
Automated Translation of MATLAB Code to C++ with Performance and Traceability

Geir Yngve Paulsen
and Stuart Clark

Simula Research Laboratory, Norway
Email: geirpa@gmail.com,stuart@simula.no

Bjørn Nordmoen, Sergey Nenakhov
and Aron Andersson
WesternGeco, Norway

Email: {nordmoen,snenakhov,AAnderson11}@slb.com

Xing Cai
Simula Research Laboratory, Norway

University of Oslo, Norway
Email: xingca@simula.no

Hans Petter Dahle
Fornebu Consulting, Norway

Email: Hans.Petter.Dahle@fornebuconsulting.com

Abstract—In this paper, we discuss the implementation and
performance of m2cpp: an automated translator from MATLAB
code to its matching Armadillo counterpart in the C++ language.
A non-invasive strategy has been adopted, meaning that the user
of m2cpp does not insert annotations or additional code lines
into the input serial MATLAB code. Instead, a combination
of code analysis, automated preprocessing and a user-editable
metainfo file ensures that m2cpp overcomes some specialties of
the MATLAB language, such as implicit typing of variables and
multiple return values from functions. Thread-based parallelisa-
tion, using either OpenMP or Intel’s Threading Building Blocks
(TBB) library, can also be carried out by m2cpp for designated
for-loops. Such an automated and non-invasive strategy allows
maintaining an independent MATLAB code base that is favoured
by algorithm developers, while an updated translation into the
easily readable C++ counterpart can be obtained at any time.
Illustrating examples from seismic data processing are provided
in this paper, with performance results obtained on multicore
Sandy Bridge CPUs and Intel’s Knights-Landing Xeon Phi
processor.

Keywords–Code translation; Seismology; Image processing;
MATLAB; C++.

I. INTRODUCTION

MATLAB R© is a popular software for computational math-
ematics, particularly because of its accessibility for scientists
and engineers as a high-level scripting language. This ease of
use and a large library of toolboxes make MATLAB a good
choice for testing and prototyping new algorithms. However,
once the algorithms are tested, the ability to sufficiently opti-
mise MATLAB code may become a key concern. MATLAB
is a scripting language, so it cannot make use of compile-
time based optimisations, such as latency-grouped instructions.
While MATLAB offers multi-process based parallelisation,
multi-thread optimisation can in many cases work better on
current high-performance systems [1]. As a result of these
issues, in situations for which optimisation is extremely impor-
tant, rewriting the MATLAB code in another language, such
as C++, could be a remedy. For that purpose, the Armadillo
C++ library was developed to enable MATLAB-like syntax in
a C++ setting [2][3].

Although Armadillo has adopted a MATLAB-resembling
syntax for matrix and vector based computations, there are
still distinctive syntax differences between Armadillo and
MATLAB. For example, Armadillo’s indexing of matrix and
vector entries starts from 0, whereas indices in MATLAB start

from 1. Another example is extracting columns or rows from
a matrix, which has a drastically different syntax in MATLAB
than in Armadillo. (An incomplete list of the syntax differences
can be found in [3].) Manually translating a MATLAB code to
its C++ counterpart in Armadillo is thus tedious and potentially
error prone. Since there is an almost one-to-one mapping
between the two high-level syntaxes, automated MATLAB-
to-Armadillo translation is theoretically possible. However,
MATLAB and C++ are two fundamentally different languages.
Some inherent language features of MATLAB pose challenges
to an automated code translator. Two such examples are
implicit typing of variables and multiple return values from
functions. To handle these challenges, some existing MAT-
LAB translators ask the user to insert annotations of variable
declaration and initialisation. Such an invasive approach is not
very user-friendly, and may also cause problems if algorithm
developers want to further change the MATLAB code.

Therefore, we aim for an automated MATLAB-to-C++
translator that adopts a non-invasive strategy. This is achieved
by combining (1) code analysis enabled inside the translator,
(2) a fully automated preprocessor that identifies the actual
types of all variables used in a MATLAB program, and (3)
an accompanying metainfo file that allows user editing and, if
necessary, introduction of special translation rules designated
for some of the MATLAB code lines. At the same time,
we certainly do not want the auto-translated C++ code to
lose the capability of parallel computing, which is already
available through MATLAB’s Parallel Computing Toolbox and
Distributed Computing Server [4]. We have focused on par-
allelising designated for-loops (through MATLAB’s parfor
construct) as one inherent step of the auto-translation, making
use of either OpenMP [5] or Intel’s Threading Building Blocks
(TBB) [6] library in a shared-memory setting.

