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Abstract—Quantifying the intestinal surface area of epithelia is
crucial to assess changes in protein expression during disease. A
convenient alternative to microscopic evaluation of serial sections
is capacitance measurement by impedance spectroscopy. While
the underlying theoretical relations are well-known, in practice
data scatter considerably decreases precision of estimations.
Estimations are even less precise if obtained impedance spectra
cannot be approximated by a semicircle. Here, we demonstrate
that using machine learning techniques together with detailed
modeling of cell layers allows reliable predictions of epithe-
lial capacitance. Our results show that estimates for modeled
impedance spectra can be obtained with less than 20 percent
relative deviation from the target value. In particular, this is
shown for spectra that deviate from a semicircular shape.

Keywords–Physiology, Epithelia, Impedance Spectroscopy, Arti-
ficial Neural Networks, Clustering.

I. Introduction
The intestinal epithelium is the inner-most cell layer lining

the gut wall and forms the primary barrier between the gut
contents and the body. To maintain a tight barrier against toxins
and pathogens, neighbouring epithelial cells are connected
by tight junctions, arrays of transmembrane proteins that
seal the space between two neighbouring cells. Acute (e.g.,
norovirus infection, giardiasis) and chronic intestinal diseases
(e.g., Crohns disease, celiac disease) cause a restructuring of
the gut mucosa due to loss of damaged surface cells and
compensatory cell division within the crypts. Depending on the
different rates, mucosal area may be enlarged [1] or reduced
[2][3]. When investigating molecular processes underlying
these diseases, an exact knowledge of changes in mucosal area
is indispensable.

Commonly, mucosal area is determined morphometrically,
i.e., by microscopic evaluation of serial sections, a process that
is both tedious and time consuming. A much more elegant way
is to determine the epithelial capacitance as a surrogate marker
for the epithelial surface area. Capacitative properties of a cell
are due to the lipid bilayer of the cell membrane. Capacitance
of the unit cell membrane is in the order of 1 µF/cm2 [4] and
considered to be widely constant. In epithelial cells, the tight
junction divides the plasma membrane into two compartments
and as a consequence the total epithelial capacitance (Cepi) is
composed of two capacitances in series. This subdivision is
asymmetrical, as the tight junction is located close the apical
side facing the outer environment. Intestinal epithelial cells are

columnar (height � diameter), therefore the apical membrane
area is considerably smaller than the opposing basolateral
membrane and Cepi is, as a first approximation, proportional
to the apical membrane area.

A fast, convenient and noninvasive method to determine
electrical properties of tissues is impedance spectroscopy. By
measuring current-voltage relationships under alternate current
(AC) at frequencies between 1 Hz and 100 kHz, typically 40
to 50 complex impedance values Z are obtained [5]. These
spectra are often displayed in so-called Nyquist diagrams
(Figure 1a), where the real part < of each impedance value is
plotted against its imaginary part =. To explain properties of
the measured samples, it is common to derive an equivalent
electric circuit. To describe epithelial cell layers, circuits of
different degrees of complexity are used [6]. The simplest
circuit that incorporates Cepi is a resistor-capacitor (RC) circuit
(Figure 1b). To reflect physiological polarity of epithelial cells
explicitly, two RC subcircuits in series and a resistor in parallel
are used (Figure 1c). Electric behavior of the subepithelium
may be considered by a further resistor in series.

In previous work, we have demonstrated that conventional
analysis of impedance spectra like visual extrapolation of plots
can lead to non-neglectable errors in parameter estimations.
At the same time, we have shown that the precision in esti-
mating epithelial and subepithelial resistance can be improved
substantially for the epithelial cell lines HT-29/B6 and IPEC-
J2 by using machine learning techniques [7][8]. Rationale
behind this approach is that for a given electric circuit, the
theoretical impedance at a given frequency can be calculated
if the values of all circuit components are known. As exact
target values are known for such synthetic data, too, this data
can be used to train artificial neural networks or other machine
learning techniques. In order to draw conclusions for data from
laboratory measurements, however, optimal modeling of such
training data according to the respective cell line and cell
conditions is required.

