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Abstract—The rapid increase of smartphones’ sensing, compu-
tation and communication capabilities is accompanied by a
growing demand for energy. Both, short-term and long-term
energy allocation is a bottleneck which severely constrains a
mobile device’s capabilities and usability. It is thus one of the
most critical challenges for current device development. Despite
of numerous hardware improvements, e.g., concerning the energy
consumption of sensors and displays, as well as the development
of more capable batteries, this issue remains to be solved. Hence,
software-based approaches can be used to optimize the energy
management of mobile devices according to a user’s preferences,
context information and the current energetic state of a device.

In this paper, we specify the requirements for a modular
energy management middleware architecture coined EMMA,
which considers the dynamic and modular integration of existing
energy improvement concepts in relation to the device’s current
energy status and active services as well as the users context
and preferences. Furthermore, we present a prototype application
which demonstrates some of EMMA’s core concepts.

Keywords—mobile energy management; contextual service pro-
vision

I. INTRODUCTION

Depending on a user’s usage intensity, the batteries of to-
day’s smartphones often do not last longer than for one or two
days. Reasons for that are high performance hardware com-
ponents leading to high energy consumption, extensive sensor
usage for data acquisition, improperly developed applications,
etc.. With this being a known problem, several hardware-
and software-based approaches for optimizing the energy con-
sumption of a mobile device have been developed. However,
typically, only single components of a mobile system are
subject of optimization, while there are no approaches covering
all existing subdomains and the corresponding possibilites for
saving energy. Disregarding all hardware-based improvements,
this leads to the necessity of an integrated, software-based
energy management approach in order to protect the limited
resources of a mobile device.

Improving a device’s energy consumption is not only
about extending its batteries’ life span, however. Additional
goals are the increase of the user’s usage experience and the
usability of an energy management system. In order to achieve
these objectives, individual user preferences, current context
information and the device’s energetic system state, as well
as currently active services must be considered. Furthermore,
an energy management system must be able to identify and
prioritize services and functionalities which are important or
critical to the user. At its best, such a system is able to
present these services to the user with a dynamically tailored
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Quality of Service (QoS) whenever they are requested. The
QoS is described by individual parameters for each service. For
example, the QoS of a data transfer service could be described
by the transfer speed and the amount of data transferred, the
one of a positioning service by its accuracy and the time span
needed for acquiring a location.

In order to describe the user’s context and to be able to
react to the present situation, context modeling is required first.
According to Dey [1], "Context is any information, that can
be used to characterize the situation of an entity. An entity
is a person, place or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves.” Relying on this definition,
it is possible to identify the raw data which is needed for
context modeling and to specify sources and procedures for
its acquirement. In the following, we present four categories
of sources for determining raw context data.

1)  Conventional Sensors: Data about the users environ-
ment, specific activities or current whereabouts can
be acquired with built-in smartphone sensors such
as Global Positioning System (GPS), gyroscope or
accelerometer.

2) Communication Interfaces: Network technologies
like Global System for Mobile Communications
(GSM), Universal Mobile Telecommunications Sys-
tem (UMTS) or Long Term Evolution (LTE)
plus Bluetooth and Wireless Local Area Network
(WLAN) can also be used for determining the user’s
location in different granularities [2][3].

3) Media Data Analysis: Data like taken pictures or
surrounding noises can also be analyzed in order to
extract information about the user’s situation, e.g.,
concerning his current mood or a visited location [4].

4)  User Data Mining: Personal user data like emails,
played media files or calendar entries could be valu-
able in the process of extracting context information.
Analyzing it can provide knowledge about where-
abouts, important dates like birthdays or upcoming
appointments.

However, using some of the presented approaches for the
acquisition of context information can be very costly. As
will be shown in Section II, all of them consume energy
during the process of raw data gathering, as well as for the
procedure of extracting information from it. Consequently, the
energy consumption caused by context acquisition always has
to be compared to the savings enabled through context-aware
energy allocation. Besides, there are also privacy issues to be
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considered. Especially in 3) and 4), sensitive user data, which
may need additional protection by privacy policies, is used for
analysis.

