
On the Performance Evaluation and Analysis of the Hybridised Bittorrent Protocol
with Partial Mobility Characteristics

George C. Violaris1, Constandinos X. Mavromoustakis2

Computer Science Department, University of Nicosia
46 Makedonitissas Avenue, 1700 Nicosia, Cyprus

1violaris.g@student.unic.ac.cy
2mavromoustakis.c@unic.ac.cy

Abstract— Engaging mobility with file sharing is considered very
promising in today’s run Anywhere, Anytime, Anything (3As)
environments. The Bittorrent file sharing protocol can be rarely
combined with the mobility scenario framework since resources
are not available due to the dynamically changing topology
network. As a result, mobility in P2P-oriented file sharing
platforms, degrades the end-to-end efficiency and the system’s
performance. This work proposes a new hybridized model, which
takes into account the mobility characteristics of the combined
Bittorrent protocol in a centralized manner enabling partial
mobility characteristics, where the clients of the network use a
distinct technique to differentiate between mobile and static
nodes. Many parameters were taken into consideration like the
round trip delays, the diffusion process, and the seeding
techniques, targeting the maximization of the average
throughput in the clustered swarms containing mobile peers.
Partial mobility characteristics are set in a peer-tracker and
peer-peer communication enhancement schema with partial
mobility, allowing an optimistic approach to attain high
availability and throughput response as simulation results show.

Keywords- Hybrid Bittorrent protocol; P2P mobility; seeding
strategies; performance evaluation.

I. INTRODUCTION
In recent years, the Bittorrent protocol has become an

increasingly successful method for delivering end-to-end data,
with reliability and efficiency. The tit-for-tat techniques [1],
which are built in the protocol require peers to seed back the
content they have received. Much research has been inspired
in order to improve Bittorrent’s performance [2][3][10] and
[12]. Different scenarios and algorithms have been
implemented and thoroughly tested [2][6][7][8][9], seeking
ways to maximize the end-to-end performance using P2P
techniques and approaches.

As in other P2P file-sharing schemes, performance
depends mainly on the robustness of each node. Robustness
depends on the temporal characteristics as well as on the
spatial characteristics like whether the nodes are dynamically
moving, etc. However there are certain features that need to be
taken into consideration in order to enable higher performance
onto a node-to-node sharing scenario. These, do not only rely
on the behaviour of the connection between nodes, but on the
techniques used to ensure quality of service through the
protocol itself. In its current state, the protocol relies on the
following ways, described by [2], to maintain the connectivity
issue as follows:

• Network size: The number of peers in a Bittorrent
network is important to determine metrics such as the
request arrival rate, peer departure rate and the
upload/download ratio in the bandwidth of each peer.

• Efficient distribution: Peers exchange pieces of a file, by
a method called swarming [3]. In order to maintain
efficiency, it is important to devise ways so peers do not
get the same or very popular pieces. This is the reason
the rarest-first policy [1], exists in the Bittorrent
protocol; to maximise the potential of efficient
distribution among peers.

• Leech avoidance: When a peer downloads without
retaliation of the content they receive, the peer is called a
leech. When there is a high ratio of these free-riding
clients, the results are catastrophic for other peers.
Therefore, mechanisms have been built to prevent this
from happening (one such example is the tit-for-tat
algorithm, giving means to ensure fair transfers of data).

Enabling these devices with mobility characteristics and
utilizing them with the Bittorrent protocol, many restrictions
arise. Peers are prone to failures and aggravate the end-to-end
performance, whereas short connections times or sudden
disconnections (with chained unpredictable disconnections
due to range and battery failures) reduce the overall resource
availability of the MP2P system. Moreover mobile peers are
subject to limited bandwidths, both in the download and
upload activities. Additionally, the protocol specifications
make use of the tit-for-tat policy [1], which essentially means
equivalent retaliation of pieces amongst peers. Since mobile
peers do not contribute dramatically to other peers due to their
limitation in bandwidth, other peers will perceive them as
leechers, and therefore they will avoid providing content to
them.