This paper thus presents the design and implementation
of m2cpp, an automated MATLAB-to-Armadillo translator. It
has been substantially enhanced from its initial version (named
Matlab2cpp [7]). Using illustrating examples from seismic data
processing, we will show the capability of m2cpp. Performance
of the auto-translated C++ programs is measured for both serial
and parallel executions, compared with the original MATLAB
versions. The tested hardware platforms involve multicore
Xeon Sandy Bridge CPUs and Intel’s second-generation Xeon
Phi processor (Knights Landing). As a benefit of the readable
C++ code, which retains the same structure and variable

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

names of the original MATLAB code, we also demonstrate
a particular example of further performance optimisation of
the auto-generated C++ code.

The remainder of the paper is organised as follows. Sec-
tion II summarises the overall design and main features of the
m2cpp translator. Section III uses four real-world examples
to compare the performance of MATLAB, auto-translated and
manually optimised C++ codes, in both serial and parallel
settings. Section IV places the present paper in the landscape
of existing relevant work, whereas Section V provides a few
concluding remarks and some thoughts on future work.

II. DESIGN AND IMPLEMENTATION

A. Overall Structure

As mentioned above, the aim of m2cpp is to facilitate an
automatic and non-invasive translation from MATLAB code
to the matching Armadillo counterpart in the C++ language.
The non-invasiveness refers to that the user of m2cpp does
not need to insert any annotation or extra coding into a serial
MATLAB program before passing it to the translator. The
m2cpp translator itself is written in the Python language,
with a tailor made top-down recursive descent parser [8] that
follows the same approach adopted by ANTLR [9]. The parser
reads the input MATLAB code and internally sets up an
abstract syntax tree, which is then subjected to a post-order
tree walk [8] for necessary code analysis and translation to
the resulting C++ code. Tasks of code analysis include, e.g.,
identifying MATLAB functions that return multiple values,
which are translated as additional input arguments of the
corresponding C++ functions. Another important task of code
analysis is in connection with thread-based parallelisation of
for-loops, where some variables have to be made private per
thread to avoid race conditions.

B. Metainfo File

For the automatic translation of a MATLAB program
to work correctly, m2cpp also relies on an accompanying
metainfo file, which has the same name as the (principal)
MATLAB input file but ending with *.m.py. This approach
ensures that the m2cpp translator is non-invasive to the input
MATLAB code, because the additional information needed
for the code translation is provided in a separate file, easily
editable by the user if needed. The metainfo file consists of
three parts, where the first part is a list of all variables to be
encountered, containing the name and type of each variable.
This part of information can be automatically filled out by
an automated preprocessor (see below). The second part of
the metainfo file, marked as the includes segment, contains
explicit C++ include statements needed by the Armadillo
library, as well as necessary include statements when the
entire source code is spread over several files. These include
statements are figured out by the automated preprocessor and
will later be inserted into the translated C++ code. The third
part of the metainfo file, marked as the verbatims segment,
is optional. Here, the user has the possibility of introducing
special translation rules. That is, the user can dictate how
a specific code line in the MATLAB program should be
translated into C++, without following the general translation
rules of m2cpp.

C. Preprocessing
There is a preprocessing functionality with m2cpp. The

main purpose is to automatically prepare the metainfo file with
respect to identifying the actual type of each variable, which
is needed for the subsequent MATLAB-to-Armadillo trans-
lation. Automatic identification of variable types is achieved
by autonomously running a copy of the MATLAB program
with inserted dump function calls for recording all the state
information, including the actual data type of all encountered
MATLAB variables. The recorded data type information is
then automatically extracted and inserted into the metainfo
file. Even if m2cpp is used on a computer without a MATLAB
installation, the preprocessor of m2cpp will automatically iden-
tify all the encountered MATLAB variables, while providing a
reasonable guess of the variable types. The user can then make
corrections to the variable type information in the metainfo file,
if necessary.

