
Submesh Allocation in 2D-Mesh Multicomputers:  
Partitioning at the Longest Dimension of Requests   

 

Sulieman Bani-Ahmad 
Department of Information Technology 

Al-Balqa Applied University 
Al-Salt, Jordan  

sulieman@case.edu 
 

Abstract-- Two adaptive noncontiguous allocation strategies for 
2D-mesh multicomputers are proposed in this paper. The first is 
first-fit-based and the second is best-fit-based. That is; for a given 
request, the proposed first-fit-based approach tries to find a free 
submesh using the well-known first-fit strategy, if it fails, the 
request at hand is partitioned into two sub-requests that are 
allocated using the first-fit approach. Partitioning is performed at 
the longest dimension of the request. That is, for a given request of 
size αxβ and assuming β>α, the two partition-sizes are αx(β-1) and 
αx1 after removing one from the longest dimension of the request. 
The two new sub-requests are then allocated using the first-fit 
strategy. This procedure continues recursively until the request is 
fulfilled. The second approach is also based on PArtitioning at the 
Longest Dimension (PALD) of requests but a best-fit approach is 
used to allocate requests and sub-requests. The partitioning 
mechanism aims at (i) lifting the condition of contiguity, and (ii) at 
the same time maintaining good level of contiguity. Removing one 
from the longest dimension of a request is expected to produce two 
sub-requests one of which is relatively big and as close as possible 
to the square-shape and, thus; reducing communication latency 
caused by non-contiguity. Using extensive simulations, we 
evaluated the proposed strategies and compared them with 
previous contiguous and non-contiguous strategies.  Simulation 
outcomes clearly show the proposed PALD-based schemes 
produce the best Average Response Time (ART), the Average 
System Utilization (ASU) and also produce relatively low 
communication overhead. 

Keywords- Multicomputer; 2D mesh; Non-contiguous Allocation; 

Request Partitioning. 

I. INTRODUCTION 

In parallel systems, processors are connected through 
interconnection network; one of the most widely used 
architectures is the 2D and 3D mesh-connected architectures. 
This is because mesh architecture is simple, regular and 
scalable [4, 14]. Several recent commercial and experimental 
parallel computers have been built based these architectures 
such as the IBM BlueGene/L and the Intel Paragon [4].  

Processor allocation in 2D-Mesh multicomputer is a 
major issue as it significantly affects the performance of any 
parallel system [4]. Processor allocation is concerned with the 
way for allocation submesh to a job request. Many processor 
allocation strategies in literature try to allocate a submesh, i.e., 
a contiguous set of processing units, of the same size and shape 

of request [1, 3, 4, 5, 7, 12, 21]. This, however, may produce 
low level of system utilization and cause either internal or 
external fragmentation or both [2, 18]. Internal fragmentation 
occurs when the number of processors allocated to a job is 
more than that it requested [16]. External fragmentation, on the 
other hand, occurs when enough number of idle processors is 
available in the system but cannot be assigned to the scheduled 
job because of the requirement of contiguity [2]. Several 
studies have attempted to reduce or solve external 
fragmentation [2, 9, 6, 14, 16, 18], one of the proposed 
solutions is to use non-contiguous allocation. 

In non-contiguous allocation the contiguity condition 
is relaxed [2]; therefore, a job can execute on multiple disjoint 
smaller sub-meshes rather than always waiting until a single 
sub-mesh of the requested size and shape is available [2, 9, 14, 
18]. Studies show that non-contiguous allocation of requests 
may solve the drawbacks of contiguous allocation; non-
contiguous allocation strategies produce relatively high system 
utilization and eliminate fragmentation. However, since 
communication between processors running the same job can 
be indirect due to non-contiguity [16], communication latency 
is usually high. However, the introduction of wormhole routing 
[17] has lead researchers to consider noncontiguous allocation 
on multicomputers with a long communication distances, such 
as the 2D mesh [2, 14, 18]. One of main advantages of 
wormhole routing over earlier communication schemes, e.g., 
store-and-forward, is that message latency is less dependent on 
the distance traversed by the message from source to 
destination [2, 17]. Thus, non-contiguous allocation has 
recently received attention of researchers. 

