
Framework for Modelling Multiple Input Complex Aggregations for Interactive
Installations

Nicolas Padfield
Roskilde University / illutron

HUMTEK, Building 8.1
Universitetsvej 1

Roskilde Denmark
nicolasp@ruc.dk

Troels Andreasen
Roskilde University
CBIT, Building 43.2

Universitetsvej 1
Roskilde Denmark

troels@ruc.dk

Abstract—We describe a generalized framework as a method
and design tool for creating interactive installations with a
demand for exploratory meaning creation, not limited to the
design stage, but extending into the stage where the installation
meets participants and audience. The proposed solution is based
on fuzzy logic and provides a method for variably balancing
interaction and user input with the intention of the artist or
director. An experimental design is presented, demonstrating an
intuitive interface for parametric modelling of a complex aggre-
gation function. The aggregation function unifies hierarchical,
importance-weighted and ordered-weighted fuzzy averaging to
provide complex combinations of user input.

Index Terms—interactive installations; fuzzy logic; aggregation;
parametric modelling; intuitive interface

I. INTRODUCTION

My bedroom floor is completely open to a creative process.
One can place the socks in any pattern one wishes – but
is it art? Or is it just a mess? The Mona Lisa is widely
acknowledged as being art. But is the Mona Lisa interactive?
Only if you do as vandals did in 1956 (twice), 1974 and 2009
and throw acid, paint or tea mugs at her. Somewhere, between
these two endpoints – my bedroom floor and Leonardo da Vin-
cis famous masterpiece – lies the realm of interactive art. An
interactive installation is by definition a combination of design
choices taken apriori by the artist and input data generated
by the audience, users or participants. Usually, the amount
of control afforded the participants is predefined. There is a
rigid framework, both physical reality and in software, which
defines how and to what degree the participants can affect the
work of art. But, what if the division between the power of the
artist and the power of the participants was not set in stone,
but was itself a variable that can be tweaked in real time, can
be experimented with and optimised for a particular setting or
particular participants?

In this paper, we describe a generalised software framework
which allows an artist or designer to tweak the weighting of
each individual input and of groups of inputs. We postulate
that this provides three advantages over, e.g., programming
the system in a traditional way: it enables non-programmer
artists and designers to create complex installations, it enables
complexity, and enables real time adjustment of the installation
itself. By a complex system, we mean a system where it is
not easy to predict the exact output even given knowledge of

the input and state of the system. While many of the issues
described are applicable to a wide range of interactive systems,
we will in the following primarily focus on the particular case
of an art installation as an example.

Ideally, we wish our installations to attract participants and
be easy to start interacting with – at the same time as providing
depth and complexity warranting extended exploration. A good
explanation of threshold and ceiling and the desirability and
difficulty of achieving both low threshold and high ceiling
at once can be found in [13] “Threshold and Ceiling: The
‘threshold’ is how difficult it is to learn how to use the system,
and the ‘ceiling’ is how much can be done using the system.
The most successful current systems seem to be either low
threshold and low ceiling, or high threshold and high ceiling.
However, it remains an important challenge to find ways to
achieve the very desirable outcome of systems with both a
low threshold and a high ceiling at the same time.” [13]

We posit that enabling complexity makes it more likely that
participants will engage with the system for a longer time
span, wanting to explore the possibilities, as the output is not
obviously tightly coupled to the input, and the output may be
diverse even given similar input.

The approach to model interactive installations described
here aims at providing flexibility for the user/artist and builds
on several cases of practical experience with developing instal-
lations, among which are [1], [2]. The ideas evolve from earlier
concepts such as physically interactive environments [3], [4],
immersive virtual environments [5], and “tangible interfaces”
[6], originating in Krugers seminal ideas dating back to the
1980s on computer-controlled interactive spaces [7]. Numer-
ous examples appear in the literature of the development of
interactive environments for the general purpose of communi-
cation, in areas such as advertising, entertainment, story-telling
and dissemination of cultural assets; see for example [8], [9],
[4]. One of the main motivations for such developments seems
to be that physically interactive environments are perceived
to offer the user a greater sense of presence and immersion,
allowing the user to engage more actively with the content of
the communication.

