
Environment – Application – Adaptation:
a Community Architecture for Ambient Intelligence

Rémi Emonet
Idiap Research Institute
Martigny, Switzerland
remi.emonet@idiap.ch

Abstract—This article considers the software problems of
reuse, interoperability and evolution in the context of Ambient
Intelligence. A novel approach is introduced: the Environment,
Application, Adaptation (EAA) is streamlined for Ambient In-
telligence and is evolved from state of the art methods used
in software engineering and architecture. In the proposed
approach, applications are written by using some abstract
functionalities. All environment capabilities are exposed as
individual services. Bridging the gap between capabilities of the
environment and functionalities required by the applications is
done by an adaptation layer that can be dynamically enriched
and controlled by the end user. With an implementation and
some examples, the approach is shown to favor development
of reusable services and to enable unmodified applications to
use originally unknown services.

Keywords-Ambient Intelligence, Architecture, Environment,
Application, Adaptation, DCI, SOA, End-User Programming

I. INTRODUCTION

With modern devices and technologies, and with sufficient
engineering effort, it is relatively easy to implement smart
office and smart home applications. Such applications are
usually bound to the considered environment and hard to
adapt to a new environment. In the context of Ambient
Intelligence, such static application design fails because the
user is mobile and the environment evolves continuously.
Also, an Ambient Intelligence system is always running
and is open: new services (of possibly unknown types) are
introduced from time to time. The challenge of software
architecture for Ambient Intelligence is to provide a way of
maximizing reuse and limiting maintenance. For example,
applications should not require any modification or rede-
ployment to handle new service types. Our approach tackles
this problem and others.

In this article, we build upon relevant architectural ap-
proaches presented in Section II to introduce a new archi-
tecture in Section III. We also present, in Section IV, our
implementation together with some examples.

II. APPROACH FOUNDATIONS: SOA, DCI AND OTHERS

Our approach can be seen in continuity with previous
architectural concepts. In this section, we introduce the
architectural concepts that motivate our approach and we
provide discussions about other related work.

A. Service Oriented Architectures: SOA

Service Oriented Architectures (SOA) are used in many
different contexts ranging from business integration (within
and between companies) to Ambient Intelligence. The prin-
ciple of SOA is to expose software components as “ser-
vices”. Each service encapsulates a particular functionality
and provides access to it through a clearly defined interface.

One important characteristic of SOA is “service discov-
ery”: a service consumer first queries a service repository (or
service resolver) to be able to access a matching provider.
Most of the service oriented frameworks work with net-
worked services (a notable exception is OSGi, e.g., in [1]).
With networked services, one effect of service discovery is
to simplify configuration: service consumers only need to
know where to find the service repository.

SOA encourages good encapsulation, loose coupling and
abstraction. With little effort, it also helps service consumers
adapting to runtime events like the absence or disappearance
of a particular service. With encapsulation and discovery,
SOA makes it possible to replace a service by another
equivalent one, providing the same interface.

As in many other domains, a variety of service oriented
initiatives have been proposed but no single standard is
clearly dominating. Also, even if service based approaches
provide a good way of implementing some “dynamic dis-
tributed components”, they fail at solving more advanced
integration problems. For instance, consider the use case of
having an application dynamically (and with no modifica-
tion) start using services it was not originally designed to
use. Such case is typical of an Ambient Intelligence systems
where applications and services evolve continuously. Our
approach will consider this integration use-case as a common
one and not an exception.

The convergence of “Semantic Web” and SOA have been
trying to solve the integration problem by letting service
designer use their own ontology to describe their services.
Ontology alignment methods are then used to make corre-
spondences between services from different providers. Using
such correspondence, a service for a given provider can be
consumed by a consumer that was designed in ignorance of
this particular provider.

20

AMBIENT 2011 : The First International Conference on Ambient Computing, Applications, Services and Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-170-0

In the context of Ambient Intelligence, many projects
attempt to integrate different services by building upon both
SOA and approaches like the semantic web. Fully automatic
service composition and adaptation have been explored,
e.g., using multi-agent reasoning as in [2]. Some interesting
and well designed approaches are [3] and its evolutions.
Also, the soft appliances from [4] envision a systematic
decomposition of all existing appliances as independent
services. In this vision, end-user programming is used to
recreate new innovative appliances from services. One of the
main difficulty (and limitation) of end-user programming is
to make it both accessible to any end user and powerful
enough.

