
Open Architecture for Developing Multitenant Software-as-a-Service Applications

Javier Espadas, David Concha

Tecnológico de Monterrey, Campus Monterrey
Monterrey, México

{mijail.espadas,david.concha}@itesm.mx

David Romero, Arturo Molina

Tecnológico de Monterrey, Campus Ciudad de México
City, México

david.romero.diaz@gmail.com, armolina@itesm.mx

Abstract. As cloud computing infrastructures are growing, in
terms of usage, its requirements about software design,
management and deployment are increasing as well. Software-
as-a-Service (SaaS) platforms play a key role within this cloud
environment. SaaS, as a part of the cloud offer, allows to
the software providers to deploy and manage their own
applications in the clouds in a subscription basis. The problem
with the current SaaS offers is the lack of openness of in their
platforms and the need for learning a whole new paradigm
when trying to initiate in the SaaS market. Big players,
such as: Amazon, Google or Microsoft, offer their proprietary
SaaS solutions. Another consideration is the amount of current
Web applications that need to be re-engineered into this
cloud paradigm. This research work aims to reduce the effort
required to enter into the SaaS market by presenting an
architecture based on open source components for developing,
deploying and managing SaaS applications.

Keywords - cloud computing; software-as-a-service; software
architecture; open source.

I. INTRODUCTION

Software-as-a-Service (SaaS) has become the new
buzz-word around software industry. From a successful
business such as Salesforce.com towards new SaaS software
architectures with legacy solutions [3], SaaS solutions have
been converted into state-of-the-art technology. In spite of
the growth of this industry, there is a lack of established
software architectures that enable the delivery of business
applications as services. Big players (e.g., Microsoft, Google,
Amazon) have developed their own SaaS infrastructure in
order to deliver their next-generation software applications.
As the number and scale of cloud-computing systems
continues to grow, significant research is required to
determine the strategy towards the goal for making future
cloud computing platforms successful. Currently, most
cloud-computing offerings are either proprietary or depend
on software that is not amenable to experimentation or
instrumentation [1][3][4].

New Internet-enabled platforms have appeared, thus

enabling open collaboration and creation. These platforms
represent a new way of delivering software applications
[2][3]. While the practice of outsourcing business functions
such as payroll has been around for decades, its realization as
an online software service has until recently became popular.
In the online service model, the provider develops an
application and also operates the servers that host it.

Customers access the application over the Internet using
industry-standard browsers or Web Services clients [4][6].
Online software delivery is now conceived and defined as
Software-as-Service (SaaS). SaaS has become a well
established phenomenon in some areas of enterprise IT.
It is growing into a mainstream option for software-based
solutions and this will impact most of the enterprise IT
departments over the next three years [9]. Chou [5] declares
that SaaS is the next step in the software industry, not
because it is a “cool idea”, but because it fundamentally
alters the economics of software.

A wide range of online applications, including e-mail,

human resources, business analytics, customer relationship
and enterprise planning, are available [6]. According to
Gartner [8], the SaaS market will be growing in the next
years, by 2009 100% of tier 1 consulting firms will have a
SaaS practice and by 2011, 25% of new business software
will be delivered as SaaS. Also, IDC estimates customers
spending on SaaS solutions will increase to $14.8 billion by
2011 [11]; two out of three businesses are either buying or
considering buying software via the subscription model [10]
and McKinsey reports that the proportion of CIOs
considering adoption of SaaS applications in the coming year
has grown from 38% a year to 61% [7]. With previous
business facts, is possible to realize the importance and
quantity of software that will be delivered throughout SaaS
environments.

Unfortunately, several SaaS providers offer their own

architecture and their own implementation requirements.
Salesforce.com, for example, provides the Force.com
development platform and it uses a proprietary development
model (custom classes and user interfaces) for building SaaS
applications. Furthermore, transition from current Web
applications or Application Service Providers (ASPs)
solutions to this development model is not a trivial task.
Concha, et al. [3] and Espadas, et al. [4] identify a number of
steps about transitioning from an ASP solution to a SaaS
implementation:

 Current ASPs define a single static revenue models
(e.g., embedded & hard-coded within the application
implementation). When the dynamic nature of
markets asks ASPs to modify their revenue model,
ASPs are not able to change it in a cost-effective
way, mainly because the revenue model is hard-
coded into the application.