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

A. Why intelligent systems

Nowadays, most audience-interactive art installations are
controlled by computers. Thus, behind the scenes, there is
always some program or engine which determines the be-
haviour of the system. Such a system can be relatively simple,
with output coupled relatively directly to input or it can be
very complex, with output being dependent on multiple factors
including current input, past input, predefined data, meta data
(data about the data), and even machine learned data derived
from the interaction history itself.

Installations of low complexity can be driven by conven-
tional deterministic procedural programs. But, as complexity
increases, these dedicated programs quickly become compli-
cated and have the disadvantages of lacking generalisability
and not handling uncertainty very well. Installations that
choose elements from a large set of data based on myriad user
input variables, of which some may be uncertain or conflicting
are good candidates for an engine based on some form of
artificial intelligence (AI).

B. Artificial intelligence

While generalised intelligence (strong AI) [10] is still a long
term goal for the AI community, applicable AI consists of
more specialised systems that are good at a particular task.
Artificial intelligence is used for data mining, process control,
logistics, diagnosis and in many other areas. The AI field has
developed highly successful methodologies for dealing with
incomplete or uncertain information, including Bayesian logic
[11] enabling probabilistic reasoning in adaptive conditional
probability networks, and Artificial neural networks, which
are inspired by structural and functional characteristics of
biological neural networks, interconnected neurons process
information using a connectionist approach.

C. Fuzzy logic

Fuzzy logic is many-valued logic that generalizes con-
ventional Boolean logic, and enables approximate reasoning
[14]. Fuzzy truth values range between the extremes 0 to 1
corresponding to “completely true” and “completely false” and
Fuzzy sets elements have a degree of membership, described
by a membership function, in the range [0, 1], as opposed
to crisp sets where membership is bivalent. Fuzzy logic is
useful handling a multitude of sensor inputs, often analogue,
sometimes pointing in conflicting directions. The usefulness
of fuzzy logic derives from the fact that many problems in the
real world, especially ones involving human reasoning, are
approximate in nature.

One hundred people drumming is not bivalently either
completely in time or out of time or fast or slow. As Lotfi
Asker Zadeh wrote in his seminal work Fuzzy sets [15]:
“More often than not, the classes of objects encountered in the
real physical world do not have precisely defined criteria of
membership” It is no coincidence that one of fuzzy logics main
applications is within industrial process control, that bears
more than a passing resemblance to interactive installation
process control.

II. INTRODUCING A GENERALIZED FUZZY LOGIC ART
SUPPORT FRAMEWORK

In the following, we describe a generalized fuzzy logic
framework that facilitates rapid building and experimenting
with interactive art, making it feasible to easily create high
complexity interactive installations. A system which provides
flexible arbitration, balance between interaction and art. Our
aim is to enable non technically inclined artists to model
complex behavior based on multiple input. Our approach is
to apply highly flexible fuzzy aggregation, more specifically
hierarchical, importance weighted, ordered weighted aggrega-
tion [18], [19], and to provide an “intuitive” user interface that
is easy to grasp without fully understanding the mathematical
functions behind it.

Interactive art is a balance, of both the artists’ wishes and
the participants’ actions. Pre-digitally, the artist could control
what the participant could do. The artist might have decided
that there is a welded steel frame (which it is difficult for
the participant to alter), and an inviting brass handle (which is
inviting and easy to turn). In the digital age, the artist can also
decide and adjust to what degree the participant may decide.
The participant may turn the handle, but at this moment that
weighs in at only 0.3, while the artists’ wishes weigh in at 0.7.
Artificial intelligence based on fuzzy logic is a prime candidate
for our use because it supports
• Adaptability – suitable for reaching decisions from a

number of heterogeneous, possibly conflicting inputs.
• Narrativity – suitable for supporting narrativity, e.g., for

searching a large database and selecting which media
element to become next in a sequence (comprising a
story). This is because attributes of elements will often
be humanistic and lend themselves to fuzzy quantifica-
tion better than to binary quantification or procedural
programming; and because presuming a finite number of
available elements to choose between and multiple, some-
times conflicting inputs, fuzzy is suitable for choosing the
best available element.