Partitioning allocation requests in existing non-
contiguous allocation schemes can be performed in multiple 
ways. For example, allocation requests are subdivided into two 
equal partitions in [2]. The sub-partitions are recursively 
subdivided into further smaller sub-requests if allocation fails 
for any of them. In the study of [18], a promising strategy 
(MBS) expresses the allocation request as a base-4 number, and 
bases allocation on this expression. 

In this paper, two adaptive noncontiguous allocation 
strategies for 2D-mesh multicomputers are proposed and 
evaluated through simulation. The first is a first-fit-based 

99

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-101-4



approach that tries to find a contiguous set of processing units 
of the same shape and size to the request at hand using the 
well-known first-fit approach. If it fails, the request at hand is 
divided into two sub-requests after removing one from the 
longest dimension of the request. That is, for a given request of 
size αxβ and assuming β>α, the two partition-sizes are αx(β-1) 
and αx1 after removing one from the longest dimension of the 
request. The two new sub-requests are then allocated using the 
first-fit approach again. This procedure continues recursively 
until the request is fulfilled. This approach is referred to a 
PALD-FF for PArtitioning at the Longest Dimension with 
First-Fit. 

The second approach is also PALD-based. However, 
the best-fit (BF) allocation strategy is used to allocate requests 
and sub-requests. The used partitioning mechanism aims at (i) 
lifting the condition of contiguity, and (ii) at the same time 
maintaining good level of contiguity. Removing one from the 
longest dimension of a request is expected to produce two sub-
requests one of which is relatively big and as close as possible 
to be square-shaped and, thus; reducing communication latency 
caused by non-contiguity.  

Using extensive simulations, we evaluated the 
proposed strategies and compared them with previous 
promising strategies.  Simulation outcomes clearly show the 
proposed PALD-based schemes produces the best Average 
Response Time (ART), the Average System Utilization (ASU) 
and produce relatively low communication overhead. The 
performance of PALD-FF and PALD-BF is compared against 
the performance of the MBS non-contiguous allocation 
strategy. This strategy is selected as it has been shown to 
perform well in [18]. Furthermore, proposed approaches are 
also compared against the contiguous First-Fit  and Best-Fit 
strategies as this has been used in several previous related 
studies [2, 3, 18].  The proposed approaches are tested under 
two job scheduling strategies, namely; first-Come-First-Served 
(FCFS) and Shortest-Service-Demand-First (SSD). In FCFS, 
the allocation request that arrived first is scheduled for 
allocation first. In SSD, the job with the shortest service 
demand is scheduled first [11]. The FCFS scheduling strategy 
is chosen as it is fair and it is widely used in other similar 
studies [2, 3, 4, 6, 14], while the SSD scheduling strategy is 
used to avoid performance loss due to blocking [11]. 

II.  RELATED WORK  
In this section, we provide an overview of some 

existing contiguous and non-contiguous allocation strategies.  

A.  Non-Contiguous Allocation Strategies  
The First Fit (FF) strategy is a contiguous allocation 

strategy. This scheme start search at the lowest leftmost node 
in mesh, and put a virtual grid that’s equal size request, and 
then shifts by one column to the right until first large enough 
free submesh is found [13]. The Best fit (BF) is also a 
contiguous allocation strategy. This scheme is the same as first 
fit scheme, but it reserves a submesh after consider all large 
enough free submeshes and chooses the closest requests, i.e., 

the submesh with minimal leftovers is selected [13 ]. We use 
both strategies to search for free submeshes for the partitioned 
requests as should be shortly illustrated more. 

B.  Non-Contiguous Allocation Strategies  
The introduction of wormhole routing [17] has made 

communication latency less sensitive to the distance traversed 
by between communicating entities [2]. This has made 
allocating a job to non-contiguous processors reasonable, in 
terms of performance, in networks characterized by a relatively 
long-diameter, such the 2D mesh. Non-contiguous alleviates 
the contiguity and thus allowing jobs to be executed without 
waiting for contiguous set of idle nodes [2, 14].  

In the Paging strategy, for instance [18], the entire 2D 
mesh is virtually sub-divided into pages or sub-meshes of equal 
sides’ length of 2i where i is a positive integer number that 
represents the index parameter of the paging approach. The 
pages are indexed according to several indexing schemes.  