92

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

 Traditional ASPs provide a portal mechanism
for accessing their applications. The current
implementation of ASP only supports the notion of
one service provider. This is the host platform it-self.
The benefits of shifting to a multi-provider approach
include an easy integration with associates that
complement the platform administrator. Migrating
to a multiple provider with multiple e-services
also provides the ability to deploy and manage
independent sets of applications.

 Presently, ASP services are designed, developed and
deployed as Web applications. They are managed by
the platform through a Web container and there is no
other support for them (such as: billing, monitoring,
customization, etc.). In other words, we could see
SaaS applications as desktop applications running
within an operating system.

This research work addresses these issues, by proposing

an open architecture for achieving an implementation
capable of deploying applications over the Internet on
the service premise. This paper is structured as follows:
Section II describes the software architecture and core
technologies of the SaaS platform; Section III outlines a set
of business services that support SaaS applications; Section
IV defines a SaaS application and its components; Section V
explains the SaaS core application that is used to access to
the platform and Sections VI and VII describe multitenant
implementation of applications and subscriptions.

II. SAAS ARCHITECTURE

The architecture bases the communication layer on a
Service Oriented Architecture (SOA) that supports
techniques for constructing reliable services on cloud
computing infrastructures [15].

Figure 1. SaaS architecture

The SaaS platform is composed of several components
that allow the deployment of applications as services
(Fig. 1). Each component is integrated in an Apache
Tomcat container as a Web application (.war), a packaged
library (.jar) or a business services (Web application +
Web Services). A ‘service application’ is defined as

the application that will be delivered as a service to
the customers. Each service application is deployed as a
common Web application within the Tomcat container and
it manages its own resources, such as data sources, libraries,
and views. The main difference with common Web
deployments is about how the SaaS components manage and
interact with these Web applications. The main interaction
point of the service application with the platform is done
through a SaaS Application Programming Interface (API).
The SaaS API provides the common libraries that are used
by the applications to access the basic SaaS services, such as:
authentication, account information, public resources and
so on. In the view layer, the platform offers components
(SaaS Tag Libraries) for an easy integration with the SaaS
context (such as: public/private menus, templates, layouts).
The Deployment Manager is a listener component that
configures each application according to its configuration
file (appService.xml). Every time a Web application is
deployed within the Tomcat container, the Deployment
Manager reads the configuration file and analyzes
the application code for detect updated or new modules,
security roles or deployment changes. The access point to the
SaaS platform is the SaaS Core Web Application (SCWA).
This component is a Web application that is used to access to
all other applications and components. SCWA is in charge of
loading common resources and views, such as security
context, authenticated user, view filters, etc.

TABLE I. OPEN SAAS PLATFORM TECHNOLOGIES

Requirement Technology

Language Platform J2EE (Java 1.6)

Web Container Apache Tomcat 6

Web Framework Struts 2

Web Services Apache Axis2

Dependency Injection Spring 2

Dependency Injection + Web Services
integration

WSO2

Multi-tenancy Layer JoSQL + Java Annotations

Persistence Layer Hibernate 3 and Java
Persistence API (JPA)

Database Management MySQL 5

As Table I outlines, the core technologies of the SaaS

implementation are open source projects. In Figure 1 it is
possible to find a set of business services that are consumed
through a platform. These business services were designed,
developed and deployed by following a Service Oriented
Architecture (SOA) design in order to be completely
decoupled to the SaaS platform. Each business component
exposes a set of Web Services that can be consumed through
the platform (or even others platforms) as a client. But this
schema can be bidirectional; a business component can be a
client of the platform as well. The implementation of these
business services will be explained in a further section.

