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Abstract—Egypt has faced a major problem in balancing 

electricity produced and electricity consumed at any time in 

the day. Therefore, short-term forecasts are required for 

controlling and scheduling of electric power system. Electricity 

demand series has more than one seasonal pattern. Double 

seasonality of the electricity demand series in many countries 

have considered. Double seasonality pattern of Egyptian 

electricity demand has not been investigated before. For the 

first time, different double seasonal autoregressive integrated 

moving average (DSARIMA) models are estimated for 

forecasting Egyptian electricity demand using maximum 
likelihood method. 𝑫𝑺𝑨𝑹𝑰𝑴𝑨 (𝟑, 𝟎, 𝟏) (𝟏 , 𝟏, 𝟏)𝟐𝟒  ( 𝟐 ,
𝟏 , 𝟑)𝟏𝟔𝟖 model is selected based on Schwartz Bayesian 

Criterion (SBC). In addition, empirical results indicated the 

accuracy of the forecasts produced by this model for different 
time horizon. 

Keywords-multiple seasonality pattern; post-sample 

forecasts; Double Seasonal ARIMA models. 

I.  INTRODUCTION  

Electricity is one of the ordinary life necessities, and a 
major driving force for economic growth and development. 
The unstorable nature of electricity means that the supply of 
electricity must be always available to satisfy the growing 
demand. Therefore, electricity utilities throughout the world 
have given a remarkable interest for forecasting electricity 
demand. Decision makers around the world widely use 
energy demand forecasting as one of the most important 
policy making tools. An accurate hourly demand forecasting 
up to one day ahead is a vital process in electricity industry 
planning. It is critical for nations in order to balance 
electricity produced and electricity consumed at any time in 
the day, to increase the reliability of power supply, to 
minimize costs and to provide correct decisions for future 
development [1][2] . 

Electricity demand is mainly influenced by seasonal 
effects (daily and weekly cycles, calendar holidays). A 
within-day seasonal cycle is apparent if similarity of the 
hourly demand from one day to the next exists, while a 
within-week seasonal cycle is apparent if similarity of the 
daily demand exists week after week. Therefore, using a 
forecasting method that is able to capture both seasonal 
patterns (daily and weekly) is mandatory. 

Seasonal Autoregressive integrated moving average 
(SARIMA) model is used for time series data with single 
seasonal pattern. However, SARIMA model can be extended 
to cope with multiple seasonal cycles [3]. SARIMA model 
that includes two cycles is known by DSARIMA model. 
DSARIMA was used by many authors for forecasting 
electricity demand. In [4], DSARIMA model was used for 

forecasting hourly electricity load in England and Wales and 

was compared with single seasonal Holt-Winters 

exponential smoothing method and with a double seasonal 

Holt-Winters exponential smoothing method. The forecasts 

produced by the DSARIMA model were well and 

outperformed those from Holt-Winters exponential 

smoothing method that considered only single seasonal 

pattern but were outperformed by those from double 
seasonal Holt-Winters method. In [5], six forecasting 

methods including DSARIMA, double seasonal exponential 

smoothing, a method based on the principal component 

analysis (PCA), artificial neural network (ANN), a random 

walk model and a seasonal version of the random walk were 

considered for forecasting hourly electricity demand for the 

state of Rio de Janeiro in Brazil and half-hourly electricity 

demand for England and Wales. Among those forecasting 

methods, DSARIMA model was competitive and performed 

well for Rio data and England and Wales data. The same 

pervious methods were also applied on ten European 

countries and the same conclusion was reached [6]. 
In a recent study [7], the DSARIMA model was 

investigated for forecasting the double seasonal (daily and 
weekly) Malaysian electricity demand series. In (2011), it 
was compared with SARIMA model and concluded that 
DSARIMA model outperformed the SARIMA model [8]. 
Therefore, our target is to investigate DSARIMA model in 
forecasting Egyptian electricity demand series.  