In a typical code development scenario, where the input
MATLAB code is repeatedly changed, an existing metainfo
file can be reused provided that the changes on the MATLAB
side do not introduce new variables or non-standard statements
that require a special translation rule. Even if such changes take
place on the MATLAB side, it is often more convenient for
the user to directly edit the metainfo file, without having to
re-run the preprocessor of m2cpp.

D. Parallelisation of For-Loops
The focus of m2cpp with respect to parallelisation is on

MATLAB for-loops that have independent iterations. These
for-loops are assumed to be already marked as parfor
constructs in the MATLAB program. The m2cpp translator
considers shared memory and adopts thread-based parallelisa-
tion of the designated MATLAB for-loops. More specifically,
the user of m2cpp can freely choose between parallelisation
enabled by the OpenMP [5] standard or Intel’s TBB library [6].
For the case of OpenMP, a compiler directive #pragma
omp parallel for is automatically inserted before each
designated for-loop. For the case of TBB, the code lines shown
in Figure 1, making use of C++11’s lambda expressions, are
automatically inserted for each designated for-loop.

tbb::parallel_for(
tbb::blocked_range<size_t>(1,num_points+1),
[&](const tbb::blocked_range<size_t>& _range) {
// declaration of thread-private variables ...
for(size_t i=_range.begin();i!=_range.end();++i)
{
// loop iteration body ...

}
}

);

Figure 1. An example of parallelising a for-loop in TBB.

Common for both parallelisation approaches, m2cpp is able
to properly introduce temporary variables that are private to
each thread, so that race conditions will not happen.

E. Limitations
It should be noted that m2cpp is not supposed to translate

any MATLAB code. The automated translation of m2cpp is
restricted to MATLAB programs that make use of matrix and
vector computations that are covered by the functionality of

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

the Armadillo library. Nevertheless, we have included a couple
of new C++ functions beyond the original functionality of
Armadillo, so that typical plotting functions of MATLAB can
also be automatically translated by m2cpp.

In addition, two special features of the MATLAB lan-
guage can not be handled by m2cpp. First, MATLAB allows
a variable to implicitly change its type within a program.
This is fundamentally in contrast to the static typing rule of
C++. Although for some cases, it is possible to introduce
a new variable (having a different name) in the C++ code
to resolve the implicit change of a MATLAB variable type,
we have decided to not support this, due to the infrequent
occurrence of variable type changes in MATLAB programs.
The other special MATLAB feature is dynamic expansion
of matrices and vectors. It typically happens with variables
that are declared with empty storage but are dynamically
expanded inside a loop. In principle, a detailed code analysis
can deduce the final size of dynamically expanded matrices
or vectors, so that the translated C++ code can declare the
matrices or vectors with a correct size. But this requires a
rather elaborate code analyser, not yet supported in m2cpp.
Another cumbersome and inefficient option is to frequently
insert a call to the resize function of Armadillo, which we
deem non-viable. As a remedy, though, the user can introduce
a special translation rule in the metainfo file to prescribe a
correct size for each dynamically-expanded MATLAB matrix
or vector variable.

III. RESULTS

A. SeismicLab
We have chosen the open-source MATLAB package Seis-

micLab [10], which concerns seismic data processing, for veri-
fying the correctness of m2cpp-translated C++ code. Moreover,
we want to measure the speed of the translated C++ code, in
both serial and parallel computing settings, for a comparison
with the original MATLAB code.

For this paper, four relatively computation-heavy demo
programs from SeismicLab have been chosen. They
are parabolic_moveout_demo, radon_demo_1,
moveout_demo and fx_decon_demo. (Each demo
program spans several *.m files.) We have enlarged the
computation size for all the four demos by increasing the
resolution of the original input data files with help of linear
interpolation. For the first two demos, which share the same
input data file, the new computation size is 4004 × 1568,
whereas the new computation size is 4176 × 2432 and
2004× 1600 for the last two demos, respectively.

The numerical results produced by the auto-translated C++
codes have been carefully compared with those from the
original MATLAB codes, to ensure the correctness of the code
translation done by m2cpp. In the remainder of this section,
our focus is thus directed to the serial and parallel efficiency
of the auto-translated C++ codes.