• Live data – suitable for taking live sensor data and
reaching a decision. One can define a parameterized fuzzy
linguistic concept such as “rhythmicality”.

• Flexibility in mixing live and predefined data. As fuzzy
aggregation can handle both live and predefined data with
equal ease, it is possible to use the same aggregations to
combine both live and predefined data.

• Realtime adjustment – it is relatively straightforward to
tune weighting parameters in real time, giving us ease
of experimentation or adjusting the interaction to suit the
participants.

A. Raising the interactivity to another level

An installation programmed in a procedural fashion usually
lacks the ability to adjust the interaction control in real time.
We would like to let the system run as designed and handle
all interaction, while at the same time being able to adjust
interaction parameter weightings to experiment and achieve

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

the best interaction scenario for the particular participants and
venue. This is a sort of second order version of the Wizard of
Oz technique (John F. Kelley, more directly applicably [16]).
Ideally not only weights but the very degree of complexity
and degree of interactivity should be adjustable parameters.
It can be difficult to design perfectly and gauge the audience
ahead of time. While the physical characteristics of a work
are usually difficult to alter, with suitable algorithms and
separation of data and control structures it becomes feasible
to adjust the software response in real time. The degree of
interactiveness can be a parameter in itself. There are the
following possibilities
• 1st. order: the participants input influences the output
• 2nd. order: the participants input alters the installation

itself (the machine tunes weighting factors, etc.; machine
learning)

• the artists tune weighting factors
• the artists adjust major system parameters such as degree

of complexity

III. FUZZY SETS, FUZZY LOGIC, SET OPERATIONS

Say we want to quantify the enthusiasm of drummers. It is
a matter of opinion whether 90 beats per minute is “fast” or
“very fast” and it would be counter-intuitive to define 89 bpm
as being vastly different from 90 bpm. What is needed here
is a smooth transition, from what a human observer would
call “fast” to what she would call “very fast”. This can be
described more accurately by fuzzy set theory.

Should we wish to determine whether the drumming at a
given time or place is fast, we could define “fastness”. We
define a fuzzy set “fast” as a subset of the set of possible values
for drumming speed as specified by speed(x) for an object (a
drummer) x by the following set membership function:

fast(x) =


0 speed(x) < 80
speed(x)−80

50 80 ≤ speed(x) ≤ 130
1 speed(x) ≥ 130

In reality, membership functions are rarely this simple, and
are not always based on a single dimension. It might for
example be more intuitive and closer to the intention to define
enthusiasm(x), based on both speed(x) and amplitude(x). We
show a linear function for simplicity, a sigmoid function might
be more suitable for many applications.

In general, a fuzzy set membership function mA : X →
[0, 1] (X being the universe of discourse) has the following
properties:

mA(x)

 = 0 if x /∈ A
∈]0, 1[if x is partially in A
= 1 if x ∈ A

where A is a fuzzy set (for example, elements that meet a
particular criteria) and x is a variable x ∈ X (for example
media elements).