As a conclusion, plain SOA provides a good basis for Am-
bient Intelligence but it is does not ensure good integration
capabilities. We also think that fully automatic approaches
are not desired by the end user: these are not optimal and
thus can create frustration, and they prevent end users to
express their creativity. Classical end-user programming is
also too limited to allows at the same time: enabling anyone
to customize and innovate with applications, and enabling
some users to help in integrating new devices.

B. Data Context Interaction: DCI

Even if it has been studied and practiced since more than
50 years, the domain of software design and engineering is
not solved. With time, industrialization methods (waterfall
model, UML, etc.) have been created to reduce waste. More
recently, “lean” and “agile” methods have taken momentum
as they advocate lighter practices and focus on the client.

In our opinion, the most interesting and relevant evo-
lution in recent software architecture and design is the
Data Context Interaction (DCI) [5] approach. DCI can be
seen as a second attempt to make object orientation (OO)
right. The original goal of object oriented programming (and
design) was to align the program data model with the user’s
mental model. This feature is the key to a good human
computer interaction: you cannot hide a bad design behind
any interface. This becomes more and more important in
Ambient Intelligence where user interaction is augmented.

The main principles of DCI are as follows. The data
objects have the only responsibility to access data (e.g.,
from a database or memory). In DCI, any use-case of the
software is a piece of code that manipulates some roles,
which are fully abstract. A use-case uses only a set of roles
and never manipulates directly data objects. The concept of
role together with the context are the cornerstone of DCI. A
context is responsible for doing the mapping of some roles
onto some concrete data objects. The context is populated
in response to user interaction (e.g., selecting things then
clicking on a button) and then the use-case is executed using
this context.

As an example, we can consider a banking application
with the use case of making a money transfer between two

Figure 1. Proposed EAA architecture – Environment provides low-level
services. Applications manipulate only high-level abstract services. Adap-
tation bridges the two and is dynamically extensible and user-controlled.
Lighter chain on the right: inversion due to the whiteboard pattern.

accounts. More precisely, consider the MoneyTransfer use-
case: it involves three roles that are the SourceAccount role,
the DestinationAccount role and the MoneyAmountProvider
role. The MoneyTransfer code will start a transaction, then
query the amount to transfer from the MoneyAmount-
Provider, then call withdraw on the SourceAccount and call
credit on the DestinationAccount. The context is created
and populated by the application when the user is asked
to select a source account (e.g., his CheckingAccount data
object) and a destination account (e.g., one of his SavingsAc-
count) and an amount (e.g., could be just a plain “int” value).

C. Other Related Work

A mobile agent is an autonomous programs that can
migrate between computers over a network. Even if this is
an interesting feature for Ambient Intelligence, it can be
seen as orthogonal to the subjects discussed in this article
and can complement the proposed approach. An example of
using mobile agents as an infrastructure is presented in [6].

The domain of human computer interaction tends to
evolve from desktop-like applications to Ambient Intelli-
gence. In this context, an emphasis is put on how to dynam-
ically split and distribute user interfaces based on the avail-
able devices. The concept of meta-User Interfaces (meta-
UI) has been introduced in [7] and consists in having an
interface to control and introspect an Ambient Intelligence
environment. A deep and interesting analysis related to our
problems is conducted in [7], however, their application is
limited to the migration and adaptation of graphical user
interfaces between devices.

III. PROPOSED APPROACH

In this section, we introduce our Environment, Applica-
tion, Adaptation (EAA) approach and how it can interact
with a community built around it. In the same way as DCI
is an attempt to make OO right (see Section II-B), EAA is
an attempt to make SOA right.

21

AMBIENT 2011 : The First International Conference on Ambient Computing, Applications, Services and Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-170-0

A. Environment, Application, Adaptation

The Environment, Application, Adaptation (EAA) ap-
proach builds on top of Service Oriented Architectures
(SOA) and takes similar inspiration as Data, Context, Inter-
action (DCI). In EAA, most of the elements are services: in
some sense, services act as objects (with interfaces) that can
be distributed and dynamically discovered. As in SOA, the
capabilities of the environment are exposed as plain services
in EAA. In a parallel with DCI, these environment services
are corresponding to the data part from DCI.

Most importantly, EAA has the equivalent of roles in DCI.
Any application only manipulates some abstract services
(roles) that correspond to its exact requirements. The design
of the application is done without bothering about what
concrete service can or will be used to fulfill the role. With
this choice, the environment will never directly provide any
service that an application need.