We are not aware of any concept for an integrated energy
management system, which satisfies all of the aforementioned
needs. However, there are a lot of ideas for partial improve-
ments of single components. In the following, we specify the
requirements for such a system and introduce EMMA, an
energy management middleware architecture which considers
the dynamic and modular integration of existing energy im-
provement concepts, which controls all of the device’s services
and features and monitors the system’s energy status, as well
as adapting it according to context, currently active services
and user preferences.

Section I supplies an introduction to energy management
matters on mobile devices. In Section II, we provide a brief
analysis of the energy consumption of smartphones in order
to understand which components are responsible for draining
the battery and where improvements can be achieved. Based
on a literature survey on existing approaches for energy
management on mobile devices, as well as context-aware
mechanisms for optimizing energy consumption, we present
the requirements for an extensive context-aware and user-
centric mobile energy management architecture in Section
III. Eventually, the concept and implementation of our ap-
proach coined Energy Management Middleware Architecture
(EMMA), will be described in Section IV. After offering some
insights into a prototypical implementation in Section V, a
conclusion and upcoming future work are addressed in Section
VI

II. RELATED WORK
In order to optimize the energy consumption of a mobile
device, one first needs to understand which of its components
or applications are draining most of it. Later on, it is possible to
contrive ideas and optimization concepts based on this knowl-
edge, as well as on already existing optimization approaches.

A. Individual measuring of energy consumption

There are two different techniques for measuring energy
consumption on smartphones. One relies on software based
functions provided by the operating system; the other uses an
external power meter. Manweiler et al. describe the installation
and usage of the Monsoon Power Monitor for external power
consumption measurement [5]. However, this approach does
not pay attention to the individual consumption of the devices
components since it only identifies the overall consumption.
Examples for software based and combined measurement con-
cepts are eProf [6], PowerTutor [7] and WattsOn [8]. They all
make use of predefined energy profiles describing the energy
consumption of specific device components and indicate, that
network and sensor usage, CPUs, displays and media playback
are the main consumers of energy. Additionally, Pathak et
al. [6] examined the energy consumption of different popular
applications like Facebook, Angry Birds and others and figured
out, that 65-75% of consumed energy is used by third party
advertisement modules. Furthermore, they name typical bugs
in operation systems, which are responsible for the dissipation
of energy.

B. Optimization concepts
In the following, we review different optimization concepts
concerning sensors and data transfer. Furthermore, the usage
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of prediction and data mining in order to prioritize, schedule
and optimize tasks on mobile devices is examined.

1) Sensing optimization: There are several approaches for
lowering the energy consumption of mobile devices based on
optimizing sensor usage. Adaption of QoS parameters is one
attempt that can be used to achieve this goal. In particular,
the trade-off between service quality and consumed energy is
a relevant matter in this context. Besides the adaption of a
services performance, there is also the possibility to substitute
sensors. In this case, specific sensors are substituted by other
technologies which are capable of providing a comparable
service while lowering the energy consumption [9][10]. If
a complete substitution is not possible or needed, there is
also the way of combining sensors [11][12], e.g., triggering;
here, the acquisition of data from one sensor is triggered
only when a second sensor reaches some kind of previously
defined threshold. An example for this is the combination
of a smartphones accelerometer and its GPS sensor in the
SenseLess concept introduced by Abdesslem et al. [13]. Their
approach is to activate the GPS-Sensor only if the accelerom-
eter detects the user being in motion. For evaluation, a user is
equipped with two smartphones, one running the standard i0OS
positioning methods in a 10 seconds interval, the other one
working with the SenseLess algorithm. The results showed,
that SenseLess needed 85,5% less energy than the standard
approach. The determined locations differed from 0,4m to
41m with an average value of 8m. But because the energy
consumption was determined on basis of the battery level,
there is cause for inaccuracies through wrong interpreted up-
and-down-movement, as well as due to the systems general
energy consumption. As shown by Priyanta et al. [14], the
combination of different sensors is to be used with caution
and after individual evaluation. In their case, the computing
of determined accelerometer data, which was gathered in a 10
minutes time interval with a frequency of 4Hz to 6Hz, con-
sumed more energy than the location determination via GPS
for 5 minutes, determining one location fix each minute. Chon
et al. introduce SmartDC, which not only aims at lowering the
energy consumption while determining the users location, but
also tries to predict the user’s future positions and important
places [15]. In order to accomplish that, the authors use
unsupervised learning techniques, mobility prediction, as well
as prediction of system usage based on Markov models. Using
this approach, energy savings of up to 81% and an prediction
accuracy up to 80% have been reached. The maximum delay
time was 160 seconds.

