
Self-scaling the Cloud to meet Service Level Agreements
An open-source middleware framework solution

Antonin Chazalet, Frédéric Dang Tran,
and Marina Deslaugiers

France Telecom - Orange Labs,
28 chemin du vieux chêne,
38240 Meylan, FRANCE,

{antonin.chazalet, frederic.dangtran,
marina.deslaugiers}@orange-ftgroup.com

François Exertier, and Julien Legrand,
Bull,

1, rue de Provence,
B.P. 208

38432 Echirolles Cedex, FRANCE,
{francois.exertier, julien.legrand}@bull.net

Abstract - Cloud computing raises many issues about
Virtualization and Service-Oriented Architecture (SOA).
Topics to be addressed regarding services in Cloud computing
environment include contractualization, monitoring,
management, and autonomic management. Cloud computing,
promotes a "pay-per-use" business model. This business model
should enable to reduce costs but requires flexible services
than can be adapted to load fluctuations. This work is
conducted in the European CELTIC Servery cooperative
research project, which deals about a telecommunication
services marketplace platform. The Servery project focuses
amongst others on the self-scaling capability of Telco services
in a cloud environment. The self-scaling capability is achieved
thanks to Service Level Agreement (SLA) monitoring and
analysis (i.e., compliance checking), and to autonomic
reconfiguration performed according to the analysis results.
SLAs are defined for the services and for the cloud virtualized
environment. In order to achieve this self-scaling capability, a
specialized autonomic loop is proposed. Our proposal is well in
line with the Monitor, Analyze, Plan, and Execute loop pattern
defined by IBM. The proposed solution is based on the
following open-source middleware: Service Level Checking,
OW2 JASMINe Monitoring, OW2 JASMINe VMM. This
paper presents this solution that has been implemented and
validated in the context of the Servery project.

Keywords - Cloud Computing; Autonomic; Self-Scaling;
Service Level Agreement; Service Level Checking;
Virtualization; Open-source.

I. INTRODUCTION

Today, almost all IT and Telecommunications industries
are migrating to a Cloud computing approach. They expect
that the Cloud computing model will optimize the usage of
physical and software resources, improve flexibility and
automate the management of services (i.e., Software as a
Service, Platform as a Service, and Infrastructure as a
Service). Cloud computing is also expected to enable data
centers subcontracting from Cloud providers.

As a consequence, Cloud computing is seen as a way to
reduce costs via the introduction and the use of "pay per use"
contracts. It is also seen as a way to generate incomes for
Cloud providers. Note that a Cloud provider can be:

• An infrastructure provider,

• A platform provider,
• And/or a software provider.

Cloud computing raises many issues. Many of them are

related to Virtualization, and Service-oriented Architecture
(its implementation and its deployment). These issues lie at
both the hardware and/or software levels.

Nevertheless, Cloud computing also raises issues related
to services contractualization, services monitoring, services
management, and autonomic for the Cloud. In this paper, we
address these last issues for telecommunication services
offered to customers through a Cloud. These issues are
critical: indeed economical concerns (i.e., the establishment
and the use of the pay-per-use contracts) require the ability to
contractualize services (via the use of service level
agreements: SLA), to monitor and manage them, to check
services contracts compliance, and to manage virtualized
environments.

This paper is organized as follows. The next section
provides background about Autonomic computing and
Service Level Checking. Section 3 presents the related
works. Section 4 outlines the autonomic approach we have
followed. Section 5 focuses on the targeted Servery use case.
Section 6 details our open-source solution. Section 7
describes the implementation. We present the validation and
the results obtained in Servery in Section 8. Last section
concludes this paper and gives directions for future works.

II. BACKGROUND

This section presents background about autonomic
computing and service level checking.

A. Autonomic computing

Autonomic computing refers to computing systems (i.e.,
autonomic managers) that are able to manage themselves or
others systems (i.e., managed resources) in accordance to
management policies and objectives [1]. Thanks to
automation, the complexity that human administrators are
facing is moved into the autonomic managers. It allows
administrators to concentrate on high-level management
objectives definition and no more on the ways to achieve
theses objectives. In [2], the authors define principles of
autonomic computing thanks to a biological analogy with the

116

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

human nervous system: a human can achieve high level
goals because its central nervous system allows him to avoid
spending time on managing repetitive and vital background
tasks such as regulating its blood pressure.