In DCI, the context is responsible for the casting: concrete
data objects are recruited to play some roles. In EAA, the
adaptation layer is responsible for the equivalent, which
consists in using services from the environment to create
services required by the applications. The adaptation layer
is populated through implicit or explicit interaction with the
end user (same as in DCI).

In Figure 1 (ignoring the lighter rightmost elements), a
set of applications, environment services and adapters are
shown. Colors are used to distinguish service types coming
from the environment (in blue), the applications (in red) or
the adaptation (in green).

B. Using Service Factories for Adapters

To populate the adaptation layer, some adapter factories
are used. Each factory is actually a service that exposes
which kind of adapters it can create and that creates it on
demand. The concept of service factory is taken from [8]
and restricted to adapters: we do not consider the case of
open factories that can create services without requiring any
another service. With our restriction, the number of instan-
tiable adaptation paths becomes finite and it is thus possible
to filter and display them to the user (see Section IV-B).

C. Refinement using the Whiteboard pattern

A useful pattern in service oriented design is the “white-
board” pattern [9]. The goal of this pattern is to simplify
the design of clients of a particular service. Let’s consider
a Text2Speech service that is designed to receive some text
sentence and will output it as speech through loud speakers.
In a classical approach, any client of the Text2Speech service
would first look for the service, then connect to it and then
send the message to it. Eventually, the search-and-connect
code is here duplicated in all clients.

Using a whiteboard pattern, the situation is reversed
and the Text2Speech service is actually doing the
search-and-connect. Each client just declares itself as

Text2SpeechSource and the Text2Speech will connect to it
as soon as it finds it. With the whiteboard pattern, some
code is moved from the client to the “server”, which limits
redundant code writing and makes backward compatible
evolutions easier (the server handles the various versions
of clients). From a service point of view, now the “server”
looks for its clients, which causes an inversion of the
provides/requires dependency as shown in Figure 1 (on the
right) and in Figure 2 (lower part).

In EAA, the whiteboard pattern is typically used on the
view side, i.e., when the application state needs to be brought
back to user (through the environment). The above example
of voicing the output of an application using a Text2Speech
service is a typical example of this.

D. Community Architecture and Sharing

The structure of the proposed EAA makes it a “commu-
nity architecture” [10] in a double sense. First, the approach
encourages the creation of a community around it and
provides a structure for it, and second, it is the community
itself that is creating the actual, live, evolving architecture.

We distinguish four entry points in EAA for innovation
and extension, each requiring different skills. Compared to
some end-user programming approach where there is trade-
off to make between the expressive power of the program-
ming and the required skills to use it, EAA has multiple
values for this trade-off. It would be interesting to investigate
how EAA can be combined with an end-user approach
targeting more ease of use than power of expression (higher
expression power being provided by EAA).

The first two entry points are for a relatively large
audience. First, most end users will be able to innovate at
the adaptation level by doing a smart and original choice of
adapters for a particular application in their environment.
Also, any end user can take part in the community by
suggesting new ideas for services, applications or adapters.
With proper documentations and examples, we can expect
a reasonable part of the users (surely less than 10%) to be
able to create new adapters by copying an existing one or
using a wizard tool (in current implementation, an adapter
is just a XML file and thus it is quite easy to define new
ones).

More advanced extension points concern the contribution
of new applications or new environment services. Both
require more advanced computer skills but really different
ones. Application developers will probably write their ap-
plication and maybe a couple of adapters to integrate it into
the existing ecosystem: the skills required here are mostly
classical application development skills. The contributors of
new environment services will probably be people that like
hacking with new devices or new signal processing methods
(image or audio processing, accelerometers, etc.): their goal
would be to innovate by providing innovative input or output
medium to transform existing application.

22

AMBIENT 2011 : The First International Conference on Ambient Computing, Applications, Services and Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-170-0

The EAA does not define by itself what kind of services
are used by the people. It is the community itself, by creating
new environment services, applications and adapters, that
decides on what is the actual architecture. We cannot rely
on any user to make the best architectural choices. However,
if the community is sufficiently large and open, we can
expect to find a small proportion of “architects/moderators”
as in other open community projects: their role could be for
example to avoid proliferation of totally similar concepts and
avoid fragmentation of the community.

IV. IMPLEMENTATION AND EXAMPLE

To experiment with the proposed approach, we imple-
mented different test cases. In this section, we provide some
implementation details and explain these test cases. More
details can be found with the source code that will be
provided online, see http://its.heeere.com/ambient2011 .