Generally, the intersection of fuzzy sets A and B (visualised
in Figure 1) is defined by:

mA∩B = min(mA,mB)

while the union is:

mA∪B = max(mA,mB)

Fig. 1. Red dashed: about 125 AND high. Green dotted: About 125 OR
high

The expression mA(x) can be considered as the truth value
of the proposition “x is a member of A” and A can thus be
considered as a logic predicate. There is isomorphy between
fuzzy set theory and fuzzy logic and for given predicates A
and B conjunction A∧B and disjunction A∨B can be defined
correspondingly to intersection and union by:

mA∧B(x) = min (mA(x),mB(x))

mA∨B(x) = max (mA(x),mB(x))

A. Set operations and aggregation

An installation may have inputs that are more or less
important, that should be logically grouped, and there may be
a limited number of choices (e.g., video clips) where we are
interested in the best match given a number of different inputs,
which may point in different directions. These requirements
can be fulfilled with a layered, grouped approach with a
combination of three types of aggregation. We are seeking
means to combine inputs in flexible ways and are considering
fuzzy set operations for this purpose.

A fuzzy set operation is an operation on fuzzy sets. Fuzzy
set operations can be considered a generalization of crisp set
operations, many generalizations being possible. The “stan-
dard” fuzzy set operations, intersection (conjunction) and
union (disjunction), defined above immediately generalizes
from 2 to n-argument operations such that for instance n
cirteria can be combined by a conjunction:

mA1∨...∨An(x) = max i=1,...,n(mAi(x))

These operations are encompassed by more general classes
of operations. One important such class is the so called Or-
dered Weighted Aggregation (OWA). We define OWA below
and introduce to generalizations taking importance weighting
and hierarchical aggregation into account.

Ordered Weighted Averaging is a parameterisable class of
mean type aggregation operators first introduced in [18]. The
parameters are given as a set of so called order weights that

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

apply in the given order to the most, the second most, and so
on, fulfilled criteria. An OWA operator is a mapping F : Rn →
R that has a collection of order weights W = [w1, ..., wn] in
the range [0, 1] such that:

F (a1, ..., an) =

n∑
j=1

wjbj , where bj is the jth largest ai

with
n∑

i=1

wi = 1 and where ai is the degree to which the i’th

criteria is fulfilled.

OWA enables us to balance artistic intent with media ele-
ment (for example video clips) scarcity. While strong control
of artistic intent might seem to indicate specific control of
which criteria is most important is advantageous, in a real
world situation with a limited number of media elements, it
may mean the total fulfilledness of most criteria is low, because
one was weighted as high importance and no media element
was available that satisfied both the high importance parameter
and the other parameters. With OWA we achieve both a guar-
antee for all parameters being included and additionally, as we
know the sorted order of parameters, we can with weighting
factors easily adjust whether highly fulfilled parameters are
given most weight, less fulfilled parameters are given most
weight, or all parameters are given equal weight.

OWA can be parameterised between ∧ (pure conjunction)
and ∨ (pure disjunction). The max, arithmetic average, median
and min are members of this class. OWA has been widely used
in computational intelligence because of the ability to model
linguistic expressions.

While order weights relate to the best fulfilled order, Impor-
tance weighting, on the other hand, relates to specific criteria.
Each input, e.g., from a sensor, is multiplied with a weighting
factor, enabling us to define that, e.g., one input is twice as
important as another input.

Hierarchical aggregation is a generalized aggregation intro-
duced in its basic form in [19] that allows the combination of
different types of aggregations based on the OWA operator and
including importance weighting. Each node in the hierarchy
can be attached individual parameters for order and importance
weighting. The leaf nodes comprise a grouping of the input
and the aggregation at each node delivers input to the parent
node. Hierarchical aggregation thus allows us to group inputs,
aggregate them in a group and send the result up in a hierarchy
to a parent aggregation. This is especially useful when it makes
sense to group inputs as there are classes of input that are
fundamentally different in nature.

But, where does this leave the artist? There can be some-
thing very intuitive about an OWA rather than a logical
expression, but how to allow an ordinary user to visualise
the possibilities? Ideally we need a knob with complete user
control unfettered by artist wishes at one end and complete
artist control non-interactivity at the other end.