Here, we adapt this approach to efficiently predict Cepi from
an impedance spectrum. The tasks to be carried out include
cell line modeling, feature selection, training and evaluation
of the predictions. As model cell line, we investigate Madin-
Darby canine kidney cells type I (MDCK-I). These cells have
been studied since the 1960s [9] and are typically described
as possessing a high transepithelial resistance [10].
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Figure 1. (a) Overlay of a semi- and a nonsemicircular Nyquist plot where real (<) and imaginary (=) part of each complex-valued
impedance Z are plotted against each other. The displayed impedance spectra reflect AC application at n=42 frequencies between 1.3 and
16,000 Hz on an epithelial cell layer with capacitance 1/C = 1/Ca + 1/Cb. (b) A simple resistor-capacitor (RC) circuit that can be used as

equivalent circuit. This circuit yields semicircular impedance spectra. (c) Equivalent electric circuit discriminating between apical and
basolateral properties of an epithelial cell layer. This circuit can yield semicircular or nonsemicircular impedance spectra.

II. Methods
A. Modeling Impedance Spectra

To model realistic impedance spectra for a given cell
line, three prerequisites are required: a) a matching equivalent
electric circuit, b) appropriate ranges for the parameters of
the circuit, and c) an error model that reflects the data scatter
intrinsic to the electrophysiological measurement set-up.

The equivalent circuit considered here (Figure 1c) consists
of two RC subcircuits a (Ra, Ca) and b (Rb, Cb) located in
series and a resistor in parallel (Rp). Using Kirchhoff’s laws,
the impedance Z of an electric circuit at an angular frequency
ω can be derived from the impedances of its components:

Z(ω) =
Rp(Ra + Rb) + iω[Rp(Raτb + Rbτa)]

Ra + Rb + Rp(1 − ω2τaτb) + iω[Rp(τa + τb) + Raτb + Rbτa]
(1)

where i =
√
−1, and τa = RaCa and τb = RbCb.

In practice, however, the electrophysiological set-up used
for measurements induces data scatter and thus systematic de-
viation from the theoretical impedance value. In order to mimic
realistic data, such systematic deviations can be modeled as
function of the transepithelial resistance RT [7] and added to
Z(ω). For simplicity, such data scatter was not considered here.

Using n = 42 frequencies (1.3 to 16,350 Hz), n tupels
of real and imaginary parts ((<(ω0),=(ω0)), . . . , (<(ωn−1),
=(ωn−1))), are obtained from measurements or calculations,
respectively. Alternatively, complex impedance values can be
transformed into polar coordinates, i.e., into phase angle φ and
magnitude r (((φ(ω0), r(ω0)), . . . , (φ(ωn−1), r(ωn−1)))).

Real and imaginary parts of a spectrum can be regarded as
separate feature sets S< and S =:

S< = {<(ω0), . . . ,<(ωn−1)} (2)

S = = {=(ω0), . . . ,=(ωn−1)} (3)

Analogously for phase angles and magnitudes:

S φ = {φ(ω0), ..., φ(ωn−1)} (4)

S r = {r(ω0), ..., r(ωn−1)} (5)

B. Sampling the MDCK-I Cell Line
For MDCK-I cells published values for the transepithelial

resistance RT range from 1500 to 14000 Ωcm2 [11]. For
the parameters Rp, Ra, Rb, Ca and Cb to the best of our
knowledge published estimates exist neither for physiological
conditions nor for drug applications. Therefore these parameter
ranges were initially estimated from laboratory experiences
and evaluated and optimized analogously to [7]. As two
distinct cell conditions, physiological conditions (“Control”)
and conditions after the application of EGTA (“EGTA”) were
modeled. A table of the final parameters can be found in the
appendix.