B. Example of Parabolic Moveout
Readability of the auto-translated C++ code is ensured by

retaining the exact same coding structure and variable names
as in the original MATLAB code. For instance, let us first show
in Figure 2 the main computation segment from the original
MATLAB code for the example of parabolic moveout.

for it = 1:ntau
for iq = 1:nq
time = tau(it) + q(iq)*(h/hmax).ˆ2 ;
s = zeros(2*L+1,nh);

for ig = -L:L;
ts = time + (ig-1)*dt;

for ih = 1:nh
is = ts(ih)/dt+1;
i1 = floor(is);
i2 = i1 + 1;

if i1>=1 & i2<=nt ;
a = is-i1;
s(ig+L+1,ih) = (1.-a)*d(i1,ih) + a*d(i2,ih);

end;
end

end

s = s.*H;
s1 = sum((sum(s,2)).ˆ2);
s2 = sum(sum(s.ˆ2));
S(it,iq) = s1-s2;

end
end

Figure 2. The original MATLAB code of the computational core of the
parabolic moveout example.

The MATLAB code segment shown in Figure 2 constitutes
the computational core of the parabolic moveout example. It
is in fact a nested for-loop of four layers. The corresponding
code segment of the auto-translated C++ code is shown in
Figure 3. We can see that the C++ code adopts the Armadillo
syntax while maintaining the same readability as the original
MATLAB code. (We remark that the % operator in Armadillo
does element-wise multiplication.)

for (it=1; it<=ntau; it++) {
for (iq=1; iq<=nq; iq++) {
time = tau(it-1)+q(iq-1)*arma::square(h/hmax) ;
s = arma::zeros<mat>(2*L+1, nh) ;

for (ig=-(L); ig<=L; ig++) {
ts = time+(ig-1)*dt ;
for (ih=1; ih<=nh; ih++) {
is = ts(ih-1)/dt+1 ;
i1 = std::floor(is) ;
i2 = i1+1 ;

if (i1>=1&&i2<=nt) {
a = is-i1 ;
s(ig+L, ih-1) = (1.-a)*d(i1-1, ih-1)

+a*d(i2-1, ih-1) ;
}

}
}
s = s%H ;
s1 = arma::as_scalar(

arma::sum(arma::square(arma::sum(s, 1)))) ;
s2 = arma::sum(arma::sum(arma::square(s))) ;
S(it-1, iq-1) = s1-s2 ;

}
}

Figure 3. The auto-translated C++ code of the computational core of the
parabolic moveout example.

Auto-parallelisation of the outermost it-indexed for-loop
can also be carried out by m2cpp, via either OpenMP or TBB
as described in Section II-D. This merely requires adding a
comment of form %#PARFOR above the target for-loop in the
MATLAB input code. (The auto-parallelised C++ code is not
shown.)

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

C. Time Measurements

To study the performance of the auto-translated C++ codes,
we used two representative hardware platforms: a dual-socket
2×8-core Sandy Bridge server and a 68-core Knights-Landing
(KNL) Xeon Phi processor. The hardware specification can
be found in Table I. The compilation flags used for the
C++ codes were -Ofast, -xHost, -D NDEBUG,
-D ARMA_NO_DEBUG, -lmkl_intel_lp64,
-lmkl_core, -lmkl_sequential. It should be
noticed that Intel’s Math Kernel Library (MKL) is invoked
by the auto-generated C++ codes when applicable. This is
fair with respect to the original MATLAB codes, which
also internally invoke Intel’s MKL when applicable. For
the codes parallelised with TBB, the additional compilation
flags -std=c++11 and -ltbb were also used. Each time
measurement listed in Tables II-V was obtained by running
the code at least three times and reporting the fastest time.

TABLE I. HARDWARE SPECIFICATION OF THE TWO TESTBED
PLATFORMS USED.

Platform Sandy Bridge server KNL
Processor model E5-2670 (dual socket) Xeon Phi 7250
Clock frequency 2.6 GHz 1.4 GHz
Core count 16 (2 × 8) 68
Compiler icpc v17.0.1 icpc v17.0.0

Table II compares the serial performance of the auto-
translated C++ code, i.e., executed on only one hardware core
of each machine. Since MATLAB (version R2016a) is only
available on the dual-socket server, time measurements of
the original MATLAB code are thus only reported for that
system. It is clear that the m2cpp-translated C++ versions
run considerably faster than the MATLAB counterparts on
the dual-socket server. (The only exception is the fx_decon
example, for which the core computation is done using Intel’s
MKL for both MATLAB and C++ versions.) Moreover, the
single-core C++ performance obtained on KNL is lower than
that obtained on a single core of the Sandy Bridge CPU,
because of a much lower clock frequency and the absence
of an L3 cache.