The rest of this paper is organized as follows. Section II 
describes the Egyptian electricity demand series. Section III 
describes DSARIMA model. Section IV discusses the 
results. The conclusion and future work close the article. 
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II. EGYPTIAN ELECTRICITY DEMAND SERIES 

The Egyptian electricity demand series consists of hourly 
time series data of Egyptian electricity demand measured in 
Megawatt (MW) for a one year starting on Saturday 7 
January 2012 and ending on Friday 28 December 2012. All 
the data is used to estimate parameters except for the last 4 
weeks that are put aside to evaluate post-sample accuracy of 
forecasts.  
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Figure 1. Time plot for the Egyptian electricity demand series  

from Friday 1 June 2012 to Thursday 28 June 2012 

 Figure 1 shows a time series plot covering the period 
from Friday 1 June 2012 to Thursday 28 June 2012. In the 
figure, the first day is represented by hours from hour 1 till 
hour 24, while from hour 24 till hour 48 represents the 
second day and so on. Figure 1 shows a within-day seasonal 
cycle and a within-week seasonal cycle. A within-day 
seasonal cycle is apparent from the similarity of the demand 
from one day to the next. A within-week seasonal cycle is 
also apparent from comparing the demand on a certain day 
of different weeks. It is clear that the weekdays show similar 
patterns of demand, while the weekend days, which have the 
lowest peak of electricity demand, have a different electricity 
demand pattern. 
 

III. DSARIMA MODELS 

A multiplicative SARIMA model has introduced by [9] 
to analyze single seasonal pattern time series data. SARIMA 
model is denoted as  ARIMA (p, d, q ) (P, D , Q)s where p 
and P are the orders of nonseasonal and seasonal 
autoregressive terms, respectively, d and D are the orders of 
nonseasonal and seasonal differencing, respectively, while q 
and Q are the orders of nonseasonal and seasonal moving 
average terms and s is the seasonal period. SARIMA can be 
expressed as 

∅𝑝(𝐵)𝛷𝑃( 𝐵𝑠) 𝛻𝑑 𝛻𝑠
𝐷 𝑦𝑡 =  𝜃𝑞(𝐵) 𝛩𝑄( 𝐵𝑠 ) 𝜀𝑡 ,          (1) 

where  ∇d and ∇s
D are the nonseasonal and seasonal 

differencing operators, respectively ; B is the backward shift 
operator; {ε t } is a white noise process with mean zero and a 
constant variance; ∅p(B) 𝑎𝑛𝑑 ΦP(Bs) , are polynomials of 

order p and P, represent the nonseasonal and  seasonal 
autoregressive terms, respectively; θq(B) and ΘQ(Bs) are  

polynomials of order q and Q, represent the nonseasonal and 
seasonal moving average terms, respectively. 

 SARIMA model can be extended for DSARIMA model 
[3]. DSARIMA model has been expressed by [4] to capture 
two seasonality cycles (within-day and the within-week 

seasonal cycles). The multiplicative DSARIMA model, 

which is denoted as ARIMA (p, d, q ) (P1 , D1, Q1)s1  ( P2 ,
D2 , Q2 )s2   , can be written as 

∅p(B) ΦP1
(Bs1 ) ΩP2

( Bs2) ∇d ∇s1

D1   ∇s2

D2  yt =

 θq(B) ΘQ1
(Bs1) ΨQ2

( Bs2) εt,  

where  ∇s1

D1   is the daily seasonal differencing operator; 

∇s2

D2   is the weekly seasonal differencing operator; s1𝑎𝑛𝑑 s2 

are the two seasonal periods which are 24 and 168, 
respectively in our Egyptian electricity demand data set 
series; ΦP1

(Bs1) and  ΩP2
( Bs2) are polynomials of orders 

 P1  and  P2 , respectively; and ΘQ1
(Bs1) and ΨQ2

( Bs2) are 

moving average polynomials of orders  Q1 and Q2, 
respectively. 

Stationarity of the Egyptian electricity demand series is 
investigated in the next section. If the data series is 
nonstationary, suitable differences and/or transformations 
should be made to render stationarity. 