[2] specifies four main characteristics for describing
systems self-management capabilities:

• Self-Configuration that aims to automate managed
resources installation, and (re-)configuration.

• Self-Healing that purposes to discover, diagnose and
act to prevent disruptions. Here, note that self-repair
is a part of self-healing.

• Self-Protect that aims to anticipate, detect, identify
and protect against threats.

• Self-Optimize that purposes to tune resources and
balance workloads to maximize the use of
information technology resources. Self-scaling is a
subpart of self-optimization.

B. Service Level Checking

Generally speaking, Service Level Checking (SLC)
involves a target service and a system in charge of collecting
monitoring information and checking SLA compliance.
More precisely, the target service offers probes, and its usage
(or a derived usage) is contractualized with at least one SLA.
SLA definitions are based on information that can be
obtained through the services probes (directly or via
calculation). The SLC system takes as input information
regarding the target service as well as at least one SLA, and
produces SLC results about the SLA compliance, the SLA
violation, or errors that occurred during the checking or
information collection steps. The target service can include
software, platform and/or infrastructure, or can even be a
Cloud itself (i.e., a set of software services, platform services
and infrastructure services).

The SLC results can be used to inform a service
administrator, to select a service provider at runtime, to
launch an autonomic loop, and/or to break a contract.

III. RELATED WORKS

This related works section describes the solutions for
autonomic computing proposed by equipment and IT
vendors (i.e., IBM, Oracle, HP, Motorola, Cisco, Alcatel-
Lucent ...). The focus is set on the use of SLA based service
level checking as analyzing part (in autonomic MAPE loop)
and the ability to manage virtualized environments
(mandatory today in Cloud computing).

First, IBM uses policies managers as analyzers for the
MAPE loop. IBM promotes the use of the Simplified Policy
Language (SPL). SPL is based on Boolean algebra,
arithmetic functions and collections operations. SPL also
uses conditional expressions [3]. IBM Tivoli System
Automation targets the reduction of the frequency and of the
duration of service disruptions. It uses advanced policy-
based automation to enable the high availability of
applications and middleware running on a range of hardware
platforms and operating systems. Note that these platforms
and systems can be virtualized (or not). Tivoli's products
family targets mainly availability and performance [4].

Second, Oracle provides the WebLogic Diagnostics
Framework in order to detect SLA violations [5]. The Oracle
Enterprise Manager 10g Grid Control can monitor services
and report on service availability, performance, usage and
service levels. Note that it doesn't manipulate SLA but a
similar concept named Service Level Rule [6]. Oracle
Enterprise Manager 11g Database Management is a solution
to manage databases in 24x7. It self-tunes and self-manages
databases operating w.r.t the performance, and it provides
proactive management mechanisms (that involve service
levels) in order to avoid downtime and/or performance
degradation [7]. Oracle handles and manages virtualization
through its Oracle VM Management Pack [8]. Oracle also
leads research concerning PaaS and the Cloud, and provides
a product called Oracle Fusion Middleware (OFM) [9]. OFM
targets amongst others management automation, automated
provisioning of servers, automate system adjustments as
demand/requirements fluctuates. Note that unlike [1], Oracle
specifies only three steps for the autonomic loop: Observe,
Diagnose, and Resolve [10].

Third, autonomic architectures proposed by other
equipment and IT vendors focus mainly on basic autonomic
features in IT products [11]. It also shows that these
remaining architectures don't use policies managers or SLA
based service level checking as analyzing part, and don't
manage virtualized environments.

The coming sections illustrate that our solution is well in
line with the MAPE loop pattern. It uses a SLA based SLC
as analyzing part and it manages virtualized environments.
Moreover, unlike IBM and Oracle, it is an open-source
solution: indeed, it only involves open-source middleware.

IV. APPROACH

The approach followed in this work is well in line with
the Monitor, Analyze, Plan, and Execute loop pattern defined
by IBM: the MAPE loop pattern (see Figure 1).

In [1], the authors defined that, similarly to a human
administrator, the execution of a management task by an
autonomic manager can be divided into four steps (that share
knowledge):

• Monitor: The monitor function provides the
mechanisms that collect, aggregate, filter and report
details (such as metrics and topologies) collected
from a managed resource.