A complete substitution of sensors is used for Ambience-
Fingerprinting [16], a technique which is especially suitable
for indoor location determination, where no GPS signal can
be received. Therefore, raw data of different kind is checked
for specific attributes, so called fingerprints. An early concept
of Pirantha et al. enables the user to discover his position via
ultrasonic and radio fingerprints with an cm-accuracy [16].
Azizyan et al. present SurroundSense, a system for location
determination on basis of environmental fingerprints like the
spectral composition of noises or visual signatures [17]. The
authors also analyze the cumulation of existing fingerprinting
techniques, such as motion, noise, acceleration, brightness,
color and spectral contents of WLAN signals. In an evaluation
with four users in predefined positioning clusters, 93% of
all positions could be determined correctly. However, the
consumed energy was not compared to the consumption of
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standard Software Development Kit (SDK) methods.

C. Optimizing data transfer

Due to the extensive energy consumption of data transfer
and communication technologies, this field provides a lot of
possibilities for achieving energy savings. 2G, 3G and 4G
networks each use a different amount of energy for different
tasks. Hence, already by choosing the best suited technology
for each task, the overall energy consumption can be lowered.
For example, 2G networks are suited better for calls than
3G networks, but 3G networks are much more efficient for
data transfer [18]. Perucci et al. conclude, that — even though
additional power is consumed by the handover process needed
for changing networks — significant energy savings can be
achieved by consistently switching to a 2G connection for calls
[19].

Furthermore, both Balasubramanian et al. [18] and Falaki
et al. [20] reveal that not only the overall size of the transferred
data is responsible for the consumed energy, but also the size of
single transferred packages: Especially, small packages cause
a transfer overhead of up to 40%. Moreover, the Transmission
Control Protocol (TCP) requires multiple transfers of the same
packages due to package loss. To this end, Falaki et al. propose
a bigger server side buffer and an optimization of the usage
rules for the transfer networks in order to solve these problems,
predicting energy savings up to 35%.

Another transfer-related optimization approach is TailEn-
der, provided by Balasubramanian et al. [18]. TailEnder divides
applications into two groups, i.e., applications that tolerate
delays in data transfer and those, which can profit from data
prefetching. Based on this classification, data is loaded in bun-
dles to minimize the devices staying in the high energy state
of the IEEE 802.11 standard. Additionally, TailEnder makes
usage of the advantages of the different transfer networks. In
comparison to other approaches, 60% more newsfeeds and
up to 50% more search results for web requests could be
processed while consuming the same amount of energy.

D. History and data-based prediction

The analysis of user preferences and interaction patterns,
as well as the usage of data mining techniques on historic
or context data can reveal precious insights concerning the
energetic regulation of a mobile system. For example, calendar
or appointment specific data can be used to predict a user’s
current and future whereabouts. Predictions about the device’s
future energy level, combined with the information about
upcoming tasks can be used to adapt the energy balance
oriented on tasks rated critical by the user [21]. Oliver et al.
succeeded in predicting the energy level of mobile devices
correctly for a time slot of one hour with an error rate of
only 7%. Within 24 hours the error rate was 28%. In order
to achieve that, they classified the gathered data of more than
17.300 BlackBerry users and clustered it afterwards [22][23].

Trestian et al. conducted a network-based study which
should reveal relations between the user, his movement pat-
terns and used applications in order to predict common in-
teraction patterns. Their results indicate that the usage of
specific applications is significantly related to the user’s current
movements or location [24].