In the Multiple Buddy System (MBS) strategy, the 
mesh of the system at hand is divided into non-overlapping 
square sub-meshes with side lengths that are powers of 2. The 
number of processors, p, requested by a job is factorized into a 
base-4 block. If a required block is unavailable, MBS 
recursively searches for a larger block and repeatedly breaks it 
down into four buddies until it produces blocks of the desired 
size. If that fails, the requested block is further broken into four 
sub-requests until the job is allocated [18].  

In the Adaptive Non-Contiguous Allocation (ANCA) 
strategy work differently. ANCA first attempts to allocate the 
job at hand contiguously. If the allocation attempt fails, it 
partitions the request into two equi-sized sub-requests. These 
sub-frames are then allocated to available locations, if possible; 
otherwise, each of these sub-requests is recursively further 
partitioned into two sub-requests, and then ANCA tries to map 
these sub-requests to available locations [2]. 

Maintaining a good level of contiguity can prove 
useful in non-contiguous allocation. In Paging, there is some 
degree of contiguity because of the indexing schemes used. 
Contiguity can also be increased by increasing the index 
parameter. However, this may produce internal processor 
fragmentation for large index sizes [18]. In MBS, contiguous 
allocation is explicitly sought only for requests with sizes of the 
form 22n, where n is a positive integer.  

An issue with the ANCA strategy is that it can 
disperse the allocated sub-meshes more than it is necessary 
through over partitioning. Over-partitioning may cause 
skipping over the possibility of identifying and thus allocating 
larger free sub-meshes for a large part of the request at hand 
which has been shown to maintain a higher level of contiguity 
[15]. Thus the communication overhead can be reduced by 
adaptively and gradually partitioning allocation requests into as 
large as possible contiguous sub-meshes.  

100

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-101-4



III. THE PROPOSED ALLOCATION STRATEGY  
The target system is a W × L two-dimensional mesh, 

where W and L are the width and the length of the mesh, 
respectively. Every processor is denoted by a pair of 
coordinates, namely; x and y, where 0 ≤ x < W and 0 ≤ y < L 
[14]. Each processor is connected by bidirectional 
communication links to its neighbor processors.  

In this paper, two adaptive noncontiguous allocation 
strategies for 2D-mesh multicomputers are proposed and 
evaluated. The first is a first-fit-based approach that tries to 
find a contiguous set of processing units of the same shape and 
size to the request at hand using the well-known first-fit 
approach. If it fails, the request at hand is divided into two sub-
requests after removing one from the longest dimension of the 
request. That is, for a given request of size αxβ and assuming 
β>α, the two partition-sizes are αx(β-1) and αx1 after removing 
one from the longest dimension of the request. The two new 
sub-requests are then allocated using the first-fit approach 
again. This procedure continues recursively until the request is 
fulfilled. This approach is referred to a PALD-FF for 
PArtitioning at the Longest Dimension with First-Fit. 
__________________________________________________ 
Procedure PALD‐FF(a, b):  
Begin 

JobSize = a × b  
If (number of free processors < JobSize) return failure  
List AllocatedPIDs={}; // the list of PIDs allocate to the current job 
Return PALD‐FFAllocate(a, b, AllocatedPIDs); 

End 
 
Procedure PALD‐FFAllocate (a, b, AllocatedPIDs) 
Begin 

S(x, y) = FIND_FF (S(a, b); // FIND_BF for PALD‐BF allocation 
If (S(x, y)  != null)  
   Add the PIDs of S to the list AllocatedPIDs; 
Else 
{ 

If(a>=b)  
 α1= a‐1;  β1=b; α2= 1;  β2=b; 

  else 
    α1= a;  β1=b‐1; α2= a;  β2=1; 
  PALD‐FFAllocate (α1, β1, AllocatedPIDs); 
  PALD‐FFAllocate (α2, β2, AllocatedPIDs); 
} 

End  
____________________________________________ 

Figure 1: Pseudo code for the PALD-FF allocation strategy 

The second approach is also PALD-based. However, 
the best-fit (BF) strategy is used to allocate requests and sub-
requests. The used partitioning mechanism aims at (i) lifting 
the condition of contiguity, and (ii) at the same time 
maintaining good level of contiguity. Removing one from the 
longest dimension of a request is expected to produce two sub-
requests one of which is relatively big and as close as possible 
to be square-shaped and, thus; reducing communication latency 
caused by non-contiguity.  

