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Abstract-A smart electrical grid is highly instrumented and can 

be intelligently controlled. We describe a smart grid study in 

which we assume that utilities dynamically price electrical 

power to help regulate supply and demand balance, and that 

consumers have the ability to intelligently schedule times for 

the operation of their home appliances in response to prices. 

We present a mixed integer linear fuzzy goal programming 

with priorities imposed on different appliances. The goal 

programming formulation allows time preference constraints 

to be elastic rather than rigid. Another important feature of 

the model is flexibility of time slot delays for pairs of 

appliances for which the operation of one must follow the other 

(a washer/dryer pair for example). Numerical experimental 

results based on real spot prices for electricity are presented. 

In addition, computational time and the influence of time slot 

lengths and priorities are discussed.  

Keywords-Smart grid; Dynamic Pricing; Adaptive Systems; 

Optimization. 

I. INTRODUCTION 

Dynamic electricity pricing on an hourly basis is 

increasingly common in the United States [1]. This pricing 

policy is intended to help reduce system peak demand and 

also shift some load to off-peak, less expensive time periods. 

This can achieve more balance between energy demand and 

generation. Hourly pricing provides customers with 

opportunities to reduce their costs by managing the times at 

which electricity is consumed in the home. Smart appliances 

that can be accessed and controlled under the expanded 

addressing space of Internet Protocol version 6 (IPv6) are 

becoming common, and older appliances can be IP 

controlled through devices such as smart power bars.  

Several studies on optimal scheduling of home 

appliances have been reported. Using Markov chains to 

model both energy prices and residential device usage, an 

energy management system called CAES for residential 

demand response applications to reduce residential energy 

costs and smooth energy usage was proposed [2]. In 

developing a Mixed Integer Linear Programming (MILP) 

problem formulation for electricity management in multiple 

homes, Oliveira et al. considered both cost and variations in 

the availability of the power supply [3]. Sou et al. proposed 

an MILP formulation with discrete time-slots [4]. In that 

model, one execution period (e.g., one day) is discretized 

into a prescribed number of uniform time slots.  Amounts of 

energy are assigned to each time slot for each phase of 

appliance operation. Inspired by the model of Sou, Wu 

included the CO2 footprint cost into the objective function 

by giving it a weight for modeling environmental concerns 

[5]. Giorgio developed a similar MILP formulation, but also 

included domestic renewable energy and batteries as energy 

sources [6].  

In our work, we schedule home appliances using time 

slots and a MILP, based on portions of the existing work [4]. 

We expand the approach by adopting a fuzzy goal 

programming formulation [8]. Our model supports priority 

distinctions for the different appliances, and rigid time 

preference constraints are transformed into soft ones and 

included in the fuzzy goal programming framework with 

priorities. In addition, we devised constraints for modeling 

alternative delay times between running times of closely 

related appliances. The new method uses electricity prices 

known 24 hours in advance; so, the scheduling is exactly 

one day ahead.  

Section II briefly introduces the concept of MILP and 

fuzzy goal programming; Section III presents the 

mathematical formulation for our mixed integer linear fuzzy 

goal programming model; Section IV provides the 

numerical experiments and results; and Section V presents 

the conclusions. 

II. MILP AND GOAL PROGRAMMING 

MILP is a widely used subset of mathematical 

programming in which the objective function is a linear 

function of the decision variables, which can be either 

integer or non-integer. Each constraint is formed from a 

linear combination of the decision variables [7].  

When multiple, conflicting objectives or goals are 

involved in an optimization problem, goal programming is a 

powerful and effective tool. The two major differences of 

goal programming from conventional single-objective linear 

programming are the incorporation of flexibility in the 

constraint functions, and the satisficing approach that seeks 

a balanced and practical solution rather than an absolute 

optimal one [8]. To solve optimization problem with 

multiple conflicting goals using fuzzy goal programming, 

which is also called Chebyshev goal programming [8], each 

original single goal is first optimized to get the 

corresponding optimal goal value, then a solution that 
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minimizes the maximum deviation from any single 

optimized goal value is sought. Based on the degree of 

importance of each goal, priorities can be added to these 

deviations to reflect different penalties applied to different 

failures to meet the optimal goals [9]. A new general goal 

based on the weighted sum of deviations can therefore be 

formed and solved. 

