
Actor4j: A Software Framework for the Actor Model Focusing on the

Optimization of Message Passing

David Alessandro Bauer, Juho Mäkiö

Department of Informatics and Electronics

University of Applied Sciences Emden/Leer

Emden, Germany

Email: david.bauer@hs-emden-leer.de, juho.maekioe@hs-emden-leer.de

Abstract—Common actor implementations often use

standardized thread pools without special optimization for the

message passing. For that, a high-performance solution was

worked out. The actor-oriented software framework Akka uses

internally a ForkJoinPool that is intended for a MapReduce

approach. However, the MapReduce approach is not relevant

for message passing, as it may lead to significant performance

losses. One solution is to develop a thread pool that focuses on

the message passing. In the implementation of the Actor4j

framework, the message queue of the actors is placed in

threads to enable an efficient message exchange. The actors are

operated directly from this queue (injecting the message),

without further ado. It was further enhanced by the use of

multiple task-specific queues. Fairness and the responsiveness

of the system have been raised. In particular, the performance

measurement results show that an intra-thread communication

towards an inter-thread communication is much better and has

very good scaling properties.

Keywords-actors; actor model; parallelization; reactive

system; message passing; microservices; Java.

I. INTRODUCTION

The use of cloud computing systems is used more often,

especially as a Platform-as-a-Service (PaaS) solutions (e.g.,

Microsoft Azure, Amazon Web Services, Google Cloud

Platform). A step further is to design the architecture of

software as microservices instead of a monolithic design [1].

In this case, Docker images can be used [2], which can be

uploaded to them (Azure Container Service, Amazon Elastic

Container Service, Google Kubernetes Engine). An

alternative microservice approach is the service factory of

Microsoft Azure, which orchestrates among other services.

Microservices are arbitrary scalable and easy to change [3]

and reusable. In Microsoft Azure service factory actors are

also used (Virtual Actor pattern [4]) [5]. The advantage of

actor-oriented services is that they can hold lightweight

representatives (the actors). They can be used as a

replacement of the traditional middle tier [4]. Actors can be

seen as a pendant to Function-as-a-Service (FaaS), if the

actors are themselves stateless. Actors and functions can be

called nanoservices, as a lightweight derivative to

microservices. Scalability can be obtained by high

parallelism (to divide a task in subtasks, or parallel

execution of a task, if the underlying code is stateless). See

also the Scale Cube by Abbott [6], which describes the three

dimensions of scalability.

To ensure high parallelization, its one benefit to use

multi-core systems. The computer world of the last few

years has been characterized by a change ("The Free Lunch

Is Over" [7]) from constantly increasing computing power

to multi-core systems due to technical limitations. In

particular, technical progress always lags behind practical

requirements (Wirth's law [8]). Up to now, Moore's law was

“that the number of transistors available to semiconductor

manufacturers would double approximately every 18 to 24

months” [9]. This will presumably continue through the

transition to multi-core systems. Due to the issues with

parallel programs [10] according to the classic model

(especially error prone in programming of complex systems

with semaphores and mutexes), actor-oriented frameworks

are becoming increasingly popular [11].

This work contributes to achieving a higher performance

in the field of message passing. This is relevant for all

systems, where a lot of messages have to be exchanged (e.g.,

Internet of Things, Internet of Services). It is intended to

develop a specially designed thread pool for message

passing. The framework Akka is used as a reference

implementation, but this is written in Scala. In order to

achieve comparability and to provide a realistic picture (for

benchmarks in Section 7), the degree of implementation of

the underlying actor model (actor4j) must have some

complexity. The four semantic properties [11] of the actor

model have to be taken into account during implementation.

In addition, the actor model as a reactive system should

satisfy the four principles of the reactive manifesto [12]. In

particular, the responsiveness of the reactive system has to

be taken into account, since this is also important in regard

to the achievement of this work. Akka is currently a

widespread and popular (has a very good rating on GitHub

[13] and a lot of contributors) actor implementation. The

users of Akka are large companies like Intel, Samsung

LinkedIn, Twitter and Zalando [14]. According to Suereth:

“Akka is the most powerful performing framework available

on the JVM” [15]. The long-term goal is the establishment

of a Java framework for the actor model as an alternative to

Akka. Akka is written in Scala (except the Java-API), this

can be a hindrance for Java developers to understand the

125Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

mailto:david.bauer@hs-emden-leer.de
mailto:juho.maekioe@hs-emden-leer.de

underlying architecture. There can be also an acceptance

problem.

First, two important basic building blocks of this work

are discussed. Accordingly, a brief introduction to the actor

model and reactive systems is given. Then, a comparison

between Akka and actor4j will be presented. Next, the

solution approach of the novel framework actor4j is shown.

Subsequently the results of testing actor4j are presented and

discussed. This paper ends up with a conclusion and insight

in the future works. The source code for actor4j is available

under GitHub [16].

II. ACTOR MODEL

In classic concurrent programming, it goes over the

concepts of shared state, mutual exclusion and semaphores.

[17]. With increasing program complexity, the correctness

of the program is difficult to proof or to verify. Especially,

because concurrent programs are difficult to test [18].

However, the actor model, based on message passing, offers

an alternative. The essential features compared to the classic

concurrent programming are:

• no shared state,

• asynchronous message transfer, and

• message queue for each actor [17].

This eliminates the need to use proprietary synchronization

techniques between the actors to protect the access to shared

resources [17]. The data transmitted between the actors is

conceptually immutable and thus does not require

synchronization [17].

When a message arrives, actors can react by:

• myself send messages,

• instantiating more actors, or

• changing its own state [19].