III. REQUIREMENTS
As shown in Section II-B, there are numerous approaches,
which address single optimizations for specific system com-

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-369-8

ponents or services. None of them tries to wrap all existing
concepts in one architecture, which organizes them in a mod-
ular way and provides requested services with an adequate
output quality. In order to create a holistic energy management
system, the following requirements for such an architecture can
be identified:

1)  Universal validity and responsibility: The energy
management system is solely responsible for man-
aging all resources of the system and the access to
them. It receives all service and resource requests and
answers them in an adequate and energy efficient way.

2)  Context and user awareness: Typical context data
like the current time and location, upcoming tasks,
individual user preferences or social relations, as well
as the systems current energetic state are used to
provide services in a customized manner respecting
the user’s situation and whereabouts.

3) Modularity: A holistic energy management system
is comprised of a multitude of different components,
each responsible for different subtasks. In order to
benefit from existing and future ideas in each of these
areas, functionality is encapsulated in only loosely
coupled modules which can be altered or replaced
without affecting the rest of the system.

4)  Scalability and extensibility: New energy optimiza-
tion concepts or services can get installed in an easy
way, the user is able to use improved modules without
non-trivial update processes.

5) Definition of generic interfaces: To make the in-
tegration of new modules possible, a definition of
generic interfaces oriented on the lowest common
denominator of installable modules is necessary.

6) Adaptive data collection: If data collection is re-
quired (e.g., sensor data), the system selects a service
which acquires data adaptively to given precondi-
tions. These may be the systems current energy
state, the service quality as demanded by the service
requester or forecasts concerning needed energy for
future tasks. Furthermore, collected data needs to be
cached for later usage.

7) Task prioritization: In order to take the user’s
preferences concerning critical tasks into account, the
system is able to adhere to task priorities and assign
more privileges to higher priority tasks.

8) Clarity and comprehensibility: The architecture
must be structured in a clear and comprehensible way.
This is essential to enable developers to integrate new
optimization concepts or module packages into the
existing system.

IV.  EMMA - AN INTEGRATED MANAGEMENT APPROACH

Based on the requirements identified in Section III, we
now present our approach coined EMMA (Energy Management
Middleware Architecture). EMMA is a holistic approach for an
energy management system on mobile devices, allowing for
an easy integration of existing and future energy optimization
concepts. It provides its services in an adaptive, context- and
preferences-aware manner, controls service parameters and
monitors the system’s energy state. EMMA runs continuously
in the background and is the exclusive interface to the system’s
resources (such as sensors) and services for other applications.
Thus, EMMA is able to coordinate resource demands of all
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applications and to fulfill their requests in the most energy-
efficient way.

A. Main components

EMMA consists of two main components, namely, the
Control Unit and the Service Provider. These and their sub-
components are depicted in Figure 1. In the following, the
components are described.

1) Control Unit: The Control Unit is the central component
dedicated to respond to service requests, select appropriate ser-
vices based on context, preferences and demands, and monitor
services and the system’s energy state. If required, it adapts
service parameters to ensure execution of critical tasks. In
order to make intelligent decisions, the Control Unit employs
information obtained from sub-components such as the Energy
Manager, the Schedule Manager and the Service Identificator.
Service requests and responses and communication with the
Service Provider, as well as among the subcomponents them-
selves is handled by a dedicated Controller.

The Energy Manager analyzes the energy status of the
whole system, calculates energy consumption of individual
tasks and tries to predict future energy levels. These results can
be combined with information about charging opportunities in
vicinity or in near future, to reserve energy for future tasks or
to preserve execution of critical tasks by performance adaption
for the longest time possible.

The Service Identificator selects the most appropriate ser-
vice for any given service requests from the whole set of avail-
able services — as provided by the Service Provider — based
on service parameters and quality of service characteristics.
In general, service selection algorithms are geared towards a
specific subset of services, since service parameters vary for
different kinds of services.

In order to monitor active and upcoming services, the
Schedule Manager keeps track of currently running and future
tasks, as well as respectively associated information.