Estimating Cepi for semi-circular spectra is often consid-
ered a simple task with little error potential. At the same
time, reliable estimation of Cepi for spectra deviating from this
shape is thought to be considerably more difficult. Reassessing
this assumption, we considered both cases individually and
separated spectra reflecting control and EGTA conditions ac-
cordingly. As separation criterion, we assumed that spectra
possessing greatly asymmetrical time constants express a non-
semicircular shape. To this end, we defined the τ ratio of the
used electric circuit (Figure 1c) as the larger time constant
divided by the smaller time constant, and a nonsemicircular
shape was assumed for data with a τ ratio greater than five.
This parameter can not only be calculated directly for modeled
impedance spectra, but also be predicted with good precision
for measured spectra [12].

C. Reference Methods to Determine Epithelial Capacity
Analogously to our previous work [7], we used two

different conventional approaches as reference methods for
estimating the parameter Cepi. Additionally, we employed a
theoretical relation of the underlying circuit.

1) Nearest Data Point (Method M1): Assuming that a
semicircular shape results from a single RC circuit (Figure 1b),
Cepi = 1/(ωcR) holds true. ωc is the characteristic frequency,
at which the spectrum reaches its minimal turning point. The
frequency related the minimum of S = was used to approximate
ωc and the maximum value of S< to approximate R = Repi.
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2) Frequency-blind Circle Fit (Method M2): Analogously
to M1, Cepi was calculated from the substitute parameters ωc
and Repi. A Cole-Cole fit [13] was carried out on a Nyquist
diagram, i.e., a circle was fitted as described by Kasa [14].
The frequency of the data point nearest to the circle center
was used to approximate ωc; the intercept with the x-axis at
the low frequency end was taken as Repi.

3) High-Frequency Limit Approximation (Method M3):
Given the electric circuit in Figure 1b or 1c, respectively, the
theoretical high-frequency limit for the imaginary part of the
impedance is the reciprocal of the overall capacitance [15]:

− lim
ω→∞

ω=(ω) =
1
C

(6)

Of all 42 impedances obtained here, the data point with the
highest frequency was Z42 = <(ω42)− i=(ω42). Thus, we used
the value given by −1/(ω42=(ω42)) to approximate Cepi.

D. Machine Learning Approach
The given reference methods represent two distinct es-

timation approaches: solving either a primarily geometric
fitting problem (M2) or an idealized physics formula with
error-prone data (M3). Therefore, we investigated these two
representations of the same problem by two individual machine
learning approaches. Also, we considered semicircular and
nonsemicircular spectra as separate problem domains. For each
representation and domain, we assessed the prediction quality
of the respective problem representation by decision trees
(using R and the package rpart), artificial neural networks
with backpropagation (using the FORWISS Artificial Neural
Network Toolbox [16]) and random forests (using R and the
package randomForest [17]).

1) Training data: For the semicircular, as well as for the
nonsemicircular domain, a sample of 30,000 random spectra
was selected each. Data for each domain was split into a
training dataset of 20,000 spectra (circa 66 percent) and a test
dataset of 10,000 spectra (circa 33 percent), respectively.

As geometric data representations, either cartesian (⊥) or
polar (∠) coordinates were used where

S ⊥ =
{
<0, ...,<n−1,=0, ...,=n−1

}
(7)

S ∠ = {r0, ..., rn−1, φ0, ..., φn−1} (8)

As representation related to the high-frequency limit of the
imaginary part, we transformed the spectra into the preciprocal
products of frequencies and imaginary parts (cf. (6)):

S ω= =

{
−

1
ω0=(ω0)

, ...,−
1

ωn−1=(ωn−1)

}
(9)

Note that while polar and cartesian representations possessed
a total of 2 · n features, S ω= possesses only n features.