• Analyze: The analyze function provides the
mechanisms that correlate and model complex
situations (with regard to the management policy).
These mechanisms enable the autonomic manager to
learn about the IT environment and help predict
future situations.

• Plan: The plan function provides the mechanisms
that construct the actions needed to achieve goals
and objectives. The planning mechanism uses policy
information to guide its work.

• Execute: The execute function provides the
mechanisms that control the execution of a plan with
considerations for dynamic updates.

117

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

These four parts work together to provide the control
loop functionality.

Figure 1. Autonomic loop (or MAPE/MAPE-K loop) [1].

V. THE SERVERY USE CASE

This section presents the Servery project description and
the Servery self-scale-up use case.

A. Servery research project description

This sub-section presents the Servery research project
context.

First, Servery (Service Platform for Innovative
Communication Environment) is addressing the still
unsolved problem of designing, developing and putting into
operation efficient and innovative mobile service
creation/deployment/execution platforms for networks
beyond 3G [12]. One of the main goals of Servery is to
propose a services marketplace platform where Telco
services can be executed, and where end users can search,
browse and access the executed services. Note that services
published in the Servery marketplace platform can also be
executed in others platforms belonging, e.g., to the
telecommunication operators themselves.

The Figure 2 below shows an overview of Servery's
context diagram, i.e., end users that are external actors of the
system use Telco services provided by the Servery
Marketplace Platform.

Figure 2. Servery's context diagram.

B. Servery self-scale-up use case

This sub-section presents the Servery self-scale-up use
case. The goal of this use case is to maintain the overall QoS
of the services executed in the Servery marketplace platform
and of the marketplace platform itself while the user load
grows up. QoS is directly (and indirectly) defined via SLAs.
Here, the user load is represented by the number of end users
(and consequently by the number of requests sent). The
services targeted are Telco services, e.g., SMS services, e-
mail services, etc.

VI. SOLUTION FOR SERVERY SELF-SCALING

As presented in the related works section, our proposition
is well in line with the MAPE loop pattern defined in [1].
Our idea is to define SLAs between the administrators of the
Servery marketplace platform and the marketplace platform
itself. The whole MAPE loop proposed is based on these
defined SLAs. It is named Servery marketplace management
platform. Its monitoring and analyzing parts depend directly
on the elements and metrics specified in the SLAs. As a
reminder, the Servery marketplace platform is a Cloud. It
means that three types of entities can be distinguished: the
entities belonging to the software level, the platform entities
and the infrastructure entities. SLAs defined can specify
information related to these three types of entities.

More precisely, the analyzing part contains two distinct
sub-parts: the SLC [13], and the JASMINe Monitoring (and
its Drools module) [14]. The SLC is in charge of requesting
the relevant probes and collecting the monitoring data. It is
also in charge of checking the compliance of the defined
SLAs with the collected monitoring data. It produces SLC
results about the SLA compliance, the SLA violation, or
errors occurred during the checking or information collection
steps. JASMINe Monitoring takes these SLC notifications as
input and checks their frequency over a configurable sliding
time slot. This analysis over a sliding time slot is realized by
a Drools module. Drools is a business logic integration
platform which provides a unified and integrated platform
for rules, workflow and event processing [15]. Using a
sliding time slot analysis is interesting because it avoids to
launch the planning and executing steps for non-
significant/non-relevant events.

JASMINe Monitoring is also in charge of the planning
part and leads the execution part. All the execution actions
related to the virtual machines management is done via the
mechanisms provided by JASMINe Virtual Machines
Management (JASMINe VMM) [16].

The Servery marketplace platform (see Figure 3) was
designed with a front-end element (i.e., an Apache HTTP
Server) and at least one services execution environment (i.e.,
an OW2 JOnAS open-source Java EE 5 Application Server
[17]). This design allows us to be able to scale-up the
Servery marketplace platform and the Telco services
deployed in it. In short, the Apache front-end acts as a load
balancer. Note that the Apache front-end and all the JOnAS
server(s) are run in virtual machines themselves run over the
Xen hypervisor technology - an open source industry
standard for virtualization [18].

118

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 3. Servery marketplace platform architecture.