These activities may influence the next incoming messages

(possible behavioral change) [19]. The actor model was

introduced in 1973 in a paper [20] by Carl Hewitt, Peter

Bishop and Richard Steiger [21]. A message can contain

any kind of data.

There are “four important semantic properties of actor

systems: [state] encapsulation, fairness, location

transparency and mobility” [11].

The state encapsulation ensures that no actor can

directly call another actor. Secure messaging requires that

messages are transmitted in the sense of call-by-value

messages. However, call-by-reference is permitted in most

actor frameworks. As the “deep copying is an expensive

operation” [11], this criterion is not always followed in

practice. Only actors can communicate with one another via

messages [11].

 Fairness means that all actors can be treated equally and

supplied with appropriate messages. Uncooperative actors

that, for example, perform active waiting, polling, or time-

consuming calls are very likely to adversely affect other

actors (actors are no longer operated, blocking the

corresponding thread) [11].

Location transparency means that the naming is

independent of its localization. The name of the actor is

unambiguous and unchangeable [11].

Mobility allows the transfer of the actor to other nodes in

the cluster. A distinction is made between weak and strong

mobility. Weak mobility allows for the exchange of the

underlying code with subsequent initialization of the context

of the actor. Strong mobility includes the current context of

the actor [11].

The actor model is successfully used in business, for

example in WhatsApp or for RabbitMQ (implements

AMQP protocol). For both you can set up publish-subscribe

systems for messaging, based on the actor model. The

programming language Erlang (actor-oriented programming

language, see also Section 4) was used for that.

III. REACTIVE SYSTEMS

Nowadays, more and more data need to be processed in

a shorter time. This is known under the term Big Data. Big

Data is associated with very large amounts of data. It may

be discrete or continuous data. These fall on particularly at

very high frequented and interactive web services (e.g.,

Facebook, Google, IoT-Area). Especially, in data mining,

data is evaluated in a targeted way to create value. A

practical example of a use-case is the “Deutscher

Wetterdienst” (Germany's National Meteorological Service)

that uses Akka for parallel processing or evaluating the

historical meteorological data [22]. A solution to this can be

reactive systems. Reactive systems are reacting to requested

requirements. Applications should be fail-safe and easily

scalable [12] for security issues.

Figure 1. Presentation of the basic principles of reactive systems from the

Reactive Manifesto [12]. Arrows symbolize an influence on each other.

Reactive systems are characterized by four important

properties (see Figure 1):

• Message Driven: Messages in the reactive system

are exchanged asynchronously. The components

are non-transparent. [12] The actor model can

serve as a basic architecture.

• Resilient: The reactive system is fail-safe. If errors

occur, it remains responsive. Superordinate

components assume the responsibility for the

handling of errors (Supervision, see Erlang [23],

126Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

Akka [24]). Additional security provides the

replication of functionality. [12]

• Responsive: The reactive system supplies time-

sensitive feedback to its users and to its dependent

components. This is also a prerequisite for an

adequate response in the event of errors

(supervision), as well as ensuring its function (task

of the system). [12]

• Elastic: The reactive system remains adaptable

even with changing requirements in regard to load

capacity. If the load is changed, it can be

intervened in a self-regulating manner. [12]

IV. RELATED WORKS

Akka is used as a reference implementation for Actor4j.

Akka was again influenced by Erlang, in terms of fault

tolerance (Supervision). The actor-oriented software

framework ActorFoundry implements the four semantic

properties of the actor model.

A. Erlang

Erlang is influenced by the actor model [21] and uses

this directly for their language. In Erlang, so-called light-

weight processes (no system processes) are used,

corresponding to the actors. According to [23], the only way

of communication between the processes is asynchronous

message passing. Processes have a "message queue" [25]

and "Processes share no Resources" [23], to eliminate the

need for synchronization between the processes. The

location transparency (see Section 2, Actor Model) is given

by a unique process identifier (PID).

Figure 2. Schematic representation of the flow of message processing in

Erlang VM (cp. [26])

Each process is assigned to a thread (1:N-architecture) and

is placed in the corresponding run-queue. Processes are

executed by the scheduler, that takes processes out from the

run-queue (Figure 2). The process itself takes a received

message out of the mailbox and processes them. Erlang can

be run with one scheduler or multiple schedulers (SMP

support, SMP stands for Symmetric Multiprocessing). With

one scheduler synchronization is not necessary, because

only one thread is interacting. The first solution for SMP

was to use the schedulers with one run-queue, but this was a

bottleneck. There were too much "lock conflicts" [26]. This

was resolved by using one run-queue per scheduler. [26]

Characteristics of Erlang [23]:

• Scalability: The Erlang VM "automatically

distributes the execution of processes over the

available CPUs" [23]

• Fault tolerance: To respond adequately to faults in

the processes, it is important to take precautions

(see Supervision). The processes are shielded from

one another so that no chain reaction occurs in the

event of a failure of a process.

• Clarity: Processes are the representatives of a

parallel reactive system. The execution of the

processes runs within sequentially.

Asynchronously, the exchange between the

processes takes place. This structuring leads to

more clarity in programming and has more

reference to our real world of life.

• Performance: It is indisputable to see the possible

performance gains when parallelizing a sequential

program when this is feasible. Distributing the

work to several processes can lead to success.

Supervision:

Figure 3. One-for-one supervision tree and One-for-all supervision tree

[23].

The supervisor process monitors his worker processes,

and in the event of an error, they are restarted. Two

strategies are foreseen (see Figure 3). The OneForOne-

Strategy restarts only the affected process. In the

OneForAll-Strategy, on the other hand, not only the affected

process is restarted, but also the neighboring processes

(above the supervisor process). [23]

127Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

B. Scala – Akka

Scala is an object-functional programming language that

runs on the JVM (is translated into bytecode). Since version

2.10.0, Akka is used as the default actor implementation

[27]. Akka was influenced by the actor model, Erlang and

Scala Actors [21]. By default, to forward messages to the

actors Akka internally uses a “ForkJoinPool” from Java as a

thread pool. An 1:N-architecture is used here. This means,

each thread is responsible for the message delivery to its

assigned actors (message is injected). The message

exchange takes place via the queues of the actors.