2) Algorithm settings: Given a multivariate regression task,
decision trees were created using analysis of variance (“anova”
method). As ANNs, multilayer perceptrons (MLP) with one
hidden layer were used. Depending on the number of input
features, a 2n-20-1 or n-10-1 architecture was used where
hidden units employed sigmoid and input and output units
linear activation functions; as learning algorithm Quickprop
[18] was used. For random forests, 50 trees were used and
variable importance was assessed by 25 consecutive runs of

the Boruta algorithm (using the R package Boruta which
searches all relevant variables by iterative removal of features
that are statistically less relevant than random probes [19]).
For evaluation, only test data was used. As exact target values
were known, predictions were evaluated by relative deviation
from the target, i.e., in percent.

3) Clustering: Using the best performing data representa-
tion, the sample was clustered by k-means where k = {1, .., 10};
semicircular und nonsemicircular spectra were clustered sepa-
rately. For each clustering, individual clusters were evaluated
by decision trees. The best clustering for semi- and nonsemi-
circular data was determined by the least predictive cluster of
each clustering and re-evaluated with ANNs.

III. Results
A. Evaluation of Reference Methods

Estimations of Cepi for nonsemicircular spectra showed in
general greater deviations from the target value than those
for semicircular spectra. For semicircular spectra, M2 showed
least maximum deviations, while M3 showed least interquartile
distance (Figure 2). For nonsemicircular spectra, M3 showed
both least maximum deviations and least interquartile distance
(Figure 3). Numerically, the maximum deviations of M3 was
90% for semicircular and 222% for nonsemicircular spectra.

M1 M2 M3

-1
00

-8
0

-6
0

-4
0

-2
0

0
20

%

Figure 2. Relative deviation from the target value using reference
methods M1, M2 and M3 for semicircular test data (n=30,000).
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Figure 3. Relative deviation from the target using reference methods
M1, M2 and M3 value for nonsemicircular test data (n=30,000).
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B. Predictions of Cepi

Application of decision trees yielded maximum relative
deviations from the target between 42 and 80 percent for
semicircular and between 80 and 229 percent for nonsemicir-
cular spectra. Application of ANNs yielded maximum relative
deviations between 23 and 40 for semicircular and between
37 and 167 percent for nonsemicircular spectra. Application of
random forests yielded constantly maximum relative deviations
larger than the largest maximum relative deviation observed for
decision trees; these results are therefore omitted here.

TABLE I. Relative deviation of predictions from the target value Cepi for

semicircular spectra (in percent).

cartesian polar high-frequency limit
tree ANN tree ANN tree ANN

Minimum -15.4 -39.1 -14.7 -40.3 -15.1 -23.5
1. Quartile -4.6 -1.0 -4.1 -0.8 -4.2 -0.2
Median 0.1 0.1 0.4 0.1 0.3 -0.1
Mean 0.5 0.0 0.6 0.0 0.7 -0.1
3. Quartile 4.4 1.0 4.3 0.8 4.4 0.1
Maximum 80.7 29.9 42.1 30.7 80.6 11.4

TABLE II. Relative deviation of predictions from the target value Cepi for

nonsemicircular spectra (in percent).

cartesian polar high-frequency limit
tree ANN tree ANN tree ANN

Minimum -22.5 -68.6 -20.0 -70.5 -22.2 -37.3
1. Quartile -5.3 -1.7 -4.1 -1.6 -5.4 -0.1
Median 0.1 -0.2 0.1 -0.2 0.0 0.0
Mean 1.2 -0.1 0.6 -0.1 1.4 0.0
3. Quartile 4.8 1.7 4.4 1.4 5.0 - 0.2
Maximum 229.4 28.1 80.8 36.6 167.1 21.6

C. Variable Importance

Assessing the three data representations S ⊥, S ∠ and S ω=

using the Boruta algorithm, neither for the semicircular nor
for nonsemicircular domain a relevant number of features was
removed. For the high-frequency limit representation S ω= of
the semicircular domain, e.g., only one feature was removed
while 41 features were kept as relevant. Consequently, these
findings were not used for explicit feature selection.

In all three data representations, however, analysis of
variable importance showed that features reflecting the highest
five frequencies yielded higher variable importance than the
remaining features. This was observed for the semicircular, as
well as for the nonsemicircular domain and was exploited in
the next step of the analysis.