2) Service Provider: The Service Provider is a passive
component which does not contain any logic or executive
power. Its core task is the integration and administration of
service modules, as well as the provision of all requested
services, the registration of needed callbacks and the caching
of sensor data. To achieve that, the Registry Manager scans
the folders containing all installed modules and corresponding
manifest files in order to identify added or removed modules
for installation or removal. Afterwards, the current system
state is saved in the Registry Cache, which provides these
information for module identification matters to the Control
Unit. As soon as a module was identified and released for
usage by the Control Unit, the Service Provider creates a new
service object and integrates the identified module in order
to use its unique functionalities. The service is accessible via
specific interface methods (see Chapter IV-C). Furthermore, in
order to avoid redundant acquisition of raw data, the Service
Provider caches sensor data and provides it if needed.

B. Modular service concept

A core feature of EMMA is its modular service concept.
A service is defined as any functionality, that a user or
an application might request, e.g., data transfer, acquisition
of sensors data or media playback. In order to maximize
the efficiency of providing these services, EMMA uses a
highly modular concept. To this end, for each functionality a
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Figure 1. General overview of the EMMA concept and its compo-
nents.

service class is defined. Each service class might use different
technologies to provide a requested service, e.g.,. depending on
the demanded service quality and the available system energy,
The internal logics of these different technologies are wrapped
completely transparent in a service module. The number of
possible service modules per service class is unlimited. Later
on, after the best suited module for a specific use case was
identified, it is integrated into the service object at runtime.
Apart from the growing diversity of available technologies,
this simple plug-and-play integration is another advantage of
the modular concept. It enables optimized logic and improved
concepts being installed without a complete system update (see
Chapter V).

C. Communication interfaces

The EMMA concept defines a fixed set of internal and
external interfaces used for communication. Internal interfaces
are used for routing information and services, e.g., to realize a
working connection between a service object and its integrated
service module (see Section V). In contrast, external interfaces
are responsible for processing service requests and responding
to them. Therefore, data bundles are used to maintain the com-
munication between EMMA and any applications requesting a
service. These bundles contain the ID of the requested service
class, as well as information about the requester’s priority,
the expected service runtime and parameters concerning the
requested QoS.

The structure of the corresponding response bundles is
similar. If a request is answered positively, the reply contains
the requested service, as well as information about its actual
instantiation, as the returned service may either be a callback
function the requester can use, a dedicated service object or
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simply the requested data. The information about its actual
instantiation facilitate correct data unmarshalling.

D. Identification of suitable services

In order to be able to choose the most appropriate service
module, EMMA executes an individual identification algorithm
for each service class. This is necessary to ensure that the
performance of the chosen module matches both, the energy
deallocated by the system and the demands of the service
requester. The reason for having separate selection algorithms
for each class is the different numbers and kinds of parameters,
which are necessary to describe a service’s energy consump-
tion and QoS-characteristics.

The simplest case of describing a module’s characteris-
tics is by only two different performance parameters, which
form a Performance Set. One parameter always represents
the module’s energy consumption, the other one describes a
corresponding QoS-specific feature. Each module can possess
any number of performance sets describing varying pairs of
consumption and service quality related to different modes of
operation. In this two dimensional space a target area can be
identified between the point-of-origin and the intersection of
the values of deallocated energy and requested service quality.
In the following, the identification algorithm iterates across all
existing modules of the requested service class and checks if
any set of their performance parameters is located within the
target area. If only one module can be found, this module will
be selected. If several modules match the given thresholds, the
one with the least energy consumption is selected. Otherwise,
if no module can be found, the target area is extended and the
same procedure is started again.

The complexity of the individual identification algorithms
depends on the number of features necessary for describing a
module’s performance. According to the current concept state,
the mere provision of a service is regarded more important than
the meeting of given performance parameters or the approved
energy consumption. In case that no comparable module is
offering the same service at a lower energy consumption, even
a module with a much higher consumption than approved can
be provided in order to meet the user’s demands.

E. Continuous monitoring

In order to adapt the system’s performance and to keep crit-
ical services running as long as possible, EMMA continuously
monitors the system’s energy state. Therefore, not only the
current energy consumption but also the predicted consumption
for future tasks, which can be determined by analyzing the
active and upcoming tasks schedules, combined with predic-
tion techniques (see II-D), is included. Additionally, relevant
context information is considered, e.g., loading stations near a
user’s position.