The present work, proposes a new hybrid policy for the
Bittorrent protocol using P2P strategies enabling nodes with
partial mobility characteristics, where the clients of a network
use a distinctive technique to differentiate between mobile and
statically located nodes. The model has been devised in order
to enable the seeding peers that will split the uploading
portion of their bandwidths towards a higher number of
mobile peers, in order to enable enhanced network mobility.
The scheme therefore can be hosted in larger scale Bittorrent
clusters. The block-to-block and round trip delays are taken
into consideration, enabling peer selection and seeding
strategies to take place, targeting the maximisation of the

70

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

average throughput in clusters containing mobile peers. The
proposed scheme utilizes systems resources and comprises of
a new model for disseminating information in a P2P system.
The proposed scheme, hosts these partial mobility
characteristics in a peer-to-tracker and peer-to-peer
communication enhancement scheme, allowing an optimized
approach to be applied for high resource availability in P2P
networks with partial mobility characteristics.

The rest of our paper is organised as follows: Section 2
reviews previous work done on the Bittorrent protocol and
similar static and non-static P2P methodologies. Section 3
provides information about the potential of mobility in
Bittorrent, analysing the current problems mobile P2P
transactions face and proceeds to explain the proposed
hybridised model for dynamically changing topology systems,
allowing mobility to peers. Section 4 discusses the simulation
results and presents a performance analysis of the hybridised
model, providing also discussion on seeding techniques and
peer selection strategies. Finally, Section 5 concludes with a
summary of the findings from the simulation study and
discusses the future research directions the current research
will take.

II. RELATED WORK
Bittorrent performance is not only dependant to the

protocol's peer selection algorithms and the tit-for-tat
techniques. Certain simulation experimental studies show that
along with optimised algorithms for content distribution, some
minor alternations in the protocol's policies could significantly
improve long term performance. Since the tit-for-tat policy of
Bittorrent only takes place for a single file transfer at a
specific moment in time [5], the sharing of old content is not
rewarded and/or credited. Therefore incentives that elongate a
content's lifetime are needed as files of high resource demands
may become unavailable.

An analytical study in [2] has shown through a fluid model
of the Bittorrent protocol that the average download time does
not depend on the node arrival rate. Also, the study shows that
there is a high chance that a peer will hold a specific block
which other peers may be in need of. This concept allows for
mobile clients to be ‘optimistic’ on having content delivered
to them; however, some limitations which apply in the
Bittorrent architecture do not enable these kinds of peers to
use the full potential of their bandwidths.

It can be observed that Bittorrent uses a fixed default
number, u = 5 reported in [4][6], of upload connections at any
given time. The study reveals two significant problems.
Firstly, the availability of full blocks to the network is delayed
or postponed due to the high number of concurrent uploads
occurring. Due to this, latency is significantly increased.
Secondly, the seeding peer may be uploading to the
downloading peer faster than the latter can receive blocks.
This happens as the peer's bandwidth is congested on the
downloading side, thus increasing the number of lost packets,
leading to high redundancy in the network and unneeded
repetition.

The simulation in [7] shows how Bittorrent works in
general, while giving emphasis in super-seeding. Furthermore,
the study shows how simulations can produce statistics for
large scale experimentation that would otherwise be difficult
to obtain. In relation to simulation studies, previous works [8],
present interesting results concerning the use of MP2P
architectures by using epidemic dissemination of data,
resulting in high ratio of successful delivery. By using the
storage backup nodes, the potential is to lower the packet
delivery failure ratio and data corruption.

III. MOBILE BITTORRENT PROTOCOL
The Bittorrent protocol is a peer-to-peer file sharing

protocol. The protocol is more efficient for the transfer of
large amounts of data (usually in the hundreds of megabytes),
rather than smaller ones. It differs from other P2P techniques,
as pieces of a file are divided between peers who enter a
network and then exchanged in order to complete a file
transfer. This allows peers with low bandwidth to participate
in large data transfers.

1 2 ...

1 2 ... n

Chunks

Segments

1 2 ... n

Blocks

n

n

Figure 1: Blocks are the small pieces of data, made up of a few bytes, which
are requested by peers. A serialization and reassembly of the blocks received
constitutes a piece of the file.

Figure 1 shows the partitioning of a file, cut down compatibly
in smaller sections, to be made ready for transfer from one
peer to another. This process, known as swarming [1], allows
peers in the same network to exchange these pieces en masse.
The peers use different techniques to make sure they do not
receive pieces they already have. If redundancy will occur, the
network's latency will be dramatically increased, while
throughput would drop.

The Bittorrent approach enables P2P systems to share
efficiently any requested resources. However in a mobility-
based framework, many different restrictions come to degrade
the end-to-end availability. The clustered swarming technique
allows mobile peers to exchange data more reliably than other
P2P schemes [5], such as Kazaa, Gnutella and DC (Direct
Connect) [15]. Though, due to the limited bandwidth
capabilities which are encountered in wireless devices, the
utilization of the Bittorrent protocol often becomes
problematic.