IV. EMPIRICAL RESULTS 

Different DSARIMA models are used for forecasting 
Egyptian electricity demand. At first, in order to identify a 
suitable DSARIMA model and check whether the series is 
stationary, we plotted the autocorrelation function (ACF) and 
the partial autocorrelation function (PACF) of the Egyptian 
electricity demand series. Figure 2 shows the ACF and 
PACF of the hourly Egyptian electricity demand series. It is 
clear from the ACF the presence of daily seasonal pattern. A 
daily seasonal differencing (D1 = 1, s1 = 24) is considered 
to convert the nonstationary series that results from the daily 
pattern into a stationary series. Plotting the ACF and PACF 
after the daily seasonal differencing, Figure 3 shows another 
seasonal pattern which is the weekly seasonal pattern; 
therefore the weekly seasonal differencing (D2 = 1, s2 =
168) is also considered. 

 
The ACF and PACF after daily and weekly seasonal 

differencing, as shown in Figure 4, indicate that the series 
becomes stationary after eliminating the daily and weekly 
patterns. Lag polynomials up to order three was considered 
for the seasonal autoregressive polynomials and seasonal 
moving average polynomials. Different double seasonal 
ARIMA models have been estimated by maximum 
likelihood method using SAS software. All the data is used 
to estimate parameters except for the last 4 weeks that are 
put aside to evaluate post-sample accuracy of forecasts. The 
Schwartz Bayesian Criterion (SBC) for the different models 
was calculated and compared. By choosing the model 
corresponding to the minimum value of SBC, one is 
attempting to select the model corresponding to the highest 
Bayesian posterior probability. 𝐷𝑆𝐴𝑅𝐼𝑀𝐴 (3,0,1) (1 , 1,
1)24  ( 2 , 1 , 3)168 model was selected with the lowest SBC. 
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Figure 2. The ACF and PACF of the hourly Egyptian electricity demand 
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Figure 3. The ACF and PACF of series after the daily differencing 

The selected model is estimated using the maximum 
likelihood method. The fitted model is given by:  

(1 −  1.68 B + 0.63 B2 +  0.06 B3) ( 1 −
0.12 B24) (  1 + 0.30 B168 −
 0.62 B336 )  ∇

0  ∇24 
1  ∇168 

1  yt = (1 − 0.92B)(1 −
 0.77B24)(1 − 0.56B168 − 0.93B336 +
0.49 B504)εt ,                                                                              (3)  
 
Forecasts are obtained for the last 4 weeks of our data set 
from the above fitted model. 
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Figure 4. The ACF and PACF of series after the daily and weekly 

differencing 

 
 

 
Figure 5. Time plot of the actual and forecasts values 

 
 
The actual values of the Egyptian electricity demand 

series and its forecasts up to a day ahead are represented in 
Figure 5. It is observed that the forecasts are close to the 
actual values. In addition, the mean absolute percentage error 
(MAPE) is calculated for different time horizons to evaluate 
the accuracy of the selected model. The MAPE is the 
average of the absolute percentage prediction error. Low 
values of this statistic are preferred. The MAPE of the 
forecasts produced by the selected DSARIMA model up to 
one week horizon, two weeks horizon, three weeks horizon 
and a month horizon are 1.32%, 1.79%, 2.58% and 3.73%, 
respectively. Although, forecasting accuracy is less accurate 
for longer horizons, the selected model provides accurate 
forecasts for the Egyptian electricity demand. 
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V. CONCLUSION AND FUTURE WORK 

In this paper, the DSARIMA model was investigated for 
forecasting Egyptian electricity demand. Different 
DSARIMA models were estimated. Forecasts produced by 
the selected model were accurate for different time horizons. 
The results agree with those reported in the literature for 
other countries. Different techniques and methods, such as 
exponential smoothing method and artificial neural 
networks, may be used and compared with DSARIMA 
model in forecasting the Egyptian electricity demand series. 
Obtained results would be of a great importance for policy 
makers. 
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