The proposed PALD-based approach combines the 
desirable features of both contiguous and non-contiguous 
allocation. The well-known first-fit (FF) and best-fit (BF) 
strategies are used here to search for available submeshes. A 

13eudo code for the allocation procedure of PALD-FF strategy 
is shown in Figure 1. The PALD-BF is similar except that the 
Find_BF() is called instead of Find_FF() to allocate partitions 
of the parallel job at hand. Notice that allocation always 
succeeds as long as enough free processors are available in the 
mesh. The key idea in the proposed PALD approach is to try 
allocating the largest submeshes possible.  

IV.  EXPERIMENTAL SETUP AND SIMULATION OUTPUT 
The current study is simulation-based with the 

ProcSimity simulator is to be used. The simulated 
multicomputer system consists of 256 multicomputers 
connected through a 2-dimensional mesh network of 
dimensions W and L W=L=16. The routing mechanism to be 
used is the wormhole routing [10, 20] with packet size of 8 
units and a buffer of size 1 unit and a routing delay of 3 units. 
The router uses XY routing to direct messages from their 
source to destination. Message sizes are considered to be of 
length 8 units. Job size conforms the exponential distribution 
with mean width and length being W/2 (or L/2). The execution 
times of jobs conforms the uniform distribution. 
To maintain good levels of accuracy, each simulation 
experiments is repeated 10 times with a total of 1000 jobs are 
to be simulated in each time. The readings are 95% accurate 
with a maximum percentage error of 5%. The scheduling 
mechanisms considered in our experiments are (i) First-Come-
First-Serve, or FCFS and (ii) the Shortest Service Demand first, 
or SSD mechanisms. The simulation outputs are: 
(i) Average Response Time (ART): The response time is the time 
from the submission of request until the first real response 
produced for jobs. (ii) Average system utilization (ASU): The 
average of keeping the processors within a system as busy as 
possible, this value between 0 and 1. (iii) Average Packet 
Blocking Time (APBT): The average amount of time the head of 
the message is blocked at each station while routing the message 
over the path from source to destination. (iv) Average Packet 
Latency (APL): The average of the time that all packets within job 
will be sent between processors. 

V.  EXPERIMENTAL RESULTS AND OBSERVATIONS 
In this section, the results from simulations that have 

been carried out to evaluate the performance of the proposed 
algorithm are presented and compared against those of MBS, BF 
and FF. The proposed allocation algorithm is implemented and 
later integrated with the ProcSimity simulation tool [8, 13]. Each 
simulation run consists of 1000 completed jobs. Simulation results 
are averaged over enough independent runs so that the confidence 
level is 95% and the relative errors do not exceed 5%.  

Next we present our experimental results and 
observations. Parallel jobs usually communicate with each other 
using one-to-all or all-to-all communication patterns [9, 17, 18]. 
We did our experiments using both pattern but focused more on 
the all-to-all communication pattern as it produces message 
collision than the one-to-all communication pattern and is known 
to be a weak point for non-contiguous allocation algorithms [9]. 
The independent variable in the simulation is the system load. The 
notation <allocation strategy>(<scheduling strategy>) is used to 

101

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-101-4



represent the strategies in the performance figures, as in [15]. For 
example, PALD-FF(FCFS) refers to the PALD-FF processor 
allocation strategy under the scheduling strategy FCFS. 

A.  Mean response time criteria 
In Figures 2 through 4, the mean job response time of 

jobs is plotted against the system load for the one-to-all and all-to-
all communication patterns under the FCFS and SSD scheduling 
mechanisms. The figures reveal that PALD-based allocation 
strategies produce less response times and, thus, perform better 
than all other strategies. This is more clear under the SSD 
scheduling mechanism. PALD-FF is substantially superior to the 
FF and PALD-BF is also superior to BF. For all-to-all 
communication pattern both tested PALD-based allocation 
strategies outperformed contiguous allocation strategies.  

Figure 5 shows the four allocation strategies compared 
together in terms of response time. Considering the same system 
settings figure 5 shows that PALD-based approaches outperform 
non-PALD-based ones. 