SaaS Platform
Subscription Service

Metering Service

Communications Service
(Mail, SMS)

Integrations Service
(Google Apps)

SaaS
Application

SaaS
Application

SaaS SDK

SaaS TagLibs
Java Libraries

XML Configuration Files

Multi‐tentant SaaS DB

Sa
aS C

ore W
e
b

A
p
p

SaaS
Application

D
e
ploym

e
nt

M
an
ag
er

Infrastructure Management

S
O
A

Auth, Log, Account

93

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

III. BUSINESS SERVICES

A set of support business services is available for service
applications. As such, the SaaS applications do not
implement code for these mechanisms as they are provided
by the platform. The implemented services are:

 Metering & monitoring. SaaS platform provides
automatic and non-intrusive support for metering
applications and tenant-based monitoring.

 Mailing. A component for sending/managing
electronic mail within applications without complex
configuration and programming.

 Application customization. The customization
component allows the subscriber to customize their
own data by adding fields to their business objects
(e.g., contact, lead, bill, etc.). By adding custom
fields to business object it is possible to generate
personalized capture and search forms and to create
filters for these custom properties.

Each business component is developed as a Web

application, but it exposes a set of Web services through
WSO2 framework [16], which integrates web services
deployed through Apache Axis2 and dependency injection
with Spring 2. Each business component application
implements its own Web services and they are referenced in
the applicationContext.xml Spring file. In this way, any
application in the platform can expose its own Web services
through simple classes, without having to implement
complex mechanism to generate WSDL documents. Same
implementations were followed for other business services
(e.g., metering, subscriptions, customization). Though,
the business services implement other functionalities for
their own management and configuration. For example,
Mail Service application offers the possibility for configure
manage their mail queue and the providers' mail accounts.

IV. SAAS DEVELOPMENT & DEPLOYMENT

A SaaS application is a Web application deployed within
the SaaS platform with a particular configuration. A service
application is a set of Web components that can be seen as a
whole software application. It provides a set of functions
separated by modules that can be deployed on demand into a
SaaS platform. In a simple way a service application only
has:

 Views. All the screens and forms that the user can
interact with.

 Business Logic. Code for actions, business logic and
data source accesses.

 Configuration files. XML or properties files.
 Database. Storage for application data; logically

separated for each subscriber.

That is, the SaaS application must not implement code
for authentication and authorization, application metering,
customization, etc, because they must be provided by
the SaaS platform (as described in Section III). In the SaaS
platform, the applications’ services are developed and

deployed as common Web applications but with specific
features and configurations that are interpreted by
the platform in order to create a SaaS execution environment.
The common frameworks and libraries used to develop
SaaS applications in the platform are the same as outlined in
Table 1. As stated, each application manages its own data
sources (e.g., databases, Web services, etc.). The SaaS
platform automatically detects configuration such as:
business modules, roles, menus, permissions, etc. Once the
Web application is deployed and configured, it can be
offered as a SaaS solution to multiple customers through a
subscription basis. The principal configuration file for
deploying a Web application as a SaaS application is
the appService.xml file. It defines the principal information
of a SaaS application.

<?xml version="1.0" encoding="UTF-8"?>
<appService>
 <name>Contact Manager</name>
 <label>menu.contactapp</label>
 <version>1.0</version>
 <description>...</description>
 <defaultProvider>TGHEWFS</defaultProvider>
<Role name="manager" description="...">
<Menu>
<MenuItem label="Contacts" path="/contacts/view.action"/>
<MenuItem label="Configure" path="/config/view.action"/>
</Menu>
</Role>
<Role name="user" description="...">
<Menu>
<MenuItem label="Contacts" path="/contacts/view.action"/>
</Menu>
</Role>
</appService>

In the last snippet, the XML tag appService encloses a set

of attributes for the application, such as name, label,
description and the default provider which owns the
application. The Role tag specifies available roles for the
application permissions. These roles are updated in the
platform database when the platform is initialized in the
application server. Within these role tags it is possible to
specify application's menus that are presented when the
authenticated user has such role. A SaaS application is
packaged as a .war Java component.