Figure 4. Schematic representation of the flow of message processing in

Akka [28].

Now follows a brief explanation of the message

processing in Akka. Each actor has its own mailbox (queue).

The dispatcher ensures that another message is processed

(Figure 4). For this purpose, a new message is taken from

the mailbox of the associated actor. The message processing

is executed via a thread, where a new message is injected to

the actor and the message is then processed by the actor. In

addition, the dispatcher ensures that no actor is called more

than once at the same time.

As a thread pool, a “ForkJoinPool” is used by default. In

Java 7, the “ForkJoinPool” used a central input queue for

new tasks to be executed, but it was viewed as a bottleneck.

With Java 8 this was improved. Instead of using a central

input queue, the new task to be executed is now randomly

added in one of the worker queues. „The idea is to treat

external submitters in a similar way as workers - using

randomized queuing and stealing“ [29]. Unlike Akka,

actor4j does not need these worker queues because

messages are processed directly there via the message

queues, belonging to the corresponding thread (see Chapter

6).

C. ActorFoundry

Previously, an actor was mapped to a separate thread

(strict encapsulation, 1: 1-architecture). However, this led to

performance problems (thread context switching). Therefore,

it was switched to an 1:N-architecture. “ActorFoundry”

implements the four semantic properties of the actor model

adequately. Messages are transmitted by default using a

“deep copy”. “ActorFoundry” supports both the weak and

the strong mobility. A further worker thread is provided, if

uncooperative actors are recogized. This ensures system

responsiveness. [11]

V. COMPARISON BETWEEN AKKA AND ACTOR4J IN

TABULAR FORM

In the following section, Akka is compared with actor4j.

First, the semantic properties are compared (see TABLE I).

State encapsulation, fairness and location transparency were

covered by both frameworks. Currently, actor4j only partly

supports the mobility.

TABLE I. COMPARISON OF SEMATIC PROPERTIES BETWEEN

AKKA AND ACTOR4J.

 Akka actor4j

Semantic

properties

State encapsulation Other actors cannot
be referenced directly

(ActorRef)

Other actors cannot
be referenced directly

(Universal Unique

Identifier, UUID)

Fairness Definition of a

throughput

Definition of a

throughput,

additionally queues
for different purposes

Location

transparency

Actor has its unique

ActorRef

Actor has its unique

UUID

Mobility Actors can be created
remotely,

?

Currently partially
implemented, only

load balancing at

creation time (related
to threads)

In following, the reactiveness is compared with the

reactive manifesto. Both frameworks are designed as

message driven, resilient and responsive (see TABLE II).

The elastic approach is currently not supported by actor4j.

TABLE II. COMPARISON OF REACTIVENESS BETWEEN AKKA

AND ACTOR4J.

 Akka actor4j

Reactive

system

Message driven Asynchronous

message transfer,

every actor has
its own message

queue

 Asynchronous

message transfer,

message queue is
located at the

threads

Resilient Supervision Supervision

Responsive Usage of
additionally

thread pools

 Usage of
ResourceActor’s

for heavy

computations
(additionally

thread pool)

Elastic ? Currently not
implemented

Both frameworks implement the following features:

pattern matching, persistence, the publish-subscribe pattern,

and well reactive streams (see TABLE III). Additionally,

128Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

actor4j supports an anti-flooding strategy using ring

buffered queues. For enhanced performance grouping of

actors is also available. Caching with actors is also

supported by actor4j (volatile and persistent caching over a

database).

TABLE III. COMPARISON OF ADDITIONAL FEATURES BETWEEN

AKKA AND ACTOR4J.

 Akka actor4j

Features

- Anti-flooding

strategy, important

queues are ring
buffered

- Grouping of actors

Pattern matching Pattern matching

Persistence Persistence

Publish-Subscribe
(see Event Bus,

Event Stream)

Publish-Subscribe

Reactive Streams Reactive Streams

- Caching

For the implementation of the remote communication

between actors, both frameworks use different approaches

(see TABLE IV). For actor4j, applications are provided that

can include several actors, which can be deployed separately

into the actor system. This can ensure a domain specific

separation of concerns. Akka supports failure detector,

sharing and a kind of distributed publish-subscribe.

TABLE IV. COMPARISON OF CLUSTER FEATURES BETWEEN

AKKA AND ACTOR4J.

 Akka actor4j

Cluster

TCP, UDP, Apache

Camel

REST-API,

Websocket, gRPC

- ActorApplication

planned, running in
the context of an

actor system

Failure Detector Failure Detector
planned

Sharding Sharding planned

Distributed Publish-

Subscribe

?

For testing Akka supports (see TABLE V) behavior

testing and integration testing. Actor4j supports behavior

testing and a verification method, integration testing is

planned.

TABLE V. COMPARISON OF TESTING FEATURES BETWEEN

AKKA AND ACTOR4J.

 Akka actor4j

Testing

Behaviour Testing

for an actor

Behaviour Testing for

an actor

Integration Testing
with JavaTestKit

Integration Testing
planned

- Verification

VI. ACTOR4J – FINAL DESIGN

In this Section the novel thread pool architecture (see

Figure 5) for actor4j is presented. Actor4j uses mainly data

structures that are lock-free (“synchronized by using a lock-

free technique” [30]). Therefore, in contrast to classical

synchronization techniques, performance loses are avoided.