A. Implementation Details

We implemented the whole presented approach letting
aside only the community aspect (e.g., dedicated system for
sharing adapters). Our implementation is based on the open-
source OMiSCID [11] service-oriented middleware. We cre-
ated a set of small reusable services and designed a graphical
user interface for the user to control the environment and the
adapters. The applications are implemented as services that
explicitly require some functionalities. Functionalities from
the environment are exposed as OMiSCID services.

The developed services will be made available online and
include the following services: exporting a display area (on
a screen or video project), exporting a mouse pointer, and
exporting a “chat” service to allow to open popup messages
on a computer. Also, under Linux operating systems, we
provide additional features such as a text-to-speech service
based on “espeak” and a service to generate synthetic
keyboard events on a computer (this one is used for example
to control presentations or games).

For the adapters, we designed a generic program that
takes an XML description of a family of adapter and starts
the corresponding adapter factory (that can start an adapter
instance on demand). The XML description contains infor-
mation about the adapter such as which functionality it takes
as “input” and to which one it converts it. The adaptation
code, that is usually simple, can be provided within the XML
file using ad’hoc languages such as JavaScript or XSLT.

With the assistance of a graphical user interface, the final
user can decide what adapters to eventually use. The end
of the next subsection is dedicated to the illustration of the
simple graphical interface we implemented to help the user
managing the environment and the adapters.

B. Detailed Test Case

To showcase our approach, we detail the case of a simple
tic-tac-toe game we developed. For now, we consider that

Figure 2. User interface to manage adapters (annotated screen capture, best
viewed in color). The panel shows all required services, available services
and possible adapters obtained from factories using service discovery. A
color code is associated to each service type. By clicking on a instantiable
adapter (lightened ones) the user can ask the system to create this adapter.
Note that due to the whiteboard pattern, the provides/requires relation is
reversed for the display side (lower half of the panel) where the environment
requires services from the applications.

the environment contains only two computers, and from each
one we exported some services: a Display, a Mouse3 (mouse
pointer with 3 buttons) and a Text2Speech. Each exported
Display service has a unique identifier and follows a white-
board pattern to connect to any matching DisplaySource
it finds. A DisplaySource is expected to send drawing
commands to the Display. The game logic is implemented
as a service that exposes a TicTacToeModel and that follows
a whiteboard pattern for two services: two Grid3x3Clicker
with two different unique identifiers.

To bridge the gap between the environment (Display,
Mouse3) and the application (Grid3x3Clicker, TicTacToe-
Model), we introduced a set of simple adapters. The first
ones are for input and can be heavily reused in other context:
one adapter converts a three button mouse Mouse3 to a
single button mouse Mouse1, the second adapter converts
a Mouse1 to a Grid3x3Clicker by converting click x, y
position to some grid index from 0 to 8. We could have
skipped the distinction between Mouse3 and Mouse1 but
we kept it as it is useful is some other contexts. On
the display side, a specific adapter was written to convert
TicTacToeModel to a DisplaySource: the tic-tac-toe state
change events are converted to drawing commands such as
drawing circles.

From the list of functionalities required by applications
and functionalities exposed by the environment, the user
interface considers all available adapter factories (also ex-
posed as services, see Section III-B) and proposes possible
adaptation paths. Figure 2 illustrates the user interface we
designed to allow the user to manipulate adapters. The
user sees all possible adaptation paths, and an instantiable
adapter is clicked, the system automatically queries the
corresponding adapter factory to create the adapter.

23

AMBIENT 2011 : The First International Conference on Ambient Computing, Applications, Services and Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-170-0

By letting the user control the adaptation layer, EAA
makes the tic-tac-toe become ambient. The use of properly
decoupled services (SOA done right) makes it possible for
the user to dynamically select where and how to display the
game and how to control it. EAA, with its explicit adaptation
layer, makes it also possible to easily create variations
of the game that integrates into an Ambient Intelligence
vision. To this end, different adapters can be used. A first
adapter, which is simple but specific, transforms the game
state (TicTacToeModel) to some short textual output to be
processed by a Text2Speech service. A reusable adapter,
used for input of the game, uses a SpeechRecognizer and
converts voice commands such as “play in three” to a
Grid3x3Clicker. In addition to the audio modality, computer
vision is also used as a possible input: by sticking post-its
on a surface, the user can transform it to a Grid3x3Clicker
thanks to a dedicated adapter.