Figure 2. Folder structure of a SaaS application

Figure 2 shows the structure followed by any Web

application that is deployed as a SaaS application.
This structure shows the location of appService.xml file in
order to be recognized as a SaaS application by the platform.

service‐app.war

/ (root folder)
‐WEB‐INF/

appService.xml
web.xml
applicationContext.xml
axis2Config.xml
classes

‐ pages
‐ images

94

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

The following steps are performed during each SaaS
application initialization:

1. A platform component called Deployment Manager
reads the appService.xml file. This component retrieves
information from the service, such as name, version, etc.
It inserts or updates the application information in the
platform database.

2. Deployment Manager reads the appService.xml to
create or update the application roles.

3. Deployment Manager inspects the application code
for Action classes. This inspection looks up all Java
packages that end with '.actions' and the classes whose name
ends with 'Action'. For example:

 com.myapplication.actions.ContactsAction
 com.myotherapplication.actions.SomeOtherAction
These action classes will be inserted or updated in the

platform database as modules.
4. Platform inspects each method of a Action class

(module). With the use of the @SaaSFunction Java
annotation it is possible to define functions for each module.
This function declaration allows having a method-level
granularity about restricted access for each application role.

5. Both modules and functions are synchronized with
the platform database.

V. SAAS CORE WEB APPLICATION

The access point for the whole SaaS platform and its
deployed applications is known as SaaS Core Web App
(SCWA). This component is a Web application with specific
characteristics for managing tenant-based authentication,
security and control access lists. Each user belongs to one or
more subscriber or tenant (these terms will be used
indistinctly). Once the user has been authenticated through
an email and password, SCWA links the user to its
subscriber ID. If the user belongs to two or more subscribers,
a selection screen is displayed to select which to work with.
After that, SCWA searches for the user within an Access
Control List (ACL) to retrieve its permissions for that
subscriber and for the SaaS applications that the subscriber
has contracted. Then SCWA forms a session cookie with all
this information and stores it within the user session. In this
way, each user is linked to this tenant-based information and
all subsequent requests are identified by this session cookie.
However, it is necessary to retrieve this information from
several service applications, even when deployed in different
machines over a cluster. In order to achieve this, all Web
applications should have access to the SCWA and should
retrieve the cookies from it. The tenant-based information
is stored in the SCWA context session and the rest of the
applications can access it through the following mechanism:

public static UserVO getAuthenticatedUser() throws
NotAuthenticatedUserException {
 HttpServletRequest request =
ServletActionContext.getRequest();
 String SAASADMIN_SESSIONID =
getCookieValue(request,AuthConstants.SIDEL_SESSION_ID);
 ServletContext contextAuth =
request.getSession().getServletContext();

 UserVO authUser =
getUserFromAdminContext(contextAuth,SAASADMIN_SESSIONID
);
if (authUser==null){throw new NotAuthenticatedUserException();}
 return authUser; }
private static UserVO getUserFromAdminContext(ServletContext
context, String ssosessionid) {
 ServletContext sidelcontext =
context.getContext(SAAS_CORE_APP);
 Hashtable<String, UserVO> shareddata =
(Hashtable<String, UserVO>)sidelcontext.getAttribute(
AuthConstants.SAAS_USERS);
if (shareddata!=null && ssosessionid!=null) {
 // get the right User using the sessionid
 return (UserVO)shareddata.get(ssosessionid);}
 else return null;
}

The static method getAuthenticatedUser() can be called
from any application and it retrieves the session cookie of
the authenticated user from the SCWA context (represented
by SAAS_CORE_APP variable). UserVO is the value
object that holds information about the subscriber and
the authenticated user.