With the use of lock-free programming, performance loses

are possible, too. This is the case especially if multiple

threads are frequently accessing the same resource (e.g.,

compare-and-swap conflicts).

The actor-oriented implementations presented in related

works use a sort of worker-queue for the thread pooling and

every actor has its own queue. The first idea was to avoid

this double queuing. Now the actors belonging to the thread,

will be operated directly from the thread message queue.

One advantage is that actor-context switches are avoided,

that would happen in the classical approach, where an

access to the actors queue is needed (pushing a new

message to the queue). Instead new messages are pushed to

the thread message queue, avoiding the actor context at first.

The disadvantage is that concurrent access (mainly inbound)

conflicts are raised on the thread message queue, caused by

other threads. The second idea is that actors belonging to the

same thread can communicate or share resources without

synchronization techniques (also absence of lock-free

programming). For this, a normal (not thread-safe) queue

has been set up. The third idea is to use two-level queues,

one that is thread safe and one that is not. This should

reduce concurrent access conflicts, from the belonging

working thread. The queue to the outside is protected, the

inner queues enables a higher performance in the absence of

additional protecting mechanism. The two-level queues

where inspired by the CPU cache levels. There was taken

for the overall design the same strategy as mentioned in

[26]: “First make it work, then measure, then optimize”.

Further explanations follow in the sub-sections below.

Figure 5. Presentation of the flow of message passing at actor4j (Thread

pool architecture of actor4j).

129Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

A. 1:N-architecture

All actors are permanently assigned to one thread (1:N-

architecture). The Thread is, in case of message delivery,

responsible for injection the message and the execution of

its associated actors. Actors can send messages to other

actors. These messages are stored in the respective thread

that is responsible for the receiving actor (see Figure 5 and

Figure 6). For clarification, actors don't have their own

queue, as in the classic approach.

B. Queues

The division into different queues ensures a fair message

flow. This ensures that other queues are processed

(whenever the thread gets a time quantum), even when the

input queue is used intensively. In each round (loop within

the thread) of all queues, a fixed number of messages is

processed if available. This is similar to the definition of

throughput in Akka [31]. So, the reactive system remains

responsive.

C. Three different ways of access

All queues use a ring buffer (also an effective block for

an anti-flooding strategy). If both or more corresponding

actors are assigned to the same thread, the internal queue

can be accessed. This is implemented as a

“CircularFifoQueue” [32] because no synchronization is

required in this case. If accessed from another thread, the

message is placed in the external queue. This must be

thread-safe now(non-blocking programming). For external

access and access from the server the queue is divided into

two stages.

D. Two stage division

L2 (Level 2) corresponds to a “MpscArrayQueue” [33]

and L1 (Level 1) of an “ArrayDeque”. This approach is

intended to achieve a performance enhancement when a

higher load of messages occur. The responsible thread then

works mainly with L1 and loads messages accordingly. This

concurrent access can be avoided to L2.

E. Directives queue

In regard to failure safety, there is also a special queue

which directives are processed by the respective thread with

the highest priority in order to ensure the consistency of the

actor system. There are stop and restart directives that can

affect single or multiple actors. If there are currently no

messages at the respective thread, the thread either goes into

the idle state for a short time interval or signals a yield

(“Thread voluntarily releases its computing time” [34],

translation).

F. Source code examples

Now follow some excerpts of the source code for

clarification:

• Processing a maximum specified number of

messages (throughput) per loop pass on the

example of the internal queue.

for (; hasNextInner<system.throughput &&
 poll(innerQueue);
 hasNextInner++);

• For the external queue first tried L1 is to be

processed. If there are no messages in L1, it will be

loaded accordingly from L2.

for (; hasNextOuter<system.throughput &&
 poll(outerQueueL1);
 hasNextOuter++);

if (hasNextOuter<system.throughput &&
 outerQueueL2.peek()!=null) {
 ActorMessage<?> message = null;

 for (int j=0;
 j<system.getBufferQueueSize() &&
 (message=outerQueueL2.poll())!=null; j++)
 outerQueueL1.offer(message);

 for (; hasNextOuter<system.throughput &&
 poll(outerQueueL1);
 hasNextOuter++);
}

A complete implementation of the class ActorThread is

given by default by the class DefaultActorThread [35].

G. Message processing in actor4j

Internally, message processing takes place in actor4j (see

Figure 6), similar to Akka. An actor wants to send a

message to another actor. This is first redirected to the

corresponding ActorCell. The ActorCell class contains the

actual background implementation of an actor. Each

ActorCell is assigned an actor. The message is then

forwarded to the dispatcher. This inserts the message

according to the selected recipient into the corresponding

queue of the thread (applied access options see Figure 5). As

soon as the message can be processed by the thread, it is

injected into the receiver actor for processing.

Figure 6. Schematic representation of the flow of message processing in

actor4j (cp. [28] of Akka).

VII. ACTOR4J– RESULTS

The performance of message passing was tested with a

DELL OptiPlex 7040, Intel® Core™ i7-6700 CPU (Skylake)

130Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

@3,40 GHz, 32 GB RAM and 8 MB L3 Cache. As the JVM

Oracle JDK 9.0.4 was used under Windows 10, 64 Bit.

Three benchmark scenarios are presented to get a picture of

the performance of actor4j's message throughput.

1. In the first case, only the internal queue is claimed.

The exchange of messages takes place on the same

thread (best performance is awaited).

2. In the second case, if only the external queue is

claimed. The exchange of messages takes place on

different threads (worst performance is awaited).

3. As a third case, if the internal and external queue of

the threads are used quasi evenly (bulk version).

The exchange of messages takes place on the same

or on a different thread (average performance is

awaited).