IV. COMBINING OUR AGGREGATION OPERATORS TO OFFER
FULL PARAMETRISATION

We are aiming for fully parametric aggregation, adjustable
by the artist by intuitive means. Especially, the order weights
are difficult to set due to the requirement that they have to
sum up to 1. However, we can define a simple function which
provides all n order weights based on a single number between
0 and 1 as follows. Having defined such a function, we can
introduce a slider in the interface for adjustment allowing an
artist to decide on a scale how fulfilled the different criteria
must be:

OR <—> AND

with the left extreme corresponding to “any requirements
fulfilled” and the right to “all requirements fulfilled”. This
is an alternative to requiring traditional logical expressions.

Given a function such as:

Q(y) = y(
1
p−1) , p ∈]0, 1]

we can introduce k weights from a single value for p:

wi = Q(i)−Q(i− 1) =

(
i

k

)(1
p−1)

−
(
i− 1

k

)(1
p−1)

with i ∈ {1, 2...k} and p ∈]0, 1] This is described further
in [17]. We want a function, that given one number, gives
us n weights out, and they must sum to 1. This method of
parametrising a function, calculating all n weights at once
using only one input is only useful with OWA. The method is
to take the difference between function values, given x values
of a multiple of 1/n where n is the number of parameters
and hence the number of weights required. The function must
be monotonically increasing in the interval [0,1] and the sum
of the weights must be 1. Any function that fulfils these
requirements could potentially be used.

w1 = Q

(
1

n

)
−Q

(
0

n

)
... wn = Q

(n
n

)
−Q

(
n− 1

n

)
In the concrete case illustrated in Figure 2, for n = 4 and

p = 0.3, the weights are

w1 = 0.039 w2 = 0.159 w3 = 0.313 w4 = 0.489

A. Importance weighted aggregation

Importance weighted aggregation involves giving each pa-
rameter a weight, often but not necessarily in the range [0,1].
In an interface, this can be achieved by having a control and
display of the importance weight for each parameter - for
example sliders or knobs. If all the weights are the same (e.g.,
1), the importance weighting is neutral and in effect turned
off.

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

Fig. 2. Finding n OWA weights which sum to 1, for n = 4.

B. Hierarchical

Hierarchical aggregation is a layered, grouped aggregation.
In our design it is used as a concrete way of combining
grouping, OWA and importance weighted aggregation. A
hierarchical aggregation is suitable for grouping. If there
are very different parameters (inputs), e.g., sound level and
geographical position, a hierarchical aggregation will give a
natural grouping. See Figure for an example.

Fig. 3. An example hierarchigal aggregation. Rectangles are aggregations,
ovals are inputs.

Here, each rectangle is an aggregation, in our generalised
system each is first an importance weighted, then a parametris-
able OWA.

C. Combining

It is quite possible to combine one or many different
forms of aggregation, either simultaneously or in nodes of a
hierarchy. It is not necessary to provide different aggregation

objects as the adjustable parameters provide the possibility to
“turn off” any unwanted feature, allowing us to keep it simple,
using only one type of aggregation object.

An importance weighted ordered weighted aggregation
could look like this: in are inputs, imp are importance weights,
then sorting by value, weight are the weighting factors we
obtained above. OWA is a method that enables using all
inputs instead of just one. This is done by adding all the
inputs, but as we want the result of the aggregation to be
in [0, 1], we first regulate the inputs by multiplying them
by weights. Which input is regulated by which weight is
decided by the value of the input, so we sort the inputs
before multiplying by the weights. For example, given 4 inputs
a1, a2, a3, a4, we sort them by size. The sorted input we
call b1, b2, b3, b4, and we then multiply b1 by weight1 so:
(b1×weight1), (b2×weight2), (b3×weight3), (b4×weight4)

In this design, the above combined OWA and importance
weighted aggregation is used as each node of a user-designable
hierarchy, providing a ordered weighted importance weighted
hierarchical aggregation. This gives the full freedom to weight
parameters (e.g., inputs) by importance, to linearly choose
from a range from AND to OR for the OWA aggregation,
and to group the parameters in any number of groups and
steps. The final output is from the topmost aggregation, the
node with no parent.

