modern Cloud computing paradigms, the 
configuration of the task execution environment can be 
easily adapted to match the application requirements by 
exploiting the virtualization technology. 

 In our model, providers can exploit at the best their 
resources, and the Cloud IAAS, by managing both their 

overbooking and their smart scheduling. We try to design 
our model as much similarly as possible to current P2P 
systems for file sharing whose success in the Internet 
community has been bigger than the Grid. 

It is evident, according to what has been discussed in the 
previous paragraphs, that many issues must be addressed in 
order to consider the P2P model as a viable relay for 
distributed computing at business level. This topic is out of 
the scope of this paper.  

In the model, two kind of peers are defined: buyer and 
seller peers. User peers publish application descriptors, in the 
same way a file is commonly shared in P2P file sharing 
systems. The descriptor includes all the hardware and 
software requirements, as well as other constraints like the 
time within the results must be delivered and the offered 
reward. Clearly, it includes the info required for retrieving 
the task code and data. Seller peers crawl the network 
looking for published jobs, analyze the constraints, and 
choose to accept the proposals according to their own policy. 
For each retrieved request, the seller peer is able to evaluate 
its ability to fulfill the requirements and its convenience to 
accept the task. Multiple seller peers can accept the same 
task, and different patterns can be defined, e.g. the buyer 
could state that only the first business peer that delivers the 
results will be awarded, so that the seller peers will have to 
compete for being be the first one that completes the job. 
However, this is not the only possible pattern (e.g. in 
SETI@Home, multiple peers execute the same tasks and 
results are matched against each other).  

Our model allows asynchronous mechanisms to be 
adopted: the user peer who published its job can disconnect, 
being aware that the results will be delivered according to 
what is specified in the job descriptor. This approach could 
be effective within today business scenario, where multiple 
providers exist and compete to promote their own services.. 
Furthermore, it allows for some flexibility (e.g. sellers could 
act as brokers that use resources provided by commercial 
Clouds providers).  

Some keystones of the approach are: 
 

 Client peers publish ”calls for execution”; 

 Server peers discover and download calls for 
execution. Furthermore, they retrieve the code to be 
executed and the data; 

 Server peers compete to complete as many as 
possible jobs to maximize their incomes; 

 Clients can disconnect at any time: computation 
continues at server side; 

 Workload balancing can be implemented. 

 A business model is required to promote the 
execution of one’s own applications. 

 It is effective in an industrial environment. 

 Configurations of virtual machines, or general  
computing resources, are set up according to the 
application’s specific requirements. 

107

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



V. IMPLEMENTATION 

A prototype implementation of the above described 
model has been developed. In our implementation, the client 
and business peers are named, respectively, Buyers and 
Sellers, to highlight the market-like modeling of the system.  

We have extended jKad [20], a publicly available open 
source implementation of the Kademlia [19]  protocol 
released under GNU Lesser GPL. Each actor is composed by 
a set of different modules, each one performing a specific 
task. Figure 1 shows the modular architecture we have 
implemented. 

 
The Buyer is composed of three modules: 

 The P2P GUI, that implements a Graphical interface 
that allows the user to define the job properties 
according to the ontology. 

 The Job Sharing is responsible for publishing the 
jobs submitted by the user into the P2P overlay. 

 A Network module, that interacts with the Sellers, 
exchanging data files and results. 

 
The Seller is composed of: 

 A Job Discovery module, that is in charge of 
crawling the network in order to discover available 
CFEs (Call for Execution). 

 A Parser, that analyzes the retrieved jobs. 
Furthermore, it interacts with the Buyer’s Network 
module to retrieve the data required for the job’s 
execution. 

 A Job Queue Manager, that sequentially schedule 
the jobs. 

 A Result manager, responsible for interacting with 
the Buyer’s Network module in order to return the 
results. 

A. P2P technology 

The underlay system is a Kademlia-like P2P network. It 
has been chosen because of the major properties that  DHT-
based (Distributed Hash Tables) [27] P2P systems bring to 
applications (predictability of key research, robustness 
against node failures, etc.)  and because of its simple 
protocol. In fact, only four messages are defined by the 
protocol: 

 PING (node): to verify if a peer is still alive. 

 STORE (key,value): to store a (key,value) pair in 
one or more nodes of the network. 

 FIND NODE (node): to retrieve the k nodes that are 
closest (according to a XOR metric) to the node used 
as parameter. 