 
Figure 2: Mean response time in FF and PALD-FF strategies under the FCFS 
and the SSD scheduling mechanisms and one-to-all communication pattern. 

 
Figure 3: Mean response time in FF and PALD-FF strategies under the FCFS 

and the SSD scheduling mechanisms and all-to-all communication pattern. 

 
Figure 4: Mean response time in BF and PALD-BF strategies under the FCFS 
and the SSD scheduling mechanisms and one-to-all communication pattern. 

 
Figure 5: Mean response time in MBS, FF, BF, PALD-FF and PALD-BF 

strategies under both scheduling mechanisms, both communication patterns. 

B.  Percent system utilization criteria 
Figures 6 through 9 depict the mean system utilization of 

the tested allocation strategies, namely; FF, BF, PALD-FF, PALD-
BF and MBS, for the two communication patterns considered and 
under the FCFS and SSD scheduling mechanisms. Figures 6 and 7 
depict the percent system utilization in FF and PALD-FF 
allocation strategies under the FCFS and the SSD scheduling 
mechanisms and one-to-all and all-to-all communication patterns. 
Similarly, Figures 8 and 9 depict the percent system utilization in 
BF and PALD-BF allocation strategies under the FCFS and the 
SSD scheduling mechanisms and both communication patterns. 

Figures 6 through 9 reveal that the PALD-based 
strategies produce higher system utilization and. This is more clear 
under the SSD scheduling mechanism. PALD-FF and PALD-BF 
showed around 70% higher system utilization than the FF and BF 
approaches at the points where the system is heavily loaded, 
respectively. This observation applied for both communication 
patterns. This observation can be explained as follows, contiguous 
allocation produces high external fragmentation, which means that 
allocation is less likely to succeed. Consequently, system 
utilization becomes low. The proposed approaches have the ability 
to eliminate both internal and external processor fragmentation, 
and thus, produce higher system utilization.  

 
Figure 6: System utilization in FF and PALD-FF strategies under the FCFS and 

the SSD scheduling mechanisms and one-to-all communication pattern. 

102

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-101-4



 
Figure 7: System utilization in FF and PALD-FF strategies under the FCFS and 

the SSD scheduling mechanisms and all-to-all communication pattern. 

 
Figure 8: System utilization in BF and PALD-BF strategies under the FCFS 
and the SSD scheduling mechanisms and one-to-all communication pattern. 

 
Figure 9: System utilization in MBS and PALD-BF strategies under the FCFS 

and the SSD scheduling mechanisms and all-to-all communication pattern. 

 
Figure 10: System utilization in MBS, FF, BF, PALD-FF and PALD-BF 

strategies under both scheduling mechanisms, both communication patterns. 

C.  Communication Overhead 
We have measured other performance criteria for the 

non-contiguous allocation strategies. These are the mean packet 

latency (MPL) and the mean packet blocking time (MPBT). 
Figure 11 shows that the MPL for the tested allocation 
strategies for all-to-all communication pattern and under the 
two considered scheduling mechanisms.  It can be seen that 
PALD-FF and PALD-BF strategies have lower MPL values 
than MBS strategy under the two scheduling strategies FCFS 
and SSD for the all-to-all communication pattern. This 
conclusion is compatible with the values of the mean 
turnaround time shown above.  

To summarize, the above performance results 
demonstrate that PALD-FF and PALD-BF strategies are 
superior to all other strategies considered in this paper; 
including the case when contention is heavy (the 
communication pattern is all-to-all).  Figure 12 shows that the 
MPBT for the tested allocation strategies under the two 
considered scheduling mechanisms is less than that of MBS 
strategy.   

One concern in PALD-based allocation strategies is 
that requests may get over-partitioned. This results in allocating 
dispersed multicomputers to parallel jobs. To test that, we 
repeated our experiments and allowed for giving a control over 
the maximum number of blocks allowed to any allocated job 
(MBPJ). Figure 13 illustrates the observed relationship between 
MBPJ (the x-axis) and the average system utilization (the y-
axis). At an MBPJ value of 14, we found that the system 
utilization reaches a maximum saturation value of around 0.92. 
Thus, placing this limit helps in (i) preventing over-partitioning 
and (ii) keeping the allocation time complexity of PALD 
allocation strategies to be the same as that of the contiguous 
allocation strategy used (the FF or BF). 