A. Current Problems in the existing static framework
Problems of the protocol include increased latency while

transferring small files, bandwidth problems, content
unavailability, and leeching. One of the major inefficiencies of
the protocol arises from a disproportionate distribution of
content among peers, discussed in [9]. This kind of

71

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

distribution allows peers to get different pieces from each
other, which optimizes the download/upload rates between
seeders and peers, but it also holds the potential of breaking a
swarm, since the piece holders may not exist in the network at
all times. This is not as common with large swarms; however
strategies are needed to promote smaller network sizes for
improved delay and maximization of throughput.

When a client first enters a swarm, they need to prove to
their neighbors and other peers, as per-the-protocol's
specification, that they are trustworthy enough in order to
share information with. In order to achieve this, a small trial
period of some minutes may pass, in which peers treat new
peers with a bias, passing smaller amounts of data to them
until they can prove that they will seed back what they’ve
been given [1][3]. After this process takes place, peers start
receiving much larger amounts of data. It is understandable
therefore, that for smaller files it would not be worth sharing
them through Bittorrent.

The transferring of data via the Bittorrent protocol puts a
heavy load on the peers' bandwidth, observed by [10]. Since
peers use a metadata file to locate pieces they need to
download, the actual exchange of data is peer-to-peer and
therefore a server is not involved. Thus, the bandwidth load
occurs always on the client side and this is the main reason
that service providers are opposing the use of the protocol.

There are often cases where a file is not as popular as
others. When this is the case for extended periods of time,
peers may not see the need to continue sharing this specific
file, and therefore the seeding swarm dies out as per the
lifetime scenarios of [3]. Content unavailability is a concept
which is difficult to find easy solutions to. Even if an archive
is unpopular, its value is many times unquestionable and
therefore the archive needs to remain in circulation, especially
if it is of scientific importance as many foundations may use
P2P protocols such as Bittorrent to share these types of data.
The essence behind this lays in the fact that even though peers
still have the files stored on their storage media, they stop
having them available to share in order to save bandwidth.
However, even though valuable bandwidth is saved, peers
entering a swarm to share an unavailable file will never be
able to complete the transfer and the swarm will remain
incomplete indefinitely or eventually die out.

One of the purposes of our algorithm aims in eliminating
the above phenomenon through the implementation of partial
mobility characteristics. This will allow wireless devices to
evolve in a swarm through a higher download ratio even
though their uploading bandwidths are not as high.B.

Hybridised Model with Partial Mobility Characteristics
using the Mobile Bittorrent Protocol
The proposed model takes into consideration the

difficulties which mobile clients, e.g., wireless devices, face
while transferring files from other peers, most often static
ones, through a Bittorrent network. Whilst the protocol offers
an efficient way to share and distribute content, it has heavy
requirements on bandwidth towards the client side. Content
distributors benefit from peers using the protocol as they do

not need to spend on acquiring large bandwidths and servers
to distribute their content; rather only peers spend their
bandwidth and CPU power to distribute the content. This is
one of the reasons which internet service providers are often
congested due to Bittorrent traffic. Users may not realize this,
as the protocol makes it rather easy to share; however when it
comes down to several network metrics, it is easily observable
that content distributors benefit more than clients. In order to
lay the grounds for a more efficient experience for the users,
many of the problems described should be faced by devising
the appropriate functionalities while not violating or altering
the Bittorrent protocol.

Our algorithm also presents a way to control the latency
between mobile and static peers. If mobile clients request data
from other peers, the peers have the option of opening more
connections, therefore serving more mobile peers at once. The
reason of performing this, is because mobile peers have
smaller bandwidths and limited connectivity, hence another
peer may split their uploading activities between other mobile
peers into greater than the default amount of connections
allowed. A static peer is a non-moving peer or a normal peer
itself; however it has larger bandwidth capabilities and
therefore can provide more simultaneous connections, given
that it transfers to mobile peers. This helps decongest not only
the arrival requests from mobile clients, but also the network
itself. As previously discussed, a Bittorrent seeder may upload
to five connections at the same time. By implementing our
strategy, peers with high latency issues will drop connections
with specific peers in order to allow the faster seeders
continue the transfer.