TABLE II. SINGLE-CORE TIME USAGE (IN SECONDS) OF FOUR
DEMO PROGRAMS FROM THE SEISMICLAB PACKAGE.

Code MATLAB C++ C++
Platform Server Server KNL
Parabolic moveout 261.7 59.5 133.2
Radon1 33.6 19.0 41.6
Moveout 3.0 0.9 1.6
Fx decon 2.7 2.0 4.0

Regarding the parallel performance, Tables III-IV show that
the auto-translated C++ programs (using either OpenMP or
TBB) get speedup when the number of threads increases up
to the same number as physical cores. It should be remarked
that MATLAB’s parfor only works for the fx_decon ex-
ample, due to a rather conservative MATLAB runtime system,
although the iterations are actually independent in the other
three examples. Therefore, parallel MATLAB performance is
only reported for the fx_decon example in Table IV, not the
other three examples in Table III.

TABLE III. PARALLEL TIME USAGE (IN SECONDS) OF
SEISMICLAB’S PARABOLIC_MOVEOUT, RADON1 AND MOVEOUT

DEMOS.

Parabolic moveout
Dual-socket server KNL

threads OpenMP TBB OpenMP TBB
1 59.3 59.9 126.4 128.5
2 30.1 30.0 84.6 66.1
4 15.5 15.3 44.2 32.9
8 8.1 7.9 22.1 17.8

16 4.4 4.4 11.4 9.4
32 4.7 4.2 6.1 5.0
68 3.0 3.6

Radon1
Dual-socket server KNL

threads OpenMP TBB OpenMP TBB
1 18.4 19.1 41.1 42.0
2 10.8 10.6 22.9 24.0
4 6.5 6.4 13.6 13.8
8 4.4 4.4 8.3 8.8

16 4.0 3.5 5.6 6.5
32 3.8 3.6 4.3 4.9
68 3.8 4.5

Moveout
Dual-socket server KNL

threads OpenMP TBB OpenMP TBB
1 0.91 0.85 1.56 1.78
2 0.56 0.54 1.03 0.98
4 0.39 0.38 0.61 0.54
8 0.31 030 0.35 0.35

16 0.30 0.27 0.25 0.25
32 0.29 0.26 0.20 0.20
68 0.18 0.19

TABLE IV. PARALLEL TIME USAGE (IN SECONDS) OF
SEISMICLAB’S FX_DECON DEMO.

Fx decon
Dual-socket server KNL

threads MATLAB OpenMP TBB OpenMP TBB
1 2.92 1.99 1.99 3.75 3.72
2 1.76 1.32 1.32 2.61 2.42
4 1.15 1.01 0.99 1.91 1.72
8 0.86 0.85 0.82 1.49 1.40

16 0.86 0.85 0.75 1.28 1.23
32 1.22 1.21
68 1.25 1.24

D. Further Manual Optimisations

A careful reader will notice that the original MATLAB
code of the parabolic moveout example (shown in Sec-
tion III-B) is not efficiently programmed. One major problem
is that the d matrix is traversed in a row-major fashion,
contrary to the underlying column-major data structure (in
both MATLAB and Armadillo). The auto-translated C++ code
is consequently also inefficient, even though it is much faster
than the original MATLAB code (see Table II). Since the auto-
translated C++ code has the same readability, it is possible for
an experienced programmer to carry out further optimisations.
Figure 4 contains an improved code segment that shows the
result of such manual optimisations:

It can be seen that the manually optimised C++ code
segment in Figure 4 has swapped the ih-indexed for-loop with
the ig-indexed for-loop. Moreover, the s matrix and ts vector
have now become obsolete and thus removed. When possible,
the if-test is lifted out of the innermost for-loop, allowing the
compiler to do auto-vectorisation. The hand-optimised code
also uses two statically allocated arrays: s_temp and H, both