VI. PERSISTENCE MULTITENANT IMPLEMENTATION

There are different mechanisms for supporting multi-
tenancy. The applications services deployed within our SaaS
platform implements a Shared Database - Shared Schemas
mechanism [12][13][14], by separating (logically) the data
corresponding to each tenant with a subscriber ID field in
the database's tables. This shared schema approach has
the lowest hardware and backup costs, because it allows
serving the largest number of tenants per database server
[14]. As described, each service application implements its
own database, separating the multitenant information with a
subscriber ID key. An example of a multitenant data model
is showed in Figure 3:

Figure 3. Shared schema for a SaaS application

In Figure 3, It is depicted a shared database scheme for

a Contact Manager SaaS application. The core entity is
the Contact and each subscriber manages its own set of
contacts. As Figure 3 shows, this table has the 'subscriberId'
field; it means that Contact is a tenant-based object. When
users log in to the SaaS platform and access to the Contact
Manager application, they are allowed to access only to
the contacts of their subscribers. As described in the previous
section, this subscriber identifier can be retrieved from
the SCWA context by any other service application, in this
case the Contact Manager. Within the business logic of
the application it is possible to retrieve this subscriber ID

Contact

«column»
*PK id: BIGINT
* subscriberId: BIGINT
*FK industryTypeId: BIGINT
 firstName: VARCHAR(100)
 lastName: VARCHAR(100)

«FK»
+ FK_Contact_IndustryType(BIGINT)

«PK»
+ PK_Contact(BIGINT)

«unique»
+ UQ_Contact_id()

IndustryType

«column»
*PK id: BIGINT
 name: VARCHAR(100)

«PK»
+ PK_IndustryType(BIGINT)

0..*

(industryTypeId = id)

«FK» 1

95

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

and filter the contacts in the persistence layer. The SaaS
platform uses an object-oriented mechanism for multi-
tenancy which is implemented in the application side and
it is called Multi-Tenant Persistence layer. This layer uses
JoSQL [17], a LINQ-like [18] technology for perform SQL-
like queries over collections and the ability of Struts2 to
create Aspect-Oriented interceptors that allows to separate in
a logical way the information of each subscriber, supposing
the need to retrieve the contacts from a given subscriber.
The persistent layer is based on Object Relational Mapping
technologies (JPA + Hibernate). We can use a simple object-
oriented query to do that:

// JPA query in the persistence layer
String sql = "SELECT contact FROM Contact contact"
Query query = em.createQuery(sql);
return query.getResultList();

Simple as is, it is important to notice that there is no filter

by subscriber in the query sentence. The persistence layer
will return a set of ‘Contact’ objects. By using the
interceptor feature of Struts2 is possible to pre-process these
results before they can be accessed by the presentation layer.
Within a Struts2 action we can declare an annotated
property:

@Multitenant(attribute=”subscriberId”)
List<Contact> contacts = //get contacts from persistence layer

The previous code declares that this particular list of

objects will be filtered before they are accessible from
another component of the application (a Java Server Page
view for example). This pre-processing implementation is
achieved by setting a Struts2 interceptor in the call stack.
This interceptor can access to the invocation action:

Object action = invocation.getProxy().getAction();
//getting the subscriber ID from the authentication context
long subscriberId = Auth.getSubscriberId();
for (Field field : clazz.getDeclaredFields()){
 if (field.isAnnotationPresent(Multitenant.class)){
 Multitenant filter =
(Multitenant)field.getAnnotation(Multitenant.class);
String attribute = filter.getAttribute();
String property = field.getName() ;
Object objList = BeanUtils.getProperty(action, property); String
className = getClassName(objList);
Query q = new Query ();// create and perform a query over the list
q.parse("SELECT * FROM "+className+" WHERE "+attribute+"
= "+subscriberId);
QueryResults qr = q.execute (list);
List newList = qr.getResults();
//setting back the filtered list by tenant
BeanUtils.setProperty(action,property,newList);
}}

In the example, the ‘Contacts’ list will be reduced to only
the objects which their “subscriberId” property matches with
the authenticated subscriber. With this mechanism it is
possible to create multi-tenant pre-processing behavior
within the SaaS applications. In fact, it is feasible to create a
transparent support for multi-tenant persistence without
affecting the on-premise applications.