C. Other Test Cases

Apart from the tic-tac-toe, we also implemented other
environment services, games, applications and adapters. For
example we created a MagicSnake game that consists in
guiding a snake in a 2D maze to reach a target as fast
as possible while avoiding walls. As an experiment, we
also modified a game called “Nuncabola” where the player
controls a ball rolling in a 3d environment. Both games
use a two dimensional analog input: we implemented these
input with different combinations of environment services
and adapters. Eventually, we control these games using:

• obvious device such as a mouse or a keyboard,
• more exotic devices such a accelerometer-based devices

(e.g., smart phone, WiiMote) or WiiFit-like devices,
• computer vision and human tracking (e.g., the player

moves in the room to control the ball acceleration, or
the player moves his hands, arms, etc.)

Using simple generation of keyboard events, we also
implemented a slide presentation controller. We used various
methods to skip to the next/previous slide including for
example computer vision, e.g., gestures; sound recognition
(clapping hands); and voice recognition, e.g., saying “next”.

V. CONCLUSION AND FUTURE WORK

This article presented the Environment, Application,
Adaptation (EAA) architectural approach. With this ap-
proach, the environment and the applications are fully inde-
pendent of each others. This both encourages the design of
more generic environment services and eases the deployment
of an unmodified application in a new environment: this
deployment is possible even if eventually the application
ends up using only originally unknown services. The glue
between what a particular environment offers and what
a particular application requires is done by a dedicated
adaptation layer. This layer makes the overall system easier
to adapt and open to user control and innovation.

An implementation of this approach was showcased: this
implementation is fully operational and allows dynamic run-
time extension with new services, applications and adapters.

The main future directions involves the improvement of
the user interface (icons for service types, quick filtering,
etc), and the setup of the community infrastructure to make
it easier for users to use and contribute innovative adapters.

ACKNOWLEDGMENT

The author would like to thank the PRIMA research group
and particularly Matthieu Langet for his tight collaboration.

REFERENCES

[1] C. Escoffier and R. Hall, “Dynamically adaptable applications
with iPOJO service components,” in Software Composition,
2007, pp. 113–128.

[2] M. Vallée, F. Ramparany, and L. Vercouter, “Dynamic service
composition in ambient intelligence environments: a multi-
agent approach,” in Proceeding of the First European Young
Researcher Workshop on Service-Oriented Computing, Le-
icester, UK, April 2005.

[3] M. Assad, D. Carmichael, J. Kay, and B. Kummerfeld,
“PersonisAD: distributed, active, scrutable model framework
for context-aware services,” Pervasive Computing, pp. 55–72,
2007.

[4] J. Chin, V. Callaghan, and G. Clarke, “Soft-appliances: A vi-
sion for user created networked appliances in digital homes,”
Journal of Ambient Intelligence and Smart Environments, pp.
69–75, 2009.

[5] J. O. Coplien and G. Bjørnvig, Lean Architecture: for Agile
Software Development. Wiley, 2010.

[6] R. Razavi, K. Mechitov, G. Agha, and J. Perrot, “Ambiance:
a mobile agent platform for end-user programmable ambient
systems,” in Proceeding of the 2007 conference on Advances
in Ambient Intelligence. IOS Press, 2007, pp. 81–106.

[7] J. Coutaz, “Meta-user interfaces for ambient spaces,” Task
Models and Diagrams for Users Interface Design, pp. 1–15,
2007.

[8] R. Emonet and D. Vaufreydaz, “Usable developer-oriented
functionality composition language (ufcl): a proposal for
semantic description and dynamic composition of services
and service factories,” in Intelligent Environments, 2008 IET
4th International Conference on. IET, 2008, pp. 1–8.

[9] O. Alliance, “Listener Pattern Considered Harmful:
The Whiteboard Pattern, 2nd rev.” http://www.osgi.org/
documents/osgi technology/whiteboard.pdf, 2004, [Online;
accessed 28-July-2011].

[10] F. Moatasim, “Practice of community architecture: A case
study of zone of opportunity housing co-operative,” Ph.D.
dissertation, McGill University, 2005.

[11] R. Emonet, D. Vaufreydaz, P. Reignier, and J. Letessier,
“O3miscid: an object oriented opensource middleware for
service connection, introspection and discovery,” in 1st IEEE
International Workshop on Services Integration in Pervasive
Environments, 2006.

24

AMBIENT 2011 : The First International Conference on Ambient Computing, Applications, Services and Technologies

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-170-0