D. Cluster evaluation

K-means clustering was applied either to the full (84 or
42 features, respectively) or partial data representation (five
features). When evaluating with decision trees, most cluster-
ings did not yield less maximum deviations from the target
value Cepi than seen in previous evaluations (Table I and II).
An exception was the S ω= representation clustered by the five
features related to the five highest frequencies. For a number
of five clusters, the highest maximum deviation observed for
all clusters was 30.1 percent for semicircular spectra (Figure
4) and 58.8 percent for nonsemicircular spectra (Figure 5).
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Figure 4. Cluster analysis for semicircular test data split into a
variable number of clusters by k-means.
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Figure 5. Cluster analysis for nonsemicircular test data split into a
variable number of clusters by k-means.

E. Cluster-based estimations
Employing the findings from the cluster analysis, we split

the S ω= representation of the sample data into five clusters
(cf. section III.D). For each cluster, an individual ANN was
trained (analogously to section II.D). Relative deviations of
the predictions did not exceed ±15.9 percent for any cluster
of semicircular spectra (Table III), and did not exceed ±18.1
percent for nonsemicircular spectra (Table IV).

TABLE III. Relative deviation of predictions from Cepi for clustered

semicircular spectra (in percent).

Cluster 1 2 3 4 5
Minimum -5.1 -15.9 -16.4 -3.3 -2.7
1. Quartile -0.1 -0.1 -0.2 -0.1 -0.2
Median 0.0 0.0 0.0 0.0 0.0
Mean 0.0 0.0 0.0 0.0 0.0
3. Quartile 0.1 0.1 0.2 0.1 0.2
Maximum 8.9 6.3 6.2 8.3 2.3
ncluster 7413 4526 7659 5240 5162

TABLE IV. Relative deviation of predictions from Cepi for clustered

nonsemicircular spectra (in percent).

Cluster 1 2 3 4 5
Minimum -9.3 -18.1 -7.4 -8.2 -11.3
1. Quartile -0.1 -0.1 -0.2 -0.2 -0.1
Median 0.0 0.0 0.0 0.0 0.0
Mean 0.0 0.0 0.0 0.0 0.0
3. Quartile 0.1 0.2 0.2 0.2 0.1
Maximum 9.6 15.0 7.9 10.8 5.3
ncluster 7191 7190 2969 6518 6132
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Figure 6. Relative deviations of estimated from true values for Cepi using reference methods M2 (grey � ) and M3 (black N) and a
cluster-based ANN approch (red •) are plotted against the respective true target value; method M1 is omitted as estimations are considerably
less precise than those by M2 and M3 (cf. Figures 2 and 3). Values shown refer to (a) semicircular and (b) nonsemicircular spectra obtained
either under physiological conditions (control) or after application of EGTA; to discriminate semi- from nonsemicircular spectra the relation

between apical and basolateral time constants was used, i.e., a value greater than five was taken as indicator of nonsemicircular shape.

IV. Discussion
A. Evaluation of Reference Methods

As expected, the naive reference methods M1 and M2
failed to provide precise estimations for Cepi on nonsemi-
circular spectra. Interestingly, however, estimations can also
exhibit large relative deviations of more than 50 percent from
the target value when applied to semicircular spectra. And
while method M3 is also a rather rough estimation method
with up to 80 percent relative deviation in the same task, less
than 5 percent for quartiles of relative deviations indicate a
remarkable specificity compared to M1 and M2. This becomes
even more obvious with differences in prediction quality for the
nonsemicircular spectra. In both domains, however, maximum
relative deviations of M3 are by far too great to allow reliable
predictions.