This fully parameterised design allows the artist to play
the system at the meta level (i.e., not altering the inputs,
which come from the participants, but more subtly adjusting,
in real time, how the inputs are processed. This feature can
be augmented by implementing standards based real time
adjustment of sliders, etc., enabling use of a physical control
surface, e.g., a MIDI (Musical Instrument Digital Interface, a
de facto industry standard for sound and interactive installation
control) controller.

D. Machine learning

While the initial goal of this work is to enable the
artist/director to easily adjust and experiment with the ag-
gregations of a fuzzy logic based artificial intelligence, the
logical next step is to implement adaptive fuzzy logic, machine
learning. Our design allows any number of aggregations,
sensors or outputs can be routed to any number of inputs,
and weights are all in the range [0,1] — all that is missing is
to allow an output to control a weight.

While actual implementation is for further work, an
overview of required aspects includes a paradigm for combin-
ing linguistic and numerical information; choice of learning
using, e.g., backpropagation, feedback loops, orthogonal least
squares or neighbourhood clustering; and possible inclusion
of artificial neural networks in a hybrid neurofuzzy system.
Adaptive fuzzy filtering will probably be advantageous given
the dynamic and nonlinear nature of many of our systems. All
these aspects are active research topics. Adaptive fuzzy logic
is often used for systems where it is advantageous to learn a
system’s characteristics and avoid hysteresis, e.g., maximum
power point trackers for solar panel arrays - supplanting, e.g.,

83Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

Fig. 4. Experimental interface design iteration 0.8.

PID (proportional-integral-derivative) controllers in diverse
applications [12].

V. SOLUTION: WHAT WE WANT FOR ARTISTS - INTERFACE
DESIGN RATIONALE AND EXPERIMENTS

The requirements for the system are that it:
• Must process the data in real time
• Make it easy to enter data for different projects - separa-

tion of data, meta data and control logic is required.
• Handle complexity so great the output is not recognisably

deterministic.
• Be second order adjustable in real time (i.e., allow

weightings etc. to be adjusted)
• Preferably have easy enough controls (e.g., a hardware

control surface) that it invites “playing” and “tweaking”
once configured.

• Preferably be understandable by a motivated artist
• Preferably be capable of adjusting itself if so wished
The objective is to design an interface for artists which

makes complex fuzzy operations reasonably intuitive. The
interface should enable a non computer scientist to design
a fuzzy AI system, and tune it in real time. What might
seem a daunting task is made easier by the fact that un-
derstandable metaphors are available for most steps of the
process. Grouping can be symbolised with boxes, hierarchy
with lines between these boxes, importance with sliders like
an audio mixer or knobs like volume. While a complete system
including databases, all kinds of input and output options and
machine learning is a major undertaking, the system initial

design and programming is progressing well and the interface
design has already been through several iterations.

The interface is designed thus: at the bottom are the inputs,
any number can be instantiated by pressing “[+] Add input”.
At the top of each aggregation is an output; if there is no
parent this is considered the final output. Any number of
boxes=groups=aggregation operations can be instantiated by
pressing the “[+] Add aggregation” button. Each box is an
object which contains an arbitrary number of inputs, including
a slider to define an importance weight for each input. An
input can be added by pressing the “[+] Add input” button. It
contains methods for an OWA aggregation, a slider for variably
parametrically adjusting this aggregation from AND to OR,
and one output.

The box is by its nature a grouping. It is often opportune to
be able to group inputs. For example, inputs which are in their
nature fundamentally different, e.g., microphone volume and
geographical position. Lines can be drawn between objects by
clicking on a symbolic output jack and then on a symbolic
input jack. A sensor can be routed to any number of inputs
and the output of an aggregation can be routed to any number
of inputs.