Additionally, in this paper the skynet [36] benchmark as

fourth benchmark is included, that shows message passing

in combination of massively dynamic creating and stopping

actors. In [37] this is done for “revealing the overhead for

actor creation” (similar approach).

The legend “…actor4j_100” or “…akka_100” in the

benchmark results means that a throughput of maximum

100 was set (cp. legends of Figure 7, Figure 8 and Figure 9).

Accordingly, maximal one hundred messages per queue will

be processed at once.

A. N-fold ring benchmark

The first is the N-fold ring benchmark. Ring or multi-

ring benchmarks for actors can be found also in [11] and

[37]. The idea is to bundle actors into groups, where they

are guaranteed to run on the same thread and therefore no

synchronization is required. For this purpose, an eightfold

ring (see Figure 7) was generated for the benchmark, i.e.,

one ring per thread in the parallel version. Thus, no message

exchange is needed between the threads at actor4j. In Akka

this possibility does not exist. In the case of actor4j, only the

internal queue (CircularFifoQueue) is used, since the

members of the ring groups remain together on a thread. All

actors are derived here from the ActorGroupMember class.

In this case, Akka has no chance to equal actor4j.

In part, actor4j has a factor seven higher throughput

compared to Akka. With ongoing number of actors

deployed, the actor-context switches are increased in the

corresponding thread. This results in less throughput. It also

must be considered, that with enabled Hyper-Threading

(HT), additional logical kernels through HT do not

correspond to fully-fledged pure physical cores (only 30%

increase in performance is expected) [9]. But with pure

physical cores the result of this benchmark for actor4j

should scale nearly linear, with an increased amount of

cores (by less deployed actors).

Figure 7. Results for the Eightfold-Ring benchmark.

actor4j vs. Akka.

B. Ping-Pong-Grouped benchmark

Next, the pairs were distributed over the threads so that

both partners are on a different thread. This ensures that

only the external queues of the threads are used. This is only

possible with actor4j in such differentiated manner. The

results in Figure 8 demonstrate that actor4j has lost in

performance through the intercommunication between the

threads. Akka stays nearly unchanged in throughput, what

was also the case in the benchmark before. Hand in hand

with more actors deployed, actor-context switches reduce

the message throughput. As mentioned before Akka does

double queuing on the thread pool and on the actors, which

is also a possible performance obstacle (see Section 4).

When multithreaded and with less actors deployed, actor4j

has a possible break-in in throughput, due to less work for

the corresponding threads, resulting in a blocking state.

Figure 8. Results for the Ping-Pong-Grouped benchmark.

actor4j vs. Akka.

131Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

C. Ping-Pong-Bulk benchmark

In the third benchmark (see Figure 9), the actors

communicate with each other in pairs (ping-pong). In

actor4j, the actors are randomly distributed over the threads.

This means that both the internal faster queue (Circular

FifoQueue) and the external queue (MpscArrayQueue) are

used (see also Chapter 4, Actor4j-Final Design). However,

the results should be interpreted with caution. Due to the

random distribution of the actors, fluctuations can be

expected when the benchmark is repeated. The same

message is sent several times (in this case one hundred

times) to the respective partner of the pairing (ping-pong),

which starts the ping-pong scheme. As a result, a hundred

messages are exchanged within the pairings each time the

game is interchanged. This was also the benchmark for

Akka or Akka.NET, with the advertising (50 million msg / s)

over the resulting message throughput has been made [38].

It should be noted that Akka performs much better in

bulk operations, with respect to message throughput. Both

frameworks perform nearly constantly with the same

throughput, for each data series. The reason for this is, that

there are less actor-context switches, because a bulk

operation is performed. Akka has at the last measuring point,

problems to handle the massive amount of receiving

messages, and struggles on that. Actor4j instead is protected

by established ring buffer queues to the outside, this protects

effectively against message flooding. The disadvantage of

that is possibly losing messages (counteract by increasing

the [buffer] queue size).

Figure 9. Results for the Ping-Pong-Bulk benchmark.

actor4j vs. Akka.

Which stands out in the three benchmarks discussed

before, that actor4j with one active thread reaches minimum

the same (or nearly the same) message throughput as the

active multi-threaded variant of Akka. At some points it has

even higher message throughput.

D. Skynet benchmark

At the last benchmark [36][39], slightly over one million
actors are created (exactly 1,111,111 actors), by spawning
for every actor recursively tens of them. The actors are
sending their ordinal number back to the parent, which are
then summed up (by one million actors is this 0.5M

*(1M+1)-1M), with the result of 499,999,500,000. Every
branch of an actor has one child actor with the same ordinal
number as his parent (so that the overall sum is correct). In
Figure 10, there is an example representation of the resulting
actor system structure. This benchmark can be used as a
stress test, for creating and optionally stopping actors, as
well that the framework is correctly implemented.

The results in TABLE VI are showing that the Akka
implementation for creating and stopping actors has a better
performance. For inclusively stopping actors, the Akka
implementation needs three times longer than for creating
them only. The reason for that is that Akka needs much more
time for message passing as actor4j, as seen in the equivalent
ping-pong grouped benchmark. With one thread the actor4j
implementation is slightly better in performance, because of
the usage of a non-synchronized queue (only in the case of
non-stopping the actors). For the case "without stopping the
actors", the actors will be stopped nevertheless after that,
because otherwise the memory usage is going to grow
constantly (is not included for calculation of the needed
time).