The reason the model is called hybridised, is because when
peers with partial mobility characteristics are present in the
swarm, the protocol’s policies and tracker decisions remain
unchanged. Therefore, both static and mobile peers
communicate with the tracker on a similar level; however, the
tracker makes different kinds of decisions based on what type
of peers the requests are coming from. For instance, the
tracker decides how many uploading connections a seeder
may open, by manipulating metainfo about the downloader’s
bandwidth limitations, instead of maintaining a default
number of connections that it can open. The tit-for-tat policy
is still implemented as our model does not violate any of the
Bittorrent protocol aspects. When a mobile client makes a
request for bits, the tracker acknowledges the request by
mapping more connections with available seeders. If the
downloading section of the mobile peer’s bandwidth is
congested, the peer will ask the tracker to map fewer
connections towards it. By using this technique, a client can
ensure that their connection limitations are being used
appropriately. In Figure 2 it can be seen that seeders are
allowed to share towards more mobile peers than static peers,
whilst their uploading bandwidth is split equally between
static and mobile peers.

72

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

Figure 2: A showcase of the proposed model, presenting the distinction
between mobile and static peers.

Bandwidth limitations still apply; therefore non-mobile
clients with low bandwidth may not participate in seeding
towards mobile peers. On the other hand, to ensure P2P
fairness, mobile peers with a high bandwidth ratio may not be
regarded as mobile per se.

Our model may be summarized in an algorithmic fashion
for better understanding of the implementation, as shown in
Figure 3.

Get swarmSize(N Peers);
Get_announce(peer, peer_type);
//tracker keeps track of peer_type in tables
Set_peer(peer, index);
//tracker indexes peer
Find_unchoked_peer();
Block_request(sourceIndex, destIndex)
 if destIndex.mobile == true
 {
 ConnectionSize.mobile = sourceIndex.uploadSize /
destIndex.Size;
 while (count != ConnectionSize)
 {
 new Connection(sourceIndex, destIndex, block);
 count++; //increase counter to check if max
connection size based on bandwidth restrictions has been reached
 }
 }
 else
 {
 ConnectionSize = default; //default = 5.
 while (count != ConnectionSize)
 {
 new Connection(sourceIndex, destIndex, block);
 count++; //increase counter to check if max allowed
connection size has been reached
 }
 }
Send_blocks(Connection);

Figure 3: Pseudocode of the proposed hybridisation model with partial
mobility characteristics.

IV. SIMULATION RESULTS AND PERFORMANCE ANALYSIS
The proposed model's algorithm works without altering the

Bittorrent protocol itself, but rather by implementing it on the
client side and taking into consideration the dynamic changes
in topologies. The use of seeders are proposed, who will have

the ability to split their bandwidth capabilities and seed more
mobile nodes at once, i.e., when there is a high latency from
peer to peer transfer or when mobile peers are not getting a
fair share of the content. This way, the overall latency of the
transfers will be dropped significantly, thus lifting the
bandwidth burden off the clients and allowing the content
distributors give benefit to their users, both mobile and not.

A simulation was set up, running both a Bittorrent swarm
with seeders who serve normally and a swarm in which
seeders could serve more mobile peers simultaneously. The
implementation-simulation of the proposed scenario was
performed in Java programming language libraries as in [8].
We assume a system consisting of several mobile nodes, e.g.,
mobile users equipped with notebooks or PDAs and wireless
network interfaces and that all devices are following a human-
based activity (movements of nodes according to real-time
pathways such as roads, streets, corridors, etc). Radio
coverage is small compared to the area covered by all nodes,
so that most nodes cannot contact each other directly.
Additionally, we assume IEEE 802.11x as the underlying
radio technology.

Figure 4: The simulation of the proposed model as viewed with graphical
modes in order to enable visual representation of the Bittorrent resource
sharing connectivity.

The simulation, presented in a visual format as seen in
Figure 4, to further enable us to understand the techniques in
which peers use the protocol to share data, derived metrics
such as average latency, and throughput, since these are the
targets of our model. Also, in conjunction to these, the
running time for completing swarms of ratio 10 peers to 1
seeder was measured. In the simulation of the swarm with
mobility characteristics, one seed was serving both mobile and
non-mobile nodes, while a second was serving only non-
mobile peers.

A. Experimental Results
As Figure 5 depicts, by comparing both the latency and

runs of a normal Bittorrent swarm and a swarm which enables
partial mobility characteristics, there is a difference in the
latency response. In both cases the swarm contained the same
number of peers, and the same number of seeders.