Each node in the hierarchy has its own individually con-
trollable OWA and importance weights, just as its place in the
hierarchy and what inputs it receives is user controllable. It
is possible to mix - a node can perfectly well take input both
from sensors and from an aggregation lower in the hierarchy.

Adjusting a slider from AND to OR may be intuitive for
some artists and not for others – an investigation of this

84Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

is for future work – but it is certainly more user friendly
than requiring a non technical user to a priori choose from
a predefined selection of aggregations, e.g., MAX; MIN;
AND; OR; AVG; MEDIAN. Tuning an importance weight is
easily understandable, it corresponds to turning the “value” or
“volume” of a sensor or input up and down. A hierarchical
aggregation is a natural way to support grouped input, and a
visual hierarchy is a natural way to visualise the hierarchy and
grouping.

A. Complete solution

The above implemented interface is useful for experiment-
ing with adjusting aggregation; in practical applications, a few
more object types are required. Time is a factor, this can be
dealt with in three ways: the system can be input driven,
request driven or clock/bang driven. Input driven means that
when any data arrives, the whole calculation is performed.
Request driven would be that another part of the system
requests an answer. This could be suitable for, e.g., a video
installation, where the system is aware that the present video
is nearing its end, and could ask for what video clip to show
next. Clock/bang driven would mean that there is a source
that propagates a command “do it now” to all relevant objects
“Bang” is a term (used in PureData and MaxMSP) for an
irregularly timed pulse, e.g., sent only on certain conditions.

The above still leaves us with the aggregations being
the result of a snapshot, a moment in time. It would be
advantageous to be able to aggregate over time, just as it
would be advantageous to be able to let earlier results affect
later aggregations - adding feedback and state to the system.
Both goals can be accomplished with a multifunctional FIFO
(first in first out) object. The FIFO object is a bucket chain,
each bucket storing a result. The user can determine the
number of buckets and therein the maximum delay. There
is an input at the beginning of the FIFO, an output at the
end, which provides the input, in order, but delayed by n
cycles. Additionally, there is an output from each stage or
bucket. It is optional to use these outputs, they are there to
enable the aggregation of inputs over time. By making a ten
stage FIFO and connecting the ten stage outputs to a ten input
OWA aggregation, it is easy to aggregate the last ten sensor
inputs over time. Using the FIFO, some “sensors” can be, e.g.,
metadata about the current media element and some can be
state.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated a design for a user friendly interface
enabling non technical users to define and adjust in realtime a
set of completely parameterizable complex aggregations. We
believe an intuitive interface for a hierarchical, importance
weighted, ordered weighted aggregation is an original idea.
While simple user friendly interfaces offering a flexible al-
ternative to logical expressions (e.g., AND, OR) consisting
of one slider in conjunction with a search field [17] have
been demonstrated, enabling a user to easily design a complex
aggregation and adjust it in real time is to our knowledge new.

We have sketched an experimental prototype of the generalized
fuzzy logic interface; field evaluation remains for future work.

REFERENCES

[1] T. Andreasen, H. Christiansen, J. P. Gallagher, C. Jacquemin, N. Møbius,
N. Padfield, S. Siggaard, D. L. Strand, and P. R. Sørensen Havhingstens
Tur til Irland: en interaktiv oplevelsesplatform. CBIT, Roskilde Univer-
sity, 2011.

[2] T. Andreasen, J. P. Gallagher, N. Møbius, and N. Padfield. The Experience
Cylinder, an immersive interactive platform: The Sea Stallion’s voyage: a
case study. In: R. Emonet, A. M. Florea, (ed). AMBIENT 2011, The First
International Conference on Ambient Computing, Applications, Services
and Technologies. ThinkMind, 2011 pp. 25-31.

[3] J. Montemayor, A. Druin, A. Farber, S. Simms, W. Churaman, and A.
D’Amour. Physical programming: designing tools for children to create
physical interactive environments. CHI. 2002.