After determining the system’s current energetic state and
the prediction of the amount of energy needed for upcoming
tasks, the system’s performance can be adapted in two direc-
tions: Given that either more energy than expected is available
and the systems performance has been throttled before or
a request demands a higher service quality than currently
granted, the performance of a service can be increased. In
contrast, if there is less energy available than expected or a
new high-priority service is started, the performance of active
services can be throttled in order to have more power available.

To adapt the performance of a service module, it can
be modified within its possible spectrum. If there are more
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adaptions needed than a specific module can perform, it can
be replaced by another of the same service class with different
performance parameters. The adaption of service performance
commonly results in a change of service quality.

V. IMPLEMENTATION

In order to assess the feasibility of our approach, we
developed a prototype application of EMMA with the aid of
the Google Android API (target version 18). In its current
form, however, the prototype was not yet integrated as an
exclusive service manager into the operating system. Instead,
due to access and rights restrictions of the Android SDK it has
been implemented as part of the application layer. Our goal
in this first version was to evaluate the technical feasibility
of EMMA'’s core concepts without analyzing any possible
increase in energetic efficiency in detail yet.

In order to cope with EMMA’s claim for modularity, the
logic of service modules is capsuled in dex.-archive files,
whose content is described both machine- and human-readable
in corresponding XML manifest documents. The latter contain
all information about a module’s performance, nature and
energy consumption, and can hence be used to dynamically
identify any modules matching a service request. Our prototype
is able to respond to incoming requests for either a continuous
or a one-time positioning service by selecting the most appro-
priate service module, taking into account the current energy
state of the device, as well as context information and currently
active, as well as scheduled services.
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Figure 2. Screens of the EMMA prototype application.

To achieve this, at first the device’s current energy con-
sumption is determined. In order to keep the implementation
overhead for the energy measurements low, energy consump-
tion is approximated by a simple model based on test results
obtained from a HTC Desire using the PowerTutor application
[7]. By combining these information with knowledge about ac-
tive and scheduled services as well es their estimated runtime,
it is now possible to calculate the energy remaining for new
services. In order to identify a suitable service module, the
requested QoS parameter contained in a request bundle and
the amount of remaining energy are considered for building
a target area (see IV-D). After identification, the chosen
module is integrated into a singleton service object. The logic
contained in the module archive is loaded dynamically into the
program code by using the Android-specific reflection-based
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DexFile [25] and DexClassLoader-classes [26]. According to
the current concept, the identified module is not restricted
in its energy consumption once it was installed, but it can
be replaced by a more economical one if its consumption is
extensive.

In order to be able to use the module’s functionalities after
its integration, a standard LocationListener-callback provided
by the Android SDK is installed in the service object, serialized
and returned to the service requester. The latter is now able
to listen for positioning updates after rebuilding the callback
from the serialized version.

VI. CONCLUSION AND FUTURE WORK

By introducing EMMA, we provide a holistic, modular
concept for individual and context sensitive energy manage-
ment which meets the requirements stated in Section III. The
modular concept renders the usage of partial optimization
concepts and their energetic savings potential, as well as
making their integration a trivial task.

EMMA in its current state is to be considered a basic
architecture framework. Lots of details need an initial clarifica-
tion or further composition, e.g., the specification of different
service classes and service modules. Furthermore, a capable
security concept must be provided due to the possibility of
including foreign code dynamically into the system at runtime.
This is necessary in order to avoid the execution of malware
and to avoid abuse.

In a following expert’s discussion consisting of 8 parti-
cipants with IT background, we found that the procedure of
integrating modules and the conventions for developing them,
as well as the interface descriptions for requesting services
need to become more facilitated. Furthermore, a pending step
is a second implementation of the EMMA concept with the
goal to evaluate its actual energy savings potential. Especially,
the integration of the architecture as part of the operation
system proves to be a challenge, since current platforms
like iOS or Android do not allow this without significant
interventions in their system’s core.
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