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

for (it=1; it<=ntau; it++) {
for (iq=1; iq<=nq; iq++) {

time = tau(it-1)+q(iq-1)*arma::square(h/hmax) ;
memset(s_temp, 0, sizeof(s_temp));
s2 = 0.;

for (ih = 1; ih <= nh; ih++) {
double is_start_double = time(ih - 1) / dt ;
int is_start = std::floor(is_start_double);
a = is_start_double - is_start;

if (is_start-L >= 1 && is_start+L <= nt) {
for (ig = -(L); ig <= L; ig++) {

i1 = is_start + ig;
ss = ((1.- a)*d(i1-1, ih-1) + a*d(i1, ih-1))*H[ig + L];
s2 += ss*ss;
s_temp[ig + L] += ss;

}
}
else {

for (ig = -(L); ig <= L; ig++) {
i1 = is_start + ig;
if (i1 >= 1 && i1 < nt) {

ss = ((1.- a)*d(i1-1, ih-1) + a*d(i1, ih-1))*H[ig + L];
s2 += ss*ss;
s_temp[ig + L] += ss;

}
}

}
}
s1 = 0;
for (int i = 0; i < _countof(s_temp); ++i)

s1 += s_temp[i]*s_temp[i] ;
S(it-1, iq-1) = s1-s2 ;

}
}

Figure 4. The further improved computational C++ kernel of the parabolic moveout example after manual optimisations.

of length 2*L+1, where the latter replaces the unnecessary H
matrix in the original MATLAB code and the auto-translated
C++ code.

On a single core, the hand-optimised C++ code runs more
than 5 times faster on both the Sandy Bridge CPU and the
KNL Xeon Phi processor, as shown in Table V. Although
some of the manual optimisations are also applicable to the
original MATLAB code, the resulting performance gain is
smaller because MATLAB is not a compiled language. Table V
details the parallel performance of the hand-optimised C++
code. It remains to be investigated why the hand-optimised
OpenMP version runs slower than the TBB counterpart on the
KNL Xeon Phi processor (unless all the 68 cores are used).

IV. RELATED WORK

To our knowledge, with respect to automated MATLAB-to-
C/C++ code translation, the only existing tools are MATLAB
Coder [11] and MATISSE [12]. The former is MATLAB’s
commercial product and makes use of GUI-supported direc-
tives to address variable types and shapes, whereas the latter
relies on an aspect-oriented programming language (LARA)
for initialising variables and specifying their types and shapes.
Both tools are thus, to a certain extent, invasive to the orig-
inal MATLAB code. Moreover, MATISSE does not support
parallelisation in the translated C code.

Compared with [7], the m2cpp translator discussed in the

present paper has been considerably enhanced. For example,
m2cpp’s preprocessor is now capable of automatically identi-
fying the type of variables used in the input MATLAB code.
Moreover, MATLAB functions that have multiple return values
can now be handled by m2cpp. A very important new feature
of m2cpp is its capability of adopting multiple threads to
parallelise the independent iterations of a designated for-loop,
with help of either OpenMP or Intel TBB. The responsibility of
ensuring iteration independency lies with the user, who labels
the designated for-loops of multi-threading by %#PARFOR in
the MATLAB source. With respect to performance study, the
present paper has included detailed time measurements of both
original MATLAB codes and auto-translated C++ codes, using
different core counts on a two-socket multicore CPU server
and one second-generation Xeon Phi processor. An example
of further manual optimisations of auto-translated C++ code
has also been provided to show the readability and traceability
of m2cpp output.

V. CONCLUSION

Indeed, as the authors of [13] have pointed out, translating
MATLAB code to the C/C++ counterpart should be the last
option for speeding up MATLAB programs. However, when
efficient serial programming practices in the MATLAB context
are insufficient or even not applicable, code translation can be
the remedy. The four examples from SeismicLab show that the
auto-translated Armadillo code in C++ has a clear performance

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE V. TIME USAGE COMPARISON BETWEEN ORIGINAL/AUTO-TRANSLATED AND HAND-OPTIMISED CODES FOR THE
PARABOLIC_MOVEOUT DEMO.

Serial performance MATLAB (on server) C++ (on server) C++ (on KNL)
Original/auto-translated 261.7 59.5 133.2
Hand-Optimised 119.1 10.8 26.5
Parallel performance N/A OpenMP TBB OpenMP TBB
2 threads 5.64 5.88 24.52 13.70
4 threads 2.97 3.07 12.79 7.00
8 threads 1.68 1.72 6.64 4.18
16 threads 1.03 1.09 3.67 2.46
32 threads 0.87 0.83 2.15 1.39
68 threads 1.24 1.17

advantage over the MATLAB counterpart, except when the
computational core of a MATLAB code already internally
uses multi-threaded and highly optimised math libraries such
as Intel’s MKL. The automated m2cpp translator is not only
100% non-invasive for serial MATLAB code, but also retains
readability of the resulting C++ code, giving rise to traceability
of every algorithmic structure and detail. This in turn allows
further manual code optimisations if needed.