TABLE VI. COMPARISON OF THE SKYNET BENCHMARK

RESULTS.

without

stopping the

actors

without

stopping the

actors (only

one active

thread)

with

stopping

the

actors

with

stopping the

actors (only

one active

thread)

actor4j
5,911 ms

(s=133)

4,901 ms

(s=97)

8,226 ms

(s=223)

9,011 ms

(s=238)

Akka
2,808 ms
(s=213)

3,538 ms
(s=112)

7,236 ms
(s=274)

8,208 ms
(s=185)

Figure 10. Structure of the actor system

(Skynet benchmark with 111 actors created)

132Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

VIII. CONCLUSION

The results show that actor4j makes a more powerful

impression than Akka. The final design (see Section 4) has

proved to be elastic, responsive, and resilient. Actor4j was

always convincing, no matter what the actor constellation

(N-fold ring, ping-pong grouped, ping-pong bulk) was.

These benchmarks can be used to determine the

performance of inter- and intra-communication between the

threads. It has been found that even with the use of lock-free

queues these counter against a good scaling (see the ping-

pong benchmark). On the other hand, a very good scaling is

obtained with intra-communication, i.e., within a thread.

A. Advice

It is advisable to keep communication-active actors

together in one and on the same thread, especially if they

have a bounded context (see Domain Driven Design). By

bounded context is meant that an assignment to a together

interacting actor system is possible. With the actor model,

agent-based systems can be implemented well. For example,

it is useful to keep the ant grouped together as an actor

system (sensors, actuators, control unit) in an ant simulation.

An own basic ant simulation was built with Akka. An ant is

built up by a composition of systems which are describing a

comparable SDA-cycle (sense-decide-act) [40]. It is

expected that more interaction will occur within the ant

system than the environment. In addition, scaling is easier to

implement as additional actors are distributed to more

threads (when more processors are used).

B. Concept of the new architecture

In the classic design, one message queue is assigned to

each actor. This was relocated as already presented to the

competent actors thread. In theory, that makes sense. In the

real world there is a medium, the surrounding world,

between two actors. In particular, the air, which transmits

speech through the sound and can be recorded by an actor

by its sensors. This can be transferred to the actor model.

This means, it makes sense that there is a kind of network

layer between the actors, which temporarily stores messages

for the actors. Actor4j is also oriented on the four semantic

properties of the actor model (see Section 2). With actor4j it

is possible to replace very easily the default thread and

dispatcher implementation. Therefore, the framework is

very flexible, for changing or different providing

requirements.

C. Compliance of the four semantic properties

Communication partners are awarded in actor4j via their

UUID. Direct access to another actor is so avoided

(encapsulation). By default, a “deep copy” is carried out for

the message transmission, if the prerequisites are fulfilled

(interface Copyable implemented for the payload). The

payload contains the actual message. The header (sender,

recipient, tag) of the message is copied. A new instance of

ActorMessage is generated that contains the header and the

payload. Senders and receivers are represented by a UUID.

The UUIDs do not change (final). It is also possible to

transfer the payload as call-by-reference (without “deep

copy”). This remains in the responsibility of the developer.

 By alternately processing the queues in the actor threads,

fairness is given. By adjusting the value of throughput, the

degree of fairness can be adjusted. A throughput of one

would be absolutely fair [31], but the message processing

would then be more inefficient (reduction of the message

throughput). The order in which messages are transmitted

within an actor thread is given (intra-communication). In

inter-threading communication, the sequence is only

observed between two interacting actors [41]. Otherwise,

message communication is not deterministic [19].

The location transparency is ensured by the unique

UUID for actors. In actor4j, the assignment of an alias is

also possible for the simple identification of an actor. A

transfer of actors within the actor system (here: relocation to

other threads) is currently not implemented (also not in the

cluster).

The first purpose of mobility is load balancing. Another

reason is the displacement of actors to a different location.

D. Future work

One problem is that as the number of actors increases, the
throughput drops further and further. This is caused by the
constant actor-context switching. Probably this cannot be
avoided unless the computing power is increased (higher
clock frequency or more physical cores). One useful
enhancement could be a special priority queue (belongs to
the thread), for prioritized tasks, which can be added by the
actors. It is planned to test the actor4j framework under the
EU project STIMEY.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 Research and Innovation Program
under Grant Agreement Nº 709515 — STIMEY

REFERENCES

[1] Microsoft Azure, “Why a microservices approach to building
applications,” 2016, [Online]. Available from:
https://azure.microsoft.com/engb/documentation/articles/servi
ce-fabric-overview microservices/ [retrieved: October, 2016].

[2] M. Jansen and B. Wenzel, “Microservice-Architektur mit
Docker und Kubernetes,“ in Java mit Integrations-
SPEKTRUM, Issue 1, February/March 16, pp. 8-14, 2016.

[3] Microsoft Azure, “Overview of Service Fabric,” 2016,
[Online]. Available from: https://azure.microsoft.com/engb
/documentation/articles/service-fabric-overview/ [retrieved:
October, 2016].

[4] Microsoft, “Orleans - Virtual Actors,” 2010, [Online].
Available from: https://www.microsoft.com/en-us/research
/project/orleans-virtual-actors/ [retrieved: June, 2018]

[5] Microsoft Azure, “Introduction to Service Fabric Reliable
Actors,” 2016, [Online]. Available from:
https://azure.microsoft.com/en-gb/documentation/articles
/service-fabric-reliable-actors-introduction/ [retrieved: June,
2018]

133Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

https://azure.microsoft.com/engb/documentation/articles/service-fabric-overview%20microservices/
https://azure.microsoft.com/engb/documentation/articles/service-fabric-overview%20microservices/
https://azure.microsoft.com/engb/documentation/articles/service-fabric-overview/
https://azure.microsoft.com/engb/documentation/articles/service-fabric-overview/
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/
https://www.microsoft.com/en-us/research/project/orleans-virtual-actors/
https://azure.microsoft.com/en-gb/documentation/articles/service-fabric-reliable-actors-introduction/
https://azure.microsoft.com/en-gb/documentation/articles/service-fabric-reliable-actors-introduction/

[6] M. Abbott, “Art of Scalability, The: Scalable Web
Architecture, Processes, and Organizations for the Modern
Enterprise,” Addison-Wesley, p. 340, 2015.