This marketplace platform design is interesting, because
it enables to easily support the addition and/or removal of
services execution environments. The only constraint of this
design is the need to reconfigure the front-end element in
order to take into account the addition and/or removal.

VII. IMPLEMENTATION

This section presents the implementation of the proposed
solution. Our solution involves two high level modules: the
Servery marketplace platform that is in charge of providing
services to the end users, and the Servery marketplace
management platform that ensures the scale-up autonomic
property.

The Servery marketplace management platform involves
four distinct modules:

• Service level checking is in charge of requesting the
relevant probes and collecting the monitoring data
from the Servery marketplace platform. It is also in
charge of checking the compliance of the defined
SLAs with the monitoring data collected. It produces
SLC results that are sent to JASMINe monitoring.
SLC is developed by France Telecom.

• JASMINe Monitoring is part of the OW2 JASMINe
project. The OW2 JASMINe project aims to develop
an administration tools suite dedicated to SOA
middleware such as application servers (Apache,
JOnAS, ...), MOM (JORAM, ...) BPM/BPEL/ESB
solutions (Orchestra, Bonita, Petals, ...) in order to
facilitate the system administration [19]. JASMINe
Monitoring takes these SLC notifications as input
and checks their frequency over a configurable
sliding time slot. It is also in charge of the planning
step and it leads the scale-up execution step.
JASMINe Monitoring is developed by Bull.

• Cluster scaler is in charge of transmitting execution
actions to JASMINe VMM. It is also in charge of the
reconfiguration of the Apache Load Balancer in
order to take into account the virtual machine just
added. Cluster scaler is developed by Bull.

• JASMINe VMM is in charge of the management of
the virtual machines created and executed over the
Xen hypervisor. JASMINe VMM aims at offering a
unified Java-friendly API and object model to

manage virtualized servers and their associated
hypervisor. In short, it provides a JMX hypervisor-
agnostic façade/API in front of proprietary
virtualization management protocols or APIs (such
as the open-source Xen and KVM hypervisors, the
VMware ESX hypervisor, the Citrix Xen Server
hypervisor, and the Microsoft Hyper-V 2008 R2).
JASMINe VMM is developed by France Telecom.

Note that the solution we propose is a fully open-source

and Java based solution, and that all communications are
done via the Java Management eXtension technology (JMX).

We now present the nominal steps executed when an
autonomic scale-up is launched (see Figure 4). Here, the
Servery Marketplace Platform initially contains two virtual
machines (one containing the Apache LB, and one
containing a JOnAS server and Telco services). End users
request/interact with the (services of the) Servery
marketplace platform is referred as step number 0. A
nominal execution involves 6 steps (from 1 to 6):

Figure 4. Overview of the proposed solution.

First, the objective of SLC is to check the compliance of
the Servery Marketplace Platform (and its Telco services)
with SLAs related: to the SaaS level (i.e., Telco services
level), to the PaaS level (i.e., JOnAS server level), and to the
IaaS level (i.e., virtual machines level). Consequently, SLC
requests probes related to the Telco services, the JOnAS
server and the virtual machine with regard to the contracts
wanted. Amongst all the possible probes, we have chosen to
focus and collect the following Telco services (SaaS)
information:

• The number of requests processed during the last
(configurable) time period

• The total processing time during the last period
• The average processing time during the last period

The JOnAS server information chosen was:
• The current server state (e.g., starting, running)
• The number of active HTTP sessions
• The number of services deployed/running in a server

119

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

The virtual machine information chosen was:
• The virtual machine CPU load
• The total memory (heap and no-heap)
• The used memory (heap and no-heap)

Second, SLC results are sent to JASMINe monitoring.

JASMINe monitoring then checks the frequency of the SLC
results corresponding to a violation. If the frequency of the
violations is too high (e.g. more than five violations in a one
minute sliding time slot), it means that a scale-up action is
needed. So, JASMINe monitoring plans this scale-up action
(thanks to information known about the marketplace
platform) and executes it. Here, it means that JASMINe
monitoring plans to introduce and configure another virtual
machine containing a JOnAS server and the Telco services.

Third, the scale-up action is sent to the Cluster Scaler.
Fourth, Cluster Scaler commands the JASMINe VMM to

create a new virtual machine (containing a JOnAS server and
the Telco services).