 FIND VALUE (key): a node receiving this message 
returns the corresponding value if it has the  
requested key in his store. Otherwise, it will behave 
as upon receiving a FIND NODE. 

 
As described in Figure 2, Buyers can publish jobs at any 

moment. Sellers look for shared CFEs and choose, for each 
job, whatever it is convenient or not to accept it. Once the 
job’s descriptor is downloaded, the Seller can start the job 

execution. Results are then returned to the Buyer; 
consequently, the Seller can get its reward if the results and 
the timing are compliant to the job requirements. 

As already mentioned in the previous paragraphs, 
multiple patterns are possible: the reward could be awarded 
to the first Seller who executes the task, or to all those able 
do deliver the results before a given deadline, or to the first 
“n”, etc. The analysis of this topic is beyond the scope of this 
paper. 

B. Prototype description 

The P2P GUI module allows users to specify the job 
requirements and to publish CFEs. The input form (Figure 3) 
is dynamically drawn by the application according to an 
OWL template. A hash of the data entered by the user is then 
calculated and published into the P2P overlay network. 

Publishing is performed by the Job Sharing module and it 
is implemented as a simple STORE message on the 
Kademlia network, using a special label as a key that 
identifies the shared job descriptor. 

 

 
Figure 1.  The architectural model 

 
Figure 2.  Sequence diagram describing the seller and buyer interactions. 

108

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



Figure 3.  User interface for job publishing and discovery 

Sellers, through the Job Discovery module, crawl the 
network looking for CFEs, using the FIND VALUE 
message. Once a job is retrieved, its descriptor is analyzed by 
the Parser module. The descriptor contains information about 
the type of executable, application requirements, the time 
constraints, the reward and further details that are 
summarized in Table I. The Parser, then, will interact with 
the Buyer’s Network module to download code and data 
required by the job. Notice that, for simplicity, no 
negotiation mechanism has been implemented: once a job 
descriptor is retrieved, the Seller checks if the requirements 
can be fulfilled, then decides if it is worth to accept the task.  

The decision-making mechanism does not take in 
consideration whatever any other Seller could be already on 
the same CFE. Accepted jobs are managed by the Job Queue 
module, that will sequentially schedule them. Finally, the 
Result Manager will interact with the Buyer’s Network 
module in order to return the outputs.  

An ontology has been created, that allows to define the 
application details and the application specific 
hardware/software requirements in a not ambiguous way. 
Some of the concepts are listed in Table II. 

VI. EXPERIMENTAL RESULTS 

In order to evaluate the behavior of the described 
prototypal implementation, under both functional and 
performance points of view, a testing environment has been 
set up.  The developed software platform emulates the 
proposed approach, enabling the analysis of the system 
dynamics, including the overhead introduced by the adoption 
of the Kademlia protocol. In Figure 4, a communication 
diagram of the  software platform is showed.  

TABLE I.  APPLICATION DETAILS 

Variable Meaning 

Universe 

Specific the kind of application that is been submitted 

(Exe file, java executable, etc.) 

Unique ID 

Identifier used to retrieve the code and data inputs on the 

overlay network. 

Executable file The name of the main executable file 

Input The url where the package can be retrieved 

Output The url where the results can be sent 

Contract owner A unique indentifier of the job submitter 

Budget The reward offered for the job execution 

Deadline The date by which the task must be completed 

Owner email Email contact of the owner 

 

TABLE II.  APPLICATION SPECIFIC HARDWARE AND SOFTWARE 

REQUIREMENTS 

Variable Meaning 

CPU 
Architecture Possible constraints on the CPU type 

N.of CPUs Number of required CPUs 

RAM Minimun amount of available ram required 

Libraries Possible required libraries – Optional 

OS Possible required OS – Optional 

Storage Minimum amount of free storage required 

 
Different test cases have been defined. Each of them is 

characterized by a set of meaningful parameters, whose 
combination leads to a different statistical behavior of the 
system. The most relevant parameters that can be set for each 
test case are: 

 

  Job Arrival rate. 

  Number of peers in the system. 

  Mean and standard deviation. It depend both on the 
computational requirement of the task and on the 
computing power of the seller peer. Times are 
modeled as Gaussian distributions. 

 Cool down (time between subsequent network 
scans). 

 Maximum allowed concurrency level (MAC). It is 
the number of peers that can simultaneously compete 
on a single task. 
 