[7] H. Sutter, “The Free Lunch Is Over. A Fundamental Turn

Toward Concurrency in Software,” In: Dr. Dobb's Journal

30(3), 2015, [Online]. Available from: http://www.gotw.ca

/publications/concurrency-ddj.htm [retrieved: June, 2018]

[8] N. Wirth, "A plea for lean software," in Computer, vol. 28, no.

2, pp. 64-68, Feb 1995.
[9] S. Akhter and J. Roberts, “Multi-Core Programming:

Increasing Performance through Software Multi-threading,”
Intel Corporation, p. 7, 2006.

[10] E. Westbrook, J. Zhao, Z. Budimlić, and V. Sarkar,
“Permission Regions for Race-Free Parallelism”, in
Khurshid S., Sen K. (eds) Runtime Verification, RV 2011.
Lecture Notes in Computer Science, vol. 7186, Springer,
Berlin, Heidelberg, 2012.

[11] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks for
the JVM platform: a comparative analysis,” in PPPJ, ACM,
2009, [Online]. Available from: http://osl.cs.illinois.edu
/media/papers/karmani-2009-pppj-actor_frameworks_for_the
_jvm_platform.pdf [retrieved: June, 2018]

[12] J. Bonér, D. Farley, R. Kuhn, M. Thompson, and Community,
“The Reactive Manifesto,” 2014, [Online]. Available from:
http://www.reactivemanifesto.org/ [retrieved: June, 2018].

[13] Lightbend Inc, “Akka,” 2018, [Online]. Available from:

https://github.com/akka/akka [retrieved: June, 2018].
[14] Lightbend Inc. “Akka: Case studies,” 2018, [Online].

Available from: https://www.lightbend.com/case-studies
[retrieved: June, 2018]

[15] J. D. Suereth, “Scala in Depth,” p. 229, Manning, 2012.

[16] D. A. Bauer, “Actor4j an actor implementation,” 2017,

[Online]. Available from: https://github.com/relvaner/actor4j-

core [retrieved: June, 2018]
[17] A. Miller, “Understanding actor concurrency, Part 1: Actors

in Erlang,” in JavaWorld, [Online]. Available from:
https://www.javaworld.com/article/2077999/java-
concurrency/understanding-actor-concurrency--part-1--actors-
in-erlang.html [retrieved: June, 2018]

[18] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D.

Lea, “Java Concurrency in Practice,” p. 273, 2006.
[19] R. K. Karmani and G. Agha. “Actors,” in Encyclopedia of

Parallel Computing, Springer, 2011, [Online]. Available from:
http://osl.cs.illinois.edu/media/papers/karmani-2011-
actors.pdf [retrieved: June, 2018]

[20] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular

Actor formalism for artificial intelligence,” in 3rd

International Joint Conference on Artificial Intelligence

(IJCAI), pp. 235-245, 1973.
[21] Lightbend Inc, “Akka: Actors,” 2016, [Online]. Available

from: http://doc.akka.io/docs/akka/2.4.0/java/untyped-
actors.html [retrieved: June, 2018]

[22] M. Lehmann and M. Werner, “Gut Wetter machen! Java, Play
und Akka für meteorologische Anwendungen beim Deutschen
Wetterdienst,” in JavaSPEKTRUM 3/2016, 2016

[23] J. Armstrong, “Programming Erlang: Software for a
Concurrent World (Pragmatic Programmers),” Pragmatic
Bookshelf, 2013.

[24] Lightbend Inc, “Akka: Supervision and Monitoring,” 2018,
[Online]. Available from: https://doc.akka.io/docs/akka
/2.5/general/supervision.html [retrieved: June, 2018]

[25] J. Barklund and R. Virding, “The Erlang 4.7.3 Reference
Manual,” p. 133, 1999.

[26] K. Lundin, “Inside the Erlang VM,” Ericsson AB, 2008,
[Online]. Available from: http://www.erlang.se/euc/08/euc
_smp.pdf [retrieved: June, 2018]

[27] V. Jovanovic and P. Haller, “The Scala Actors Migration
Guide,” EPFL, [Online]. Available from: https://docs.scala-
lang.org/overviews/core/actors-migration-guide.html

[retrieved: June, 2018]

[28] D. Wyatt, “AKKA Concurrency,” Artima Inc, p. 72, 2013.

[29] D. Lea, “ForkJoin updates,” 2012, [Online]. Available from:
http://cs.oswego.edu/pipermail/concurrency-interest/2012-
January/008987.html [retrieved: June, 2018]

[30] M. Botincan and D. Runje, “Lock-Free Stack and Queue. Java
vs .NET,” 29th International Conference on Information
Technology Interfaces, Cavtat, pp. 741-746, 2007

[31] Lightbend Inc, “Akka: Dispatchers,” 2016, [Online].
Available from: https://doc.akka.io/docs/akka/snapshot
/dispatchers.html?language=scala [retrieved: June, 2018]

[32] The Apache Software Foundation, “Apache Commons
Collections,” 2014, [Online]. Available from:
https://commons.apache.org/proper/commons-collections/
[retrieved: June, 2018]

[33] N. Wakart, “JCTools,” 2015, [Online]. Available from:
https://github.com/JCTools/JCTools [retrieved: June, 2018]

[34] C. Ullenboom, “Java ist auch eine Insel: Das umfassende

Handbuch,” Kapitel 14.3.5, Galileo Computing, 2010,

[Online]. Available from: http://openbook.rheinwerk-

verlag.de/javainsel9/ [retrieved: June, 2018]
[35] D. A. Bauer, “Actor4j: DefaultActorThread,” 2017, [Online].