[4] C. S. Pinhanez, J. W. Davis, S. S. Intille, M. P. Johnson, A. D. Wilson,
A. F. Bobick, and B. Blumberg Physically interactive story environments.
IBM Systems Journal 39, no. 3 & 4, 2000.

[5] M. Slater and S. Wilbur. A framework for immersive virtual environments
(FIVE): Speculations on the role of presence in virtual environments.
Presence 6, no. 6, 1997 pp. 603-616.

[6] J. M. Sales Dias Natural and tangible human-computer interfaces for aug-
mented environments. Proceedings of the 26th annual ACM international
conference on Design of communication, SIGDOC ’08. ACM, 2008, pp.
181-182.

[7] M. W. Krueger Environmental technology: Making the real world virtual.
Comm. ACM, 1993, pp. 36-37.

[8] M. Danks, M. Goodchild, K. Rodriguez-Echavarria, D. B. Arnold, and
R. Griffiths. Interactive storytelling and gaming environments for mu-
seums: The interactive storytelling exhibition project. Technologies for
E-Learning and Digital Entertainment, Second International Conference,
Edutainment 2007. Lecture Notes in Computer Science, 2007, pp. 104-
115.

[9] D. Grigorovici Persuasive effects of presence in immersive virtual environ-
ments. Being There: Concepts, effects and measurement of user presence
in synthetic environments. Ios Press, 2003.

[10] B. Goertzel and C. Pennachin, eds. Artificial General Intelligence,
Springer, 2006.

[11] A. Darwiche, Modeling and Reasoning with Bayesian Networks Leiden
: Cambridge Univ. Press, 2009.

[12] D. Misir, H. A. Malki, and G. Chen, Design and analysis of a
fuzzy proportional-integral-derivative controller, Fuzzy Sets and Systems.
Volume 79, Issue 3, 1996, pp. 297 - 314.

[13] B. Myers, S. E. Hudson, and R. Pausch, Past, Present, and Future
of User Interface Software Tools, Carnegie Mellon University, ACM
Transactions on Computer-Human Interaction (TOCHI) - Special issue on
human-computer interaction in the new millennium, Part 1 Volume 7 Issue
1, March 2000. Open access: http://dl.acm.org/citation.cfm?id=344959
[retrieved: 7, 2012]

[14] G. J. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and
applications. Upper Saddle River, NJ: Prentice Hall 1995.

[15] L. A. Zadeh, Fuzzy Sets, Information and control (8), pp. 338-353 http:
//www-bisc.cs.berkeley.edu/Zadeh-1965.pdf [retrieved: 7, 2012]

[16] B. Buxton, Sketching User Experiences: Getting the Design Right and
the Right Design, Interactive Technologies, Morgan Kaufmann 2007.

[17] T. Andreasen, Query Aggregation Reflecting Domain-knowledge, In-
telligent systems for information processing - from representation to
applications, Bernadette Bouchon-Meunier, Laurend Foulloy, Ronald R.
Yager (eds.) Elsevier 2003, pp. 107-116.

[18] R. R. Yager, On order weighted averaging aggregation operators in
multicriteria decision making, IEEE Transactions on Systems, Man and
Cybernetics, 18(1), 1988, pp. 183-190.

[19] R. R. Yager, A hierarchical document retrieval language Information
Retrieval 3, 2000, pp. 357-377.

85Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

http://dl.acm.org/citation.cfm?id=344959
http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf
http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf

	Introduction
	Why intelligent systems
	Artificial intelligence
	Fuzzy logic

	Introducing a generalized fuzzy logic art support framework
	Raising the interactivity to another level

	Fuzzy sets, fuzzy logic, set operations
	Set operations and aggregation

	Combining our aggregation operators to offer full parametrisation
	Importance weighted aggregation
	Hierarchical
	Combining
	Machine learning

	Solution: What we want for artists - Interface design rationale and experiments
	Complete solution

	Conclusion and future work
	References