Applying m2cpp to more real-world examples will be the
best way to uncover new limitations and/or inefficiencies of
the MATLAB-to-C++ translator, thereby prompting further
improvements of m2cpp. We thus hope that the open-source
software of m2cpp [14] will encourage more testing, especially
among industrial users. A future research topic that concerns
parallelising m2cpp-translated C++ code, in addition to the cur-
rently adopted data-parallel approach, is how to automatically
identify independent tasks in the input MATLAB code and
thereafter insert task-parallel execution in the auto-translated
C++ code.

ACKNOWLEDGMENT

Dr. Jonathan Feinberg is acknowledged for his impor-
tant contributions to an earlier version of the MATLAB-
to-Armadillo translator. The translator was developed within
the EMC2 project [15] – Embedded multi-core systems for
mixed criticality applications in dynamic and changeable
real-time environments. The research and development work
has received funding from Research Council of Norway and
ARTEMIS Joint Undertaking (JU) under grant agreement
No. 621429.

REFERENCES
[1] H. Inoue and T. Nakatani, “Performance of multi-process and multi-

thread processing on multi-core SMT processors,” in 2010 IEEE In-
ternational Symposium on Workload Characterization (IISWC), Dec.
2010, pp. 1–10.

[2] C. Sanderson, “Armadillo: An Open Source C++ Linear Algebra Li-
brary for Fast Prototyping and Computationally Intensive Experiments,”
NICTA, Tech. Rep., Oct. 2010.

[3] C. Sanderson and R. Curtin, “Armadillo: a template-based C++ library
for linear algebra,” The Journal of Open Source Software, vol. 1, no. 2,
2016, p. 26.

[4] G. Sharma and J. Martin, “MATLAB R©: A language for parallel
computing,” International Journal of Parallel Programming, vol. 37,
no. 1, 2009, pp. 3–36.

[5] B. Chapman, G. Jost, and R. van de Pas, Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007.

[6] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism. O’Reilly Media, 2007.

[7] G. Y. Paulsen, J. Feinberg, X. Cai, B. Nordmoen, and H. P. Dahle,
“Matlab2cpp: A Matlab-to-C++ code translator,” in Proceedings of 11th
System of Systems Engineering Conference (SoSE), 2016, pp. 1–5.

[8] L. Torczon and K. Cooper, Engineering A Compiler, 2nd ed. Morgan
Kaufmann Publishers Inc., 2011.

[9] “ANTLR – ANother Tool for Language Recognition,” URL:
http://www.antlr.org/ [retrieved: July, 2017].

[10] “SeismicLab: a MATLAB seismic data processing package,” URL:
http://seismic-lab.physics.ualberta.ca/ [retrieved: July, 2017].

[11] “MATLAB Coder,” URL: http://se.mathworks.com/products/matlab-
coder/ [retrieved: July, 2017].

[12] J. Bispo and J. M. P. Cardoso, “A MATLAB subset to C compiler tar-
geting embedded systems,” Software: Practice and Experience, vol. 47,
no. 2, 2017, pp. 249–272.

[13] S. W. Zaranek, B. Chou, G. Sharma, and H. Zarrinkoub,
“Accelerating MATLAB algorithms and applications,” URL:
https://se.mathworks.com/company/newsletters/articles/accelerating-
matlab-algorithms-and-applications.html [retrieved: July, 2017].

[14] “Convertion program from Matlab to C++ using Armadillo,” URL:
https://github.com/emc2norway/m2cpp [retrieved: September, 2017].

[15] “EMC2 – Embedded Multi-Core systems for Mixed Criticality ap-
plications in dynamic and changeable real-time environments,” URL:

http://www.artemis-emc2.eu [retrieved: July, 2017].

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-599-9

ADVCOMP 2017 : The Eleventh International Conference on Advanced Engineering Computing and Applications in Sciences