VII. MULTITENANT SUBSCRIPTIONS

Basically, the subscription service is a Web application.
It uses the same open technologies as the SaaS platform (see
Table 1). Its architecture defines a set of components for the
subscription management. The storage layer is composed
of the multi-tenant database and the logical persistence
separation. Different types of subscriptions are handled by
a component called Subscription Type Management. As each
provider can define its resources for their applications,
the Restriction Management is in charge of managing
these resources and linked them to a Restriction definition.
The Resource Management Remote layer performs access
to distributed resource managers from different and
heterogeneous sources. This is an important concept of
the subscription component because it has the ability to
manage distributed resources in different scenarios, either for
on-premise ASPs applications or SaaS solutions. As such,
the subscription component uses a distributed architecture
based on SOA in order to be adaptable to several scenarios.
Each entity can define its own resource managers as Web
services and these can be consumed for the subscription
component dynamically. With this approach it is not only
possible to have applications using the subscription
component as well as entire platforms consuming the web
services. These resources can be any type of accountable and
billable resources such as persistent rows (e.g., contacts,
leads, bills, surveys, etc.) or hardware (e.g., CPU cycles,
bandwidth, storage, etc.). A Resource Manager interface
defines a set of methods to be implemented by SaaS services.
It defines methods that can be called externally due to
the fact that each resource manager implementation is
exposed as a Web Service in order to be consumed for
the subscription service. This approach allows the dynamic
integration of heterogeneous providers. Resource Manager
registration is performed when a provider (e.g., a subscriber
per se) defines a Restriction for each resource. Therefore,
a Restriction (in the Subscription component side) will
access its Resource Manager (in the application side).
External providers can define their restrictions by using
the Subscription Web Application front-end and this is done
through the Restriction Management internal component.
Internal applications of the SaaS platform are automatically
analyzed by discovering their Resource Managers. The Web
Services implementation in the SaaS platform is done
with Apache Axis2, Spring2 and the integration library
between them called WSO2 [16]. Each SaaS application
implements its own resource manager, which is referenced
in the applicationContext.xml Spring file. The subscription
service implements multi-tenancy subscriptions with logical
separations in its database, by using a subscriber ID field, in
order to manage multiple subscribers and subscriptions. A
subscriber can be any entity that has resources to bill or to
consume. A subscription is a tree-relationship entity
composed by two subscribers (client and provider) and a
SaaS application. Therefore, we can say that “subscriber A is
subscribed to the Contact Manager SaaS application
provided by subscriber B through the subscription number
1234”, as depicted in Figure 4:

96

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 4. Subscription object model

Each provider can deploy a set of applications and their

corresponding subscription types. Subscription Types are
the billable plans belonging to a specific SaaS application
and they are applicable to a subscription. Packages are used
to combine two or more subscription types. As Figure 4
shows, the Contact Manager service defines three
subscription types, depending on the contact generation
rate. The subscription '1234' defines the ‘Contact Basic’
subscription type. As such, the 'Contact Basic' plan is going
to charge 2 currency units for every active contact with a
monthly fee basis. Then, an ‘Active Contacts’ is defined as a
resource to be billed. In order to manage these resources,
a subscription type has a Restriction, which is a condition
to be monitored by the subscription component and it allows
managing the resources’ accountability. In the previous
example, the ‘Active Contacts’ resource is defined in
the Restriction table, and it defines the source of this
resource (as a WSDL end-point). Subscription service
implements a Resource Lookup and Invoice Generation
mechanisms which use the WSDL end-points in order
to gather specific information about billed resources status.

VIII. CONCLUSION

A Software-as-a-Service (SaaS) platform has been described
and its implementation on open source technologies. This
platform implements a set of business services and
components to deploy Web applications and manage them as
SaaS solutions. These SaaS applications use shared
database schema in order to implement multi-tenancy
mechanisms by logically separating their data for each
subscriber. The authors’ SaaS platform provides an easy
transition from traditional ASP applications with single
provider approach to more complex scenarios for the next
generation of Internet-based services. As such, this platform
and its business services are currently used for deploying
industry-class SaaS solutions in real production
environments.

ACKNOWLEDGMENT

The research presented in this document is a contribution
for the “Rapid Product Realization for Developing Markets
Using Emerging Technologies” Research Chair, ITESM,
Campus Monterrey, and for the “Design of Mechatronics

Products” and “New Business Models for the Knowledge
Economy” Research Chairs, ITESM, Campus Ciudad de
México.