73

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

Figure 5: Comparing latency without partial mobility and latency with the
running simulation time.

In the proposed algorithm, it is easily recognizable that the
average latency from block-to-block has been decreased, due
to the seeder being able to fill in the blanks, allowing more
simultaneous mobility.

When referring to latency, we speak of block to block
latency and not the initial lag which a peer experiences when
connecting to a swarm. The reason for this is to minimize the
transfer delays and therefore help the overall running time of
the download. Equation 1 evaluates the delays from block to
block.

Τδ = Κ(tx) – Κ(t0) (1)

where Τδ is the change in time from block to block, Κ(tx) the
time a block has been released, and Κ(t0) the time a new block
starts travelling towards destination.

Figure 6: Throughput versus time for both partial mobility characteristics and
no partial mobility characteristics in swarm clusters.

Whilst the throughput from peer to peer seems to peak in a
normal swarm, this is only momentarily. As observed by the
results extracted in Figure 6, the throughput of a swarm with
partial mobility has a higher average through time, especially
since partial mobility allows for a shorter running time in a
network with both mobile and static peers. Formula in
equation 2 shows how the throughput is represented.

Cavg = S / Tδ (2)
where Cavg is the average throughput, and S represents the
number of blocks which have successfully reached their
destination at any given point in time.

Figure 7: The number of gradual successful blocks through time for each
simulation run.

At 50s, a swarm which has the ability of allowing seeders to
upload to multiple mobile clients, may deliver 10% more
blocks than a swarm without mobile characteristics.

While our model is not expected to behave satisfactorily
on small scale swarms, it seems to be effective for large scale
transfers, minimizing the network's overall latency while
increasing throughput from peer to peer.

Figure 8: SDR with the number of requests occurring in Bittorrent resource
sharing connectivity.

Figure 9: Outlining the maximum percentage of mobile peers which can be
served based on the number of available seeders in a swarm.

Figure 10: The upload capacity in kilobytes is given as a function of the
completed requests. The upload capacity of a network with partial mobility
characteristics is significantly higher per request than one with no mobility.

Additionally, not just content distributors would use this
method, but any client could make use of the model. Of
course, as in the Bittorrent protocol, some limitations still
apply. The peers are still expected to keep uploading once
they have acquired the entire file in order for the proposed
method to work. Nevertheless, this will make it easier for
peers to stay connected, since their bandwidth will only be
used when other peers experience traffic problems.

B. Optimisation Techniques

1) Peer Selection
Even though some of the existing policies, such as random

piece first and rarest piece first, are working on sufficient
levels, the selection strategies for a swarm containing mobile

74

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

peers cannot be maintained by simply these two techniques.
The choking algorithm is a peer selection strategy which
prefers clients with the highest upload rates [11], and this
could work greatly towards the advantage of mobile peers in a
swarm which uses our model, as naturally the non-mobile
nodes hold the highest upload rates.

When peers finish downloading a file, thus becoming
seeders, considering first that they have the available
bandwidth, they can open more connections than the default,
which is 5; however their uploading bandwidths will be split
over those connections. This is done to allow mobile peers to
enjoy downloading resources. Seeders could take turns in
seeding towards mobile peers. On a similar note, if a peer has
the uploading bandwidth to serve multiple nodes fast and
efficiently, then they would be beneficial to the swarm,
minimizing the latencies from block to block transfers. This
follows well with the observed upload rate (OUR) in [12],
which gives priority to peers which can upload data to other
peers in a fast and reliable way.

Unlike the LiveSwarm protocol found in [13], our model
does not need the seeder to push data to other peers. As we
have observed from our experiments, Bittorrent’s standard
method of peers requesting data works more robustly than
pushing for a few reasons. The first reason is that clients who
are already choked or even who want to appear choked are not
given the possibility of doing so. Secondly, as discussed in
previous sections, the proposed model attempts to prevent
seeders from uploading faster than mobile peers can
download. Thirdly, the Bittorrent protocol does not need to be
modified in order for our algorithm to work, as our model
changes only the information the tracker and peers exchange.

2) Seeding Strategies
As in [14], optimistic unchokes would not be needed if

nodes were able to calculate the upload bandwidth for the
peers servicing it. In our model, since all peers communicate
continuously with the tracker which constantly updates the
metainfo it receives, a node could receive such bandwidth
statistics from the tracker, thus eliminating the need for
optimistic unchoking between peer and static seeder, and
performing the unchoking algorithm only for non-static peers.