The test analysis has allowed us to detect interesting 
system dynamics. In particular, we evaluated the mean queue 
time that a job has been waiting inside a buyer’s queue, the 
mean execution time and the mean time of permanence 
within the overlay network.  

109

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



Figure 4.  Testing platform: communication diagram

The results are compared with the values obtainable by 
running the reference job on a single dedicated server: we 
can model it as a scenario with reference mean execution 
time, and mean queue time equal to zero. Considering that a 
traditional PaaS environment allows the customer to 
autonomously manage the obtained server instance, the 
reference scenario correspond to what a user would expect 
by executing the same kind of tasks on a commercial PaaS 
cloud service (e.g., Amazon EC2 [21]).  

For testing purposes, specific assumptions have been 
made: the first one is that the service providers have, 
globally, enough available resources to manage the overhead 
introduced by the competitive scheduling layer.  

In other words, it means that, for the set job arrival rate, 
the global permanence time converges to a finite value. As 
long as this assumption is proved true, our tests show an 
improvement in mean system permanence times. Test set 3 
describes a scenario where this assumption becomes untrue 
for one of the tested MAC values. The second assumption is 
that service providers consider cost-effective to commit 
resources to compete for job executions rather than keeping 
them idle. 

A. Test set 1 

The test has been performed with the following 
parameter settings: 

 Job Arrival rate: 5 jobs per minute. 

  Mean: 300 s. 

  Standard deviation: 40 s. 

  Number of peers: 300. 

  Cool down: 120 s. 

The test has been performed with two distinct MAC level 
values. As it is evident in Figure 5 and in Table III, in both 
cases, the mean permanence time of jobs in the system is 
lower than the mean execution time of the single job. This 
result is due to multiple peers competing to execute the job 
and deliver the results, so the actual execution time is 
definite by the peer that is the quickest one to perform the 
execution. Notice how an increase of the MAC value has 
lead to get a better mean of the system permanence times, 
despite the increasing queue time.  

 
 

 
Figure 5.  Performance results of test set 1 

 

 

110

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



TABLE III.  PERFORMANCE RESULTS OF TEST SET 1 

  
First test  

(MAC =3) 

Second test 

(MAC=6) 

Reference 

Platform 

Mean queue time 1,339689655 2,348795559 

 
0 

Mean execution 

time 262,7362816 250,6696798 

 

300 

Mean system 

permanence time 264,2982312 253,0184754 

 

300 

 

B. Test set 2 

The test has been performed with the following 
parameter settings: 

 Job Arrival rate: 6 jobs per minute. 

 Mean: 400 s. 

 Standard deviation: 40 s. 

 Number of peers: 2000. 

 Cool down: 120 s. 
 
As it has already been done in the previous scenario, this 

test has been performed with two distinct MAC level values. 
Figure 6 and Table IV summarize the results. 

This test shows again, for both test cases, an 
improvement of the system permanence time compared to 
the baseline execution time. Notice, however, how the 
increased MAC value (test case 2) does not lead to better 
overall system permanence times: the increased queue time, 
due to having too many business peers fighting over each 
CFE and so less frequent network crawling. 

 

 
Figure 6.  Performance results of test set 2 

TABLE IV.  PERFORMANCE RESULTS OF TEST SET 2 

  
First Test  

(MAC = 2) 

Second Test 

(MAC=5) 

Reference 

Platform 

Mean queue time 0,878025466 7,532815631 

 

0 

Mean execution 

time 378,506824 372,9120812 
 
400 

Mean system 

permanence time 379,3848495 380,4448968 

 

400 

 
 

C. Test set 3 

The test has been performed with the following 
parameter settings: 

 Job Arrival rate: 6 jobs per minute. 

 Mean: 600 s. 

 Standard deviation: 40 s. 

 Number of peers: 300. 

 Cool down: 120 s. 
 

Once again, this test has been performed with two 
different MAC level values. Results are summarized by 
Figure 7 and Table V. It is evident that, for a MAC = 6, the 
assumption of mean permanence time converging to a finite 
value is not proved: in this case, the reference platform 
would perform better than the system with  the added 
competitive scheduling overlay. 