REFERENCES
[1] Nurmi, D.; Wolski, R.; Grzegorczyk, C.; Obertelli, G.; Soman, S.;

Youseff, L., and Zagorodnov, D. "The Eucalyptus Open-Source
Cloud-Computing System". May 2009. CCGRID '09. 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp. 90-
100.

[2] Molina, A.; Mejía R..; Galeano N.; Najera T., and Velandia M. "The
HUB as an Enabling IT Strategy to Achieve Smart Organizations".
Chapter III in Integration of ICT in Smart Organizations, Istvan
Mezgar (Editor), Idea Group Publishing, 2006, pp. 64-95.

[3] Concha, D.; Espadas, J.; Romero, D., and Molina, A. "The e-HUB
Evolution: From a Custom Software Architecture to a Software-as-a-
Service Implementation". 2010. Journal Of Computers In Industry.
Volume 61, Issue 2, pp. 145-151.

[4] Espadas, J.; Concha, D. and Molina, A. “Application Development
over Software-as-a-Service Platforms”. 2008. The Third International
Conference on Software Engineering Advances ICSEA 2008, pp. 97-
104.

[5] Chou, T. "The End of Software". Sams Publishing, USA, 2005.

[6] Jacobs, J. “Enterprise software as service“. July 2005. Queue,
Volume 3, Issue 6, pp. 36-42.

[7] Dubey, A. McKinsey. Panel at the SIIA OnDemand Summit. San
Jose, CA. November 8, 2006.

[8] Gartner Research. “Predicts 2007: Software as a Service Provides a
Viable Delivery Model”. 2006 Gartner, Inc.

[9] Natis, Y. V. “Introducing SaaS-Enabled Application Platforms:
Features, Roles and Futures”. 2007 Gartner, Inc.

[10] Pring, B.; Bona, A.; Holincheck, J.; Cantara, M. and Natis, Y. V.
"Predicts 2008: SaaS Gathers Momentum and Impact". January 2008.
Gartner Inc.

[11] Wolde, E. Research Analyst, IDC. August 2007.

[12] Aulbach, S.; Grust, T.; Jacobs, D.; Kemper, A., and Rittinger, J.
"Multi-tenant databases for software as a service: schema-mapping
techniques". June 2008. SIGMOD '08: Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pp.
1195-1206.

[13] Mietzner, R.; Metzger, A.; Leymann, F., and Pohl, K. "Variability
modeling to support customization and deployment of multi-tenant-
aware Software as a Service applications". May 2009. PESOS '09:
Proceedings of the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, pp. 18-25.

[14] Frederick C.; Gianpaolo C., and Roger W. (June 2006). "Multi-Tenant
Data Architecture". MSDN Library. Microsoft Corporation.
http://msdn.microsoft.com/en-us/library/aa479086.aspx. Last access
at January 2009.

[15] Sedayao, J. (November, 2008). "Implementing and operating an
internet scale distributed application using service oriented
architecture principles and cloud computing infrastructure". iiWAS
'08: Proceedings of the 10th International Conference on Information
Integration and Web-based Applications & Services, pp. 417-421.

[16] Mathew, T. (February, 2008). "Hello World with WSO2 WSF/Spring".
WSO2 - The Developer Portal for SOA. http://wso2.org/library/3208.
Last access at June 2009.

[17] Haines, S. (Sept, 2005). "JoSQL - SQL for Java Objects".
http://www.informit.com/guides/content.aspx?g=java&seqNum=230.
Last access at July 2009.

[18] Kan, W. and Yujun, Z. (2009). "Using LINQ as an instructional
bridge between object-oriented and database programming". ICCSE
'09. 4th International Conference on Computer Science & Education,
2009, pp. 1464 - 1468

Subscription

Subscription 1234

Subscription Type

Contact Premium1000 year

Contact 100 30 month

Contact Basic 2 month

Application Service

Contact Manager
Service

Subscriber

Company A

Company B

client

provider
Restriction

Type

Package

Restriction

Active Contacts
http://companyb.com/activeContacts?wsdl

Time

97

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