Fifth, JASMINe VMM commands the Xen hypervisor in
order to introduce the specified virtual machine. By
introducing a virtual machine, we mean creating,
instantiating and launching the virtual machine (and its
content).

Sixth, Cluster Scaler is informed that the requested
virtual machine has correctly been instantiated and is now in
the running state. Then, Cluster Scaler reconfigures the
Apache Load Balancer in order to take into account the new
virtual machine (and its content) just introduced.

Finally, the load induced by the end users requests is now
dispatched between the two virtual machines (containing the
JOnAS Servers and the services).

VIII. VALIDATION

This section presents details, screenshots, and results
about the demonstration associated to the scale-up use case.

First, our solution has been demonstrated to CELTIC and
French National Research Agency (ANR) experts during the
Servery project's mid-term review (the 7th of May 2010).

This live demonstration and the validation were done on
three standards servers: one dedicated to the marketplace
platform, one containing the marketplace management
platform, and one in charge of injecting the end users load to
the marketplace platform.

Over this hardware configuration, we observed that our
whole MAPE loop runs approximately in 10 minutes (this is
an average value coming from ten consecutive
experimentations. These 10 minutes are broken down as
follows:

• 1 minute is taken by SLC and JASMINe monitoring
in order to monitor and detect 5 consecutive SLA
violations in a 1 minute sliding time slot.

• 1 minute is taken by JASMINe monitoring for the
planning of the scale-up action and the launching of
the execution step.

• 1 minute is spent by JASMINe VMM in order to
interact with the Xen hypervisor for introducing a
new virtual machine.

• At least 6 minutes are consumed by the creation, the
boot and the initialization steps of the (just
introduced) virtual machine.

• Less than 1 minute is spent by Cluster Scaler to
reconfigure the marketplace platform and check its
state.

Note that the creation of the virtual machine can be

reduced to a dozen seconds via the use of virtual machine
templates; the boot and initialization steps can't be easily
shortened.

Figure 5 below is a screenshot of SLC. It shows SLC
results: here, one violation of the SLA tsla_id_3 has been
detected).

Figure 5. Screenshot of SLC with a SLA violation.

Figure 6 is a screenshot of JASMINe VMM. It shows the
marketplace platform after a self-scale-up. Three virtual
machines are displayed: one containing the Apache LB
(called apache) and two containing each a JOnAS server and
the Telco services (called jonasWorker1 and jonasWorker3).

Figure 6. Screenshot of JASMINe VMM with 2 JOnAS servers.

Figure 7 below shows the number of requests, the
average processing time, and the CPU load corresponding to
jonasWorker1. Here, we have injected two identical loads on
the Apache LB. The first load has led to a SLA violation and

120

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

the marketplace platform has been self-scaled-up. The
second load has been injected after the self-scale-up action;
the load is now balanced between the two jonasWorkers.

Figure 7. Screenshot of JASMINe Monitoring graphs.

IX. CONCLUSION

In this paper, we have presented an innovative open-
source solution for self-scaling the cloud to meet service
level agreements. Our solution has been applied to the Cloud
Computing context via a self-scaling use case coming from
the European CELTIC Servery cooperative research project.
Applying our proposal to this use case has led us to several
conclusions. First, according to the objectives, it allows to
self-scale a virtualized cloud depending on the compliance
with SLA. It also allows separating concerns related to the
monitoring, analyzing, planning and executing steps in an
industrial context and in the frame of an industrial use case.

Second, our solution is functional and efficient. It has
been demonstrated in front of experts and validated.

Third, one of the important challenges we solved with
this solution was to find, extend/modify, and integrate open-
source middleware pieces with respect to industrial
constraints raised by our R&D centers.

Last, but not least, this solution is well accepted by both
France Telecom and Bull production project teams.

As future work, we consider to work on the Servery self-
scale-down and self-repair use cases. We also plan to
introduce several monitoring probes in the marketplace
platform, to extend the SLC module in order to check more
complex SLAs, and to embed it in JASMINe monitoring in
order to take advantage of its monitoring mechanisms. We
also plan to extend both the Drools rules for the analysis step
and the planning mechanism in order to handle the two
remaining use cases. We also wish to use JASMINe VMM
capabilities in order to test our solution on a VMware
marketplace platform.