 
Figure 11: Mean packet latency in MBS, PALD-FF and PALD-BF allocation 

strategies under the FCFS and the SSD scheduling mechanisms, all-to-all 
communication patterns. 

 
Figure 12: Mean packet blocking time in MBS, PALD-FF and PALD-BF 

allocation strategies under the FCFS and the SSD scheduling mechanisms, all-
to-all communication patterns. 

103

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-101-4



 
Figure 13: System utilization vs partitioning limit for PALD-BF allocation 
strategy under the FCFS scheduling mechanism, all-to-all communication 

patterns. 

VI. CONCLUSIONS 
Two adaptive noncontiguous allocation strategies are 

proposed in this paper. The first is first-fit-based and the second is 
best-fit-based. That is; for a given request, the proposed first-fit-
based approach tries to find a free submesh using the well-known 
first-fit strategy, if it fails, the request at hand is partitioned into 
two sub-requests that are allocated using the first-fit approach. 
Partitioning is performed at the longest dimension of the request 
(removing one from the longest dimension of the request at hand). 
The two new sub-requests are then allocated using the first-fit or 
the best-fit approaches. This procedure continues recursively until 
the request is fulfilled. The second approach is also based on 
PArtitioning at Longest Dimension (PALD) of requests but a best-
fit approach is used to allocate requests and sub-requests.  

The partitioning mechanism aims at (i) lifting the 
condition of contiguity, and (ii) at the same time maintaining good 
level of contiguity. Removing one from the longest dimension of a 
request is expected to produce two sub-requests one of which is 
relatively big and as close as possible to the square-shape and, 
thus; reducing communication latency caused by non-contiguity. 
Using extensive simulations, we evaluated the proposed strategies 
and compared them with previous contiguous and non-contiguous 
strategies.  Simulation outcomes clearly show the proposed 
PALD-based schemes produce the best Average Response Time 
(ART), the Average System Utilization (ASU) and produce 
relatively low communication overhead. 

REFERENCES  
[1] B. S. Yoo and C. R. Das, “A Fast and Efficient Processor Allocation 

Scheme for Mesh-Connected Multicomputers”, IEEE Transactions 
on Parallel & Distributed Systems, vol. 51, no. 1, IEEE Computer 
Society, Washington, USA, January 2002, pp. 46-60. 

[2] C. Y. Chang and P. Mohapatra, “Performance improvement of 
allocation schemes for mesh-connected computers”, Journal of 
Parallel and Distributed Computing, vol. 52, no. 1, Academic Press, 
Inc. Orlando, FL, USA, July 1998, pp. 40-68. 

[3] G.-M. Chiu and S.-K. Chen, “An efficient submesh allocation 
scheme for two-dimensional meshes with little overhead”, IEEE 
Transactions on Parallel & Distributed Systems, vol. 10, no. 5, IEEE 
Press, Piscataway, NJ, USA, May 1999, pp. 471-486. 

[4] I. Ababneh, “An efficient free-list submesh allocation scheme for 
two-dimensional mesh-connected multicomputers”, Journal of 
Systems and Software, vol. 79, no. 8, Elsevier Science Inc., New 
York, NY, USA, August 2006, pp. 1168-1179. 

[5] I. Ismail and J. Davis, “Program-based static allocation policies for 
highly parallel computers”, Proc. IPCCC 95, IEEE Computer Society 
Press, Scottsdale, AZ, USA, 28-31 Mar 1995, pp. 61-68. 

[6] K. H. Seo, “Fragmentation-Efficient Node Allocation Algorithm in 
2D Mesh-Connected Systems”, Proceedings of the 8th International 

Symposium on Parallel Architecture, Algorithms and Networks 
(ISPAN’05), IEEE Computer Society Press, Washington, DC, USA, 
7-9 December, 2005, pp. 318-323. 

[7] K. Li and K. H. Cheng, “A Two-Dimensional Buddy System for 
Dynamic Resource Allocation in a Partitionable Mesh Connected 
System”, Journal of Parallel and Distributed Computing, vol. 12, no. 
1, Elsevier Science, CA, USA, May 1991, pp. 79-83. 