Available from: https://github.com/relvaner/actor4j-
core/blob/master/src/main/java/actor4j/core/DefaultActorThre
ad.java [retrieved: June, 2018]

[36] A. Temerev, “Skynet 1M concurrency microbenchmark,”
2016, [Online]. Available from: https://github.com/atemerev
/skynet [retrieved: June, 2018]

[37] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting
actor programming in C++,” in Computer Languages,
Systems & Structures 45, pp. 105-131, 2016, [Online].
Available from: https://actor-framework.org/pdf/chs-rapc-
16.pdf [retrieved: June, 2018]

[38] Lightbend Inc, “Akka: TellThroughputPerformanceSpec
.scala”, 2014, [Online]. Available from:
https://github.com/akka/akka/blob/release-2.3/akka-actor-
tests/src/test/scala/akka/performance/microbench/TellThrough
putPerformanceSpec.scala [retrieved: June, 2018]

[39] R. Pressler, “Go and Quasar: A Comparison of Style and
Performance,” in DZone, 2016, [Online]. Available from:
https://dzone.com/articles/go-and-quasar-a-comparison-of-
style-and-performanc [retrievd: June, 2018].

[40] M. Wooldrige, “An Inroduction to MultiAgent Systems,”
John Wiley & Sons Ltd, p. 22, 2009.

[41] Lightbend Inc, “Akka: Message Delivery Reliability.

Discussion: Message Ordering,” 2015, [Online]. Available

from: http://doc.akka.io/docs/akka/2.4.1/general/message-

delivery-reliability.html# message-ordering [retrieved: June,

2018]

134Copyright (c) IARIA, 2018. ISBN: 978-1-61208-650-7

AICT 2018 : The Fourteenth Advanced International Conference on Telecommunications

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://osl.cs.illinois.edu/media/papers/karmani-2009-pppj-actor_frameworks_for_the_jvm_platform.pdf
http://osl.cs.illinois.edu/media/papers/karmani-2009-pppj-actor_frameworks_for_the_jvm_platform.pdf
http://osl.cs.illinois.edu/media/papers/karmani-2009-pppj-actor_frameworks_for_the_jvm_platform.pdf
http://www.reactivemanifesto.org/
https://github.com/akka/akka
https://www.lightbend.com/case-studies
https://github.com/relvaner/actor4j-core
https://github.com/relvaner/actor4j-core
https://www.javaworld.com/article/2077999/java-concurrency/understanding-actor-concurrency--part-1--actors-in-erlang.html
https://www.javaworld.com/article/2077999/java-concurrency/understanding-actor-concurrency--part-1--actors-in-erlang.html
https://www.javaworld.com/article/2077999/java-concurrency/understanding-actor-concurrency--part-1--actors-in-erlang.html
http://osl.cs.illinois.edu/media/papers/karmani-2011-actors.pdf
http://osl.cs.illinois.edu/media/papers/karmani-2011-actors.pdf
http://doc.akka.io/docs/akka/2.4.0/java/untyped-actors.html
http://doc.akka.io/docs/akka/2.4.0/java/untyped-actors.html
https://doc.akka.io/docs/akka/2.5/general/supervision.html
https://doc.akka.io/docs/akka/2.5/general/supervision.html
http://www.erlang.se/euc/08/euc_smp.pdf
http://www.erlang.se/euc/08/euc_smp.pdf
https://docs.scala-lang.org/overviews/core/actors-migration-guide.html
https://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://cs.oswego.edu/pipermail/concurrency-interest/2012-January/008987.html
http://cs.oswego.edu/pipermail/concurrency-interest/2012-January/008987.html
https://doc.akka.io/docs/akka/snapshot/dispatchers.html?language=scala
https://doc.akka.io/docs/akka/snapshot/dispatchers.html?language=scala
https://commons.apache.org/proper/commons-collections/
https://github.com/JCTools/JCTools
http://openbook.rheinwerk-verlag.de/javainsel9/
http://openbook.rheinwerk-verlag.de/javainsel9/
https://github.com/relvaner/actor4j-core/blob/master/src/main/java/actor4j/core/DefaultActorThread.java
https://github.com/relvaner/actor4j-core/blob/master/src/main/java/actor4j/core/DefaultActorThread.java
https://github.com/relvaner/actor4j-core/blob/master/src/main/java/actor4j/core/DefaultActorThread.java
https://github.com/atemerev/skynet
https://github.com/atemerev/skynet
https://actor-framework.org/pdf/chs-rapc-16.pdf
https://actor-framework.org/pdf/chs-rapc-16.pdf
https://github.com/akka/akka/blob/release-2.3/akka-actor-tests/src/test/scala/akka/performance/microbench/TellThroughputPerformanceSpec.scala
https://github.com/akka/akka/blob/release-2.3/akka-actor-tests/src/test/scala/akka/performance/microbench/TellThroughputPerformanceSpec.scala
https://github.com/akka/akka/blob/release-2.3/akka-actor-tests/src/test/scala/akka/performance/microbench/TellThroughputPerformanceSpec.scala
https://dzone.com/articles/go-and-quasar-a-comparison-of-style-and-performanc
https://dzone.com/articles/go-and-quasar-a-comparison-of-style-and-performanc
http://doc.akka.io/docs/akka/2.4.1/general/message-delivery-reliability.html#message-ordering
http://doc.akka.io/docs/akka/2.4.1/general/message-delivery-reliability.html#message-ordering