 

 
Figure 7.  Performance results of test set 3 

TABLE V.  PERFORMANCE RESULTS OF TEST SET 3 

  
First test  

(MAC =3) 

Second test 

(MAC=6) 

Reference 

Platform 

Mean queue time 2,2465506542 →+∞ 
 

0 

Mean execution 

time 567,44207082 554,254621 

 
600 

Mean system 

permanence time 569,68862147 →+∞ 
 

600 

 

VII. CONCLUSION 

We presented a competitive approach for job scheduling 
in a P2P overlay of Cloud providers. Cloud technology is 
used for effective set-up of virtual resources which are 
compliant with application’s requirements. The P2P overlay 
is used to publish and discover jobs’ “calls for execution” 
and to overcome the complexity of negotiation mechanisms. 
Competition of providers is investigated to implement a 
business model where the cost is fixed by the users and 
providers try to respond and adapt. 

We investigated the effectiveness of the proposed 
approach by implementing a framework that emulates the 

111

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3



network protocols and the peers behaviors. The experimental 
activities validate our hypothesis that a competitive 
approach, in distributed scheduling environments, does not 
only decreases the threshold required to access the facilities, 
but it can also lead, if properly set up, to substantial 
performance gains. More specifically, this objective can be 
achieved by setting an appropriate level of competition 
between the infrastructure managers. A fine balancing must 
be pursued: too many competitors increase the concurrence 
over each submitted job. As a result, we notice a degradation 
of the system performances due to longer queue times.  

 

VIII. ACKNOWLEDGMENT 

This research is supported by the grant FP7-ICT- 2009-5- 
256910 (mOSAIC [22]). 

IX. REFERENCES 

[1]  e-IRG, “White paper 2009,” June 2009, http://www.e-
irg.eu/images/stories/publ/white-papers/e-
irg_white_paper_2009_final.pdf, (last accessed 18/8/2011). 

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, 
“Cloud computing and emerging IT platforms: Vision, hype, and 
reality for delivering computing as the 5th utility,” Future Generation 
Computer Systems, vol. 25, n. 6, June 2009, pp. 599-616, 
doi:10.1.1.144.8397. 

[3] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky, 
“Seti@home: massively distributed computing for Seti,” Computing 
in Science and Engg., vol. 3, n. 1, 2001,  pp. 78-83, 
doi:10.1109/5992.895191. 

[4] A. Forestiero, C. Mastroianni, and M. Meo, “Self-Chord: a Bio-
Inspired Algorithm for Structured P2P Systems,” 9th IEEE/ACM 
International Symposium on Cluster Computing and the Grid 
(CCGrid 2009), Shanghai, May 2009, pp. 44-51, 
doi:10.1109/CCGRID.2009.39. 

[5] A. Forestiero, E. Leonardi, C. Mastroianni, and M. Meo, “Self-Chord: 
a Bio-Inspired P2P Framework for Self-Organizing Distributed 
Systems,” IEEE/ACM Transactions on Networking, vol. 18, n. 5, 
October 2010, pp. 1651-1664, doi: 10.1109/TNET.2010.2046745. 

[6] J. Linnolahti, “QoS routing for P2P networking,” Helsinki University 
of Technology, Department of Computer Science, 2004, 
doi:10.1.1.58.7192, http://www.tml.tkk.fi/Studies/T-
110.551/2004/papers/Linnolahti.pdf, (last accessed 18/8/2011). 

[7] Y. Wang, L. Wang, and C. Hu, “A QoS Negotiation Protocol for Grid 
Workflow,” Grid and Cooperative Computing (GCC 2006), Fifth 
International Conference, Dec. 2006, pp. 195-198, 
doi:10.1109/GCC.2006.14. 

[8] G. Antoniu, M. Jan, and D. Noblet, “A practical example of 
convergence of P2P and grid computing: an evaluation of JXTAs 
communication performance on grid networking infrastructures,” 
Proc. IEEE Symp. Parallel and Distributed Processing (IPDPS 2008), 
June 2008, pp. 1-8, doi:10.1109/IPDPS.2008.4536338. 

[9] R. Buyya , D. Abramson, J. Giddy, and H. Stockinger, “Economic 
models for resource management and scheduling in Grid computing,” 
Concurrency Computat.: Pract. Exper., 2002, vol. 14, pp. 1507–1542, 
doi:10.1002/cpe.690. 