B. Comparison of Problem Representations
In the first step of this study, we compared learning from

geometric data representations S ⊥ and S ∠ to learning from
the physical data representation S ω=. ANNs yielded better
predictions than decision trees in both representations, as well
as in both problem domains. In the semicircular, as well as in
the nonsemicircular domain, median and average relative de-
viations of all three representations did not exceed one percent
of the target value (in one case: 1.2 percent). On the maximum
relative deviation, however, ANNs using S ω= performed better
than ANNs using S ⊥ and S ∠. Usefulness of this representation
is not surprising considering that estimations with reference
method M3 already exhibited little inter-quartile distance. It is
likely that this excellent performance is due to the immediate
physical relation between the features of S ω= and Cepi.

C. Clustering
In the second step of this study, we aimed to optimize

ANN predictions based on the physical representation S ω=.

As optimization criterion, we considered the predictiveness of
the least predictive cluster, respectively; this was measured by
decision trees and the relative deviation of predicted values
form the target value. At the same time, the number of
spectra per cluster was intended to be as large as possible;
naturally, the number of spectra decreases with increase of
the number of clusters. As can be seen in Figures 4 and 5,
both goals are achieved by choosing k-means clustering with
k = 5; in particular, this holds true for both semicircular and
nonsemicircular spectra.

D. Cluster-based Estimations
While clustering analysis was carried out with decision

trees, the optimal clustering (k = 5) was evaluated by ANNs
afterwards to further improve predictions. As in the first step,
evaluations were performed for semicircular and nonsemicir-
cular spectra separately. ANN estimations yielded maximum
relative deviations of less than 20 percent within all clusters.
Moreover, in all cases median and average relative deviations
were 0 percent and inter-quartile distance less than 0.5 percent
points. Compared to ANN predictions on unclustered data
(Tab. I and II), this is a notable improvement. Even more
remarkable is the improvement compared to the two best
performing reference methods M2 and M3 (Figure 6).

V. Conclusions
Impedance spectroscopy is a convenient method to deter-

mine the capacitance of an epithelial tissue. In practice, how-
ever, this clinically important parameter can only be roughly
approximated from impedance data, as common estimation
methods fail to provide reliable estimations. Here, we have
shown that our approach of modeling cell properties and apply-
ing machine learning techniques is a fruitful approach for this
task. For impedance spectra modeled after the epithelial cell
line MDCK-I, we developed a cluster-based neural network
approach that shows a maximum relative deviation from the
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theoretical target of less than 20 percent. In future work, we
will apply this approch to other epithelial cell lines, as well as
native tissue and further optimize estimations.

Appendix
Impedance spectra for the cell line MDCK-I were cal-

culated for two distinct cell states. Physiological conditions
(control) and conditions after application of EGTA (EGTA)
were modeled separately according to (1) using the parameter
ranges in Table I. Note that for the given electric circuit
Rt = Ra + Rb and Cepi = Ca·Cb

Ca+Cb
.

The parameter interval for Repi was 10 to 2,000 Ωcm2

and 10 to 200 Ωcm2 for control and EGTA, respectively; all
other intervals were chosen dynamically to yield ten values
per range. By this, a total of 1,865,823 and 1,684,784 spectra
were produced for control and EGTA, respectively.

TABLE V. Parameter ranges for aMDCK-I-equivalent circuit.

Repi Rp Rt Cepi Ca Cb
[Ωcm2] [µF/cm2]

Control 10–2000 10–10000 10–5000 0.5–5.0 1–5 1–75
EGTA 10–200 10–250 10–5000 0.5–5.0 1–5 1–75

From all of these spectra, 137,162 possessed a τ quotient
less than five (∼ semicircular) and 3,413,445 possessed a
τ quotient larger than five (∼ nonsemicircular). From these,
a sample of 45,000 semicircular and a sample of 45,000
nonsemicircular spectra were randomly selected and analyzed.

To confirm correctness of our model, congruency with
impedance measurements from laboratory experiments on
MDCK-I cells was evaluated graphically as previously de-
scribed [7]. During these experiments, Rpara had been manip-
ulated by the application of EGTA; 56 spectra were recorded
before EGTA application, 49 after application. As reference
data 25,000 modeled spectra from each condition were used.
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