[8] K. Windisch, J. V. Miller, and V. Lo, “ProcSimity: an experimental 
tool for processor allocation and scheduling in highly parallel 
systems”, Proceedings of the Fifth Symposium on the Frontiers of 
Massively Parallel Computation (Frontiers'95), IEEE Computer 
Society Press, Washington, USA, 6-9 Feb 1995, pp. 414-421. 

[9] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, C. Connelly, and M. 
Tsukamoto, “Multi-tasking Method on Parallel Computers which 
Combines a Contiguous and Non-contiguous Processor Partitioning 
Algorithm”, Proceedings of the Third International Workshop on 
Applied Parallel Computing, Industrial Computation and 
Optimization, Springer-Verlag, UK, 1996, pp. 641-650. 

[10] L. M. Ni and P. K. McKinley. A Survey of Wormhole Routing 
Techniques in Direct Networks. Computer 26, 2 (Feb. 1993), pp 62-
76. DOI= http://dx.doi.org/10.1109/2.191995. 

[11] P. Krueger, T. Lai, and V. A. Radiya, “Job scheduling is more 
important than processor allocation for hypercube computers”, IEEE 
Transactions on Parallel and Distributed Systems, vol. 5, no. 5, IEEE 
Press, Piscataway, NJ, USA, May 1994, pp. 488-497. 

[12] P. J. Chuang and N.-F. Tzeng, “Allocating precise submeshes in 
mesh connected systems”, IEEE Transactions on Parallel and 
Distributed Systems, vol. 5, no. 2, IEEE Press, USA, February 1994, 
pp. 211-217. 

[13] ProcSimity V4.3 User’s Manual, University of Oregon, 1997. 

[14] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. 
Machenzie, “Non-contiguous Processor Allocation Strategy for 2D 
Mesh Connected Multicomputers Based on Sub-meshes Available 
for Allocation”, Proceedings of the 12th International Conference on 
Parallel and Distributed Systems (ICPADS’06), vol. 2, IEEE 
Computer Society Press, USA, 2006, pp. 41-48. 

[15] S. Bani-Mohammad, M. Ould-Khaoua, I. Ababneh, and L. 
Machenzie, “A Fast and Efficient Processor Allocation Strategy 
which Combines a Contiguous and Non-contiguous Processor 
Allocation Algorithms”, Technical Report; TR-2007-229, DCS 
Technical Report Series, Department of Computing Science, 
University of Glasgow, January 2007. 

[16] T. Srinivasan, J. Seshadri, A. Chandrasekhar, and J. Jonathan, “A 
Minimal Fragmentation Algorithm for Task Allocation in Mesh-
Connected Multicomputers”, Proceedings of IEEE International 
Conference on Advances in Intelligent Systems – Theory and 
Applications – AISTA 2004 in conjunction with IEEE Computer
Society, ISBN 2-9599-7768-8, IEEE Press, Luxembourg, Western 
Europe, 15-18 Nov 2004. 

[17] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction To 
Parallel Computing, The Benjamin/Cummings publishing Company, 
Inc., Redwood City, California, 2003. 

[18] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, “Non-contiguous 
processor allocation algorithms for mesh-connected 
multicomputers”, IEEE Transactions on Parallel and Distributed 
Systems, vol. 8, no. 7, IEEE Press, Piscataway, NJ, USA, July 1997, 
pp. 712-726.  

[19] W. Mao, J. Chen, and W. Watson, “Efficient Subtorus Processor 
Allocation in a Multi-Dimensional Torus”, Proceedings of the 8th 
International Conference on High-Performance Computing in Asia-
Pacific Region (HPCASIA’05), IEEE Computer Society, 
Washington, DC, USA, 30 November -3 December, 2005, pp. 53-60.

[20] X. Lin, P. Mckinly, and A. Esfahanina,  1993. Adaptive Multicast 
wormhole Routing in 2D-mesh multicomputers. Proceeding  of 
Parallel Architecture and Language conference (PARLE), pp 228-
241. 

[21] Y. Zhu, “Efficient processor allocation strategies for mesh-connected 
parallel computers”, Journal of Parallel and Distributed Computing, 
vol. 16, no. 4, Elsevier, San Diego, CA, 1992, pp. 328-337. 

 

104

ADVCOMP 2010 : The Fourth International Conference on Advanced Engineering Computing and Applications in Sciences

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-101-4