[10] B. Cao, B. Li, and Q. Xia, “A Service-Oriented Qos-Assured and 
Multi-Agent Cloud Computing Architecture,” CloudCom’09, LNCS, 
vol. 5931, Springer, 2009, pp. 644-649, doi:10.1007/978-3-642-
10665-1_66. 

[11] S. Venticinque, R. Aversa, B. Di Martino, and D. Petcu, “Agent 
based cloud provisioning and management: design and protoypal 
implementation,” Proc. of Cloud Computing and Services Science 
(CLOSER), SciTePress, 2011, pp. 184-191. 

[12] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing in 
Practice: The Condor Experience,” Concurrency and Computation: 
Practice and Experience, vol. 17, 2005, pp. 2-4, doi:10.1.1.6.3035. 

[13] N. Drost, R. V. van Nieuwpoort, and H. Bal, "Simple Locality-Aware 
Co-allocation in Peer-to-Peer Supercomputing," Sixth IEEE 
International Symposium on Cluster Computing and the Grid 
Workshops (CCGRIDW'06), 2006, p. 14, doi:10.1.1.78.1535.  

[14] I. Foster and A. Iamnitchi, “On death, taxes, and the convergence of 
peer-to-peer and grid computing,” In 2nd International Workshop on 
Peer-to-Peer Systems (IPTPS03), 2003, pp. 118-128, 
doi:10.1.1.104.7210. 

[15] A. Ghatpande, H. Nakazato, O. Beaumont, and H. Watanabe, 
“Analysis of divisible load scheduling with result collection on 
heterogeneous systems,” IEICE Transactions, vol. 91-B, n. 7, 2008, 
pp. 2234-2243, doi: 10.1093/ietcom/e91-b.7.2234. 

[16] I. Stoica, “Chord: a scalable peer-to-peer lookup protocol for internet 
applications,” IEEE/ACM Transactions on Networking (TON), vol. 
11, n. 1, Feb. 2003, pp. 17-32, doi:10.1109/TNET.2002.808407. 

[17] N. Santos, K. P. Gummadi, and R. Rodrigues, “Towards Trusted 
Cloud Computing,” USENIX, Proceedings of the 2009 conference on 
Hot topics in cloud computing (HotCloud'09), San Diego, CA, USA, 
2009,  doi:10.1.1.149.2162. 

[18] Survey: “Cloud Computing ’No Hype’, But Fear of Security and 
Control Slowing Adoption,” July 2011, 
http://www.circleid.com/posts/20090226_cloud_computing_hype_sec
urity/, (last accessed 18/8/2011). 

[19] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-peer 
Information System Based on the XOR Metric,” Revised Papers from 
the First International Workshop on Peer-to-Peer Systems (IPTPS'01), 
2002, pp. 53-65, doi:10.1.1.18.6160. 

[20] B. Penteado, “JKad: Java implementantion of the Kademlia 
Network,” http://code.google.com/p/jkad/, (last accessed 18/8/2011). 

[21] Amazon Elastic Compute Cloud (Amazon EC2), July 2011, 
http://aws.amazon.com/ec2/, (last accessed 18/8/2011). 

[22] mOSAIC, July 2011,  http://mosaic-cloud.eu/, (last accessed 
18/8/2011). 

[23] C. Gonzalo, “Peer-to-Peer (P2P) architecture: Definition, taxonomies, 
examples, and applicability," Internet Requests for Comment, RFC 
Editor, Fremont, CA, USA, Tech. Rep. 5694, Nov. 2009, 
http://www.rfc-editor.org/rfc/rfc5694.txt, (last accessed 18/8/2011). 

[24] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 
National Institute of Standards and Technology, vol. 53, n. 6, 2009, p. 
50. 

[25] C. Kesselman and I. Foster, “The Grid: Blueprint for a New 
Computing Infrastructure,” Morgan Kaufmann Publishers, Nov. 
1998. 

[26] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, and R. Katz, “Above 
the Clouds: A Berkeley View of Cloud Computing,” Electrical 
Engineering and Computer Sciences University of California at 
Berkeley, Technical Report No. UCB/EECS-2009-28, Feb. 2009, 
doi:10.1.1.149.7163, 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
28.pdf, (last accessed 18/8/2011). 

[27] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, 
“Looking up data in P2P systems,” Communications of the ACM, 
2003, vol. 46, no. 2, pp. 43-48, doi:10.1145/606272.606299. 

 

112

CLOUD COMPUTING 2011 : The Second International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-153-3