ACKNOWLEDGMENT

We would like to thank the European CELTIC program
for co-funding the SERVERY project (project number CP5-
023), as well as both France Telecom - Orange Labs and

Bull. Special thanks to Dr. Alexandre LEFEBVRE for his
help and to Dr. Thierry COUPAYE for hosting this work.

REFERENCES
[1] IBM, "An architectural blueprint for autonomic computing", white

paper, http://www-01.ibm.com/software/tivoli/autonomic/pdfs/
AC_Blueprint_White_Paper_4th.pdf, Jun. 2006, [last accessed Nov.
2010].

[2] Horn P., "Autonomic Computing: IBM’s perspective on the State of
Information Technology", in IBM corporation,
http://www.research.ibm.com/autonomic/manifesto/autonomic_comp
uting.pdf, Oct. 2001, [last accessed Nov. 2010].

[3] IBM, "Simplified Policy Language", http://download.boulder.ibm.
com/ibmdl/pub/software/dw/autonomic/ac-spl/ac-spl-pdf.pdf, 2008,
[last accessed Nov. 2010].

[4] IBM, "Virtualization Management", http://www-01.ibm.com/
software/tivoli/solutions/virtualization-management/, 2010, [last
accessed Nov. 2010].

[5] Oracle, "Monitoring Performance Using the WebLogic Diagnostics
Framework", http://www.oracle.com/technetwork/articles/cico-wldf-
091073.html, August 2009, [last accessed Nov. 2010].

[6] Oracle, "Service Management", http://download.oracle.com/docs/cd/
B19306_01/em.102/b31949/service_management.htm, 2009, [last
accessed Nov. 2010].

[7] Oracle, "Oracle Enterprise Management 11g Database Management",
http://www.oracle.com/technetwork/oem/db-mgmt/index.html, 2010,
[last accessed Nov. 2010].

[8] Oracle, "Oracle VM Management Pack",
http://www.oracle.com/technetwork/oem/grid-control/ds-ovmp-
131982.pdf, 2010, [last accessed Nov. 2010].

[9] Oracle, "Platform-as-a-Service Private Cloud with Oracle Fusion
Middleware", Oracle White Paper,
http://www.oracle.com/us/036500.pdf, October 2009, [last accessed
Nov. 2010].

[10] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and G. Wood,
"Automatic Performance Diagnosis and Tuning in Oracle", 2nd
Conference on Innovative Data Systems Research (CIDR),
http://www.cidrdb.org/cidr2005/cidr05cd-rom.zip, pp. 84-94, 2005.

[11] Eurescom, " Autonomic Computing and Networking: The operators’
vision on technologies, opportunities, risks and adoption roadmaps",
http://www.eurescom.eu/~pub/deliverables/documents/P1800-
series/P1855/D1/, 2009, [last accessed Nov. 2010].

[12] Servery consortium, "SERVERY Celtic project",
http://projects.celtic-initiative.org/servery/, 2010, [last accessed Nov.
2010].

[13] Chazalet A., "Service Level Agreements Compliance Checking in the
Cloud Computing", 5th International Conference on Software
Engineering Advances (ICSEA), pp. 184-189, 2010.

[14] OW2 consortium, "JASMINe Monitoring",
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/Monitoring, 2010,
[last accessed Nov. 2010].

[15] JBoss Community, "Drools 5 - The Business Logic integration
Platform", http://www.jboss.org/drools, 2010, [last accessed Nov.
2010].

[16] OW2 consortium, "JASMINe Virtual Machine Management",
http://wiki.jasmine.ow2.org/xwiki/bin/view/Main/VMM, 2010, [last
accessed Nov. 2010].

[17] OW2 consortium, "OW2 JOnAS open-source Java EE 5 Application
Server", http://jonas.ow2.org/, 2010, [last accessed Nov. 2010].

[18] Citrix Systems, "The Xen Hypervisor", http://www.xen.org/, 2010,
[last accessed Nov. 2010].

[19] OW2 Consortium, "JASMINe: The Smart Tool for your SOA
Platform Management", http://jasmine.ow2.org/, 2010, [last accessed
Nov. 2010].

121

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