3) Efficient Distribution of Data
Concerning the notion of distributing data efficiently,

suggestions show the importance of delay-sensitive responses
to peer requests. Through the use of such defensive measures
taken by seeding peers, the broadcasting of data may be
efficiently redistributed by nodes which can make use of
multicast technologies. Decisions should be made based on
querying the neighbouring peers in a Bittorrent swarm, and
through the collection of these feedbacks in order to create the
appropriate responses.

V. CONCLUSION AND FUTURE WORK
In this work, a new model concerning the involvement of

P2P strategies with partial mobility characteristics was

proposed, where clients in a network adopt techniques to seed
more efficiently to mobile nodes. The round trip delays were
considered and strategies for peer selection and seeding
policies were suggested. We have entailed the potential of
partial mobility characteristics in a peer-tracker and peer-peer
communication schema, which allows an optimized approach
in attaining high resource availability and lower packet failure
ratios in mobile transfers through the use of Bittorrent.

Future research directions include the implementation of
the seeding strategies and peer selection techniques.
Moreover, the combination of other mobility schemas with
our model gives the potential to create a truly mobile
Bittorrent implementation.

REFERENCES
[1] B. Cohen. Incentives build robustness in BitTorrent. In First Workshop

on Economics of Peer-to-Peer Systems, pages 251–260, Berkeley, CA,
May 2003.

[2] D. Qiu and R. Srikant, Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks, Portland, Oregon, USA:
SIGCOMM, 2004.

[3] P. Michiardi, K. Ramachandran, and B. Sikdar, Modeling and Analysis
of Seed Scheduling Strategies in a BitTorrent Network.

[4] A. R. Bharambe, H. Cormac, and V. N. Padmanabhan, Understanding
and Deconstructing BitTorrent Performance, Microsoft Research,
Tech. Rep., 2005.

[5] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips, Parallel and
Distributed Systems Report Series: A Measurement Study of the
BitTorrent Peer-to-Peer File-Sharing System, Parallel and Distributed
Systems Section. Netherlands: Delft University of Technology, 2004.

[6] A.R. Bharambe, C. Herley, and V.N. Padmanabhan. Analyzing and
improving BitTorrent performance. Technical Report MSR-TR-2005-
03, Microsoft Research, Redmond, WA, February 2005.

[7] K. Katsaros, V. P. Kemerlis, C. Stais and G. Xylomenos, A BitTorrent
Module for the OMNeT++ Simulator. IEEE MASCOTS 2009, PP.
361–370

[8] C. Mavromoustakis and H. Karatza, Under storage constraints of
epidemic backup node selection using HyMIS architecture for data
replication in mobile peer to peer networks, Journal of Systems and
Software, Elsevier Volume 81, Issue 1, January 2008, Pages 100-112.

[9] P. Michiardi, K. Ramachandran, and B. Sikdar, Modeling seed
scheduling strategies in BitTorrent, in Networking 2007, 6th IFIP
international conference on Networking, May 14 -18, 2007, Atlanta,
USA — Also published as LNCS Volume 4479, May 2007.

[10] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding
BiTorrent: An Experimental Perspective.” Technical Report, INRIA,
Sophia Antipolis, November 2005.

[11] Vivek Rai , Swaminathan Sivasubramanian , Sandjai Bhulai , Pawel
Garbacki, and Maarten van Steen, A Multiphased Approach for
Modeling and Analysis of the BitTorrent Protocol, Proceedings of the
27th International Conference on Distributed Computing Systems,
p.10, June 25-27, 2007.

[12] G. Wu and T. Chiueh, “How efficient is BitTorrent?” Proc. of 2006
SPIE Multimedia Computing and Networking Conference (MMCN
2006), San Jose, 2002. CA, 2006.

[13] M. Piatek, C. Dixon, A. Krishnamurthy, and T. Anderson. Liveswarms:
Adapting bittorrent for end host multicast. Technical Report UW-CSE-
06-11-01, 2006.

[14] A.R. Bharambe, C. Herley, and V.N. Padmanabhan, Some observations
on bitTorrent performance, Proceedings of the 2005 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, June 06-10, 2005, Banff, Alberta, Canada.

[15] DC++, a Direct Connect client. Retrieved from:
http://dcplusplus.sourceforge.net/. (last accessed 14 June 2010)

75

AP2PS 2010 : The Second International Conference on Advances in P2P Systems

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-102-1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