III. MATHEMATICAL FORMULATION 

A. Assumptions and Parameters 

We define an energy phase as an uninterruptible sub-

process of the entire operation process of an appliance.  

Each appliance has a single phase or multiple energy phases 

that must be operated in sequence, with each using a pre-

specified amount of electrical energy. The technical 

specifications of appliances defined by the manufacturers of 

appliances must be met. Constraints are employed to ensure 

the sequential operations of some appliances, to model the 

delay between the running of two closely related appliances, 

to ensure that the total energy consumed within a certain 

period does not exceed the peak energy allowed, and to 

ensure that user time preferences are met. The overall 

objective of the model is to produce the schedule for 

running the appliances that saves a consumer as much 

energy cost as possible, while meeting all of the constraints. 

Our MILP formulation is for a single 24-hour day. Each 

hour is uniformly discretized into   time slots, so that the 

number of total time slots in a day is    24*  . N is the 

number of appliances, and for each appliance i (   
       ),   is the number of uninterruptible energy phases 

for each appliance.  

Parameters    (                      )   

satisfying ∑        
   , are used to model the priorities 

assigned to each single deviation goal in the fuzzy goal 

programming model. Here,               is for the 

deviation goals for each corresponding appliance energy 

cost, and      is the priority for the user time preference 

penalty deviation goal.                        

is specified by the user according to their preferences for 

different appliances. 

                          represents the nominal 

processing time for energy phase   for appliance   in 

minutes,   and   (              ) are lower and 

upper processing time limit factors for energy phase   of 

appliance  . To denote the lower and upper limits of power 

assignment, respectively, to the corresponding energy phase, 

   
  and    

 
 are introduced. The delay between two energy 

phases of an appliance is restricted by     and    , the 

appliance technical specifications defining the lower and 

upper delay time, respectively, in minutes.     is used to 

denote the total energy that a  phase should use according to 

the technical specification. 

 

B. Decision variables 

Real (continuous) decision variables    
     

                               are used to indicate 

the energy assigned to energy phase   of appliance   during 

the period of time slot  .  

      To indicate during time slot k whether a particular 

energy phase   of appliance   is being processed, a series of 

binary decision variables    
  {   } are used, with    

    

indicating energy phase being processed, and otherwise not 

being processed.  

Binary variables    
  {   }  are utilized to indicate 

whether the processing of a particular energy phase is 

already finished by a particular time slot. If and only if 

   
   , energy phase j of appliance   is complete by time 

slot  .  

To indicate whether appliance   is making a transition 

between energy phase     to   at time slot  , binary 

variables     
            are utilized.     

    if and only 

if during time slot  , the appliance   has finished energy 

phase     in some earlier time slot, but the energy phase   
has not yet started. These variables are useful for restricting 

the delay between energy phases of an appliance.  

For the fuzzy goals, parameters           

           are introduced to denote the normalized 

maximum deviation between the best and the worst values 

of each single objective function. Specifically,      

         are for the corresponding appliances, and      is 
for the user time preference.   

C. Constraints 

    1)  Single appliance energy cost objective function:     

The total electricity cost for appliance   during the entire 

execution period, denoted by               , is 

                                  ∑ ∑      
   

   
 
                                 (1) 

where,    denotes the electricity price for time slot  .  

    2) Objective function for user time preference violation 

penalty:  Here, we consider a simple user time preference in 

which the household user divides the day into two general 

parts: one that can be used to run a certain appliance and the 

other one cannot. Rather than use rigid constraints to 

absolutely prohibit using an appliance during the non-

preferred time, we allow the time period to be used but 

impose a penalty on doing so. Let    
  {   } denote the 

user time preference interval, and    
    if and only if 

none of the energy phase of appliance   is to be run during 

time slot  . Assume       
 ,     

 , and     
  is the first, 

middle, and the last slot number of the whole user 

prohibited time period (which is continuous) for appliance  , 
respectively; then the penalty for using prohibited time is 

expressed as 

                    ∑ ∑ ∑    
   |      

 |    
 

        
 

  
   

 
                   (2) 
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where,     is a constant, and     
  [       

      
   ⁄ ]. 

This is the objective function for the violation penalty for a 

user time preference, and is denoted as     . Note that this 

function is a weighted penalty in that the closer to the 

middle of the prohibited time zone, the higher penalty that 

results.  

    3) Maximum single objective deviation constraints:  Let 

   and    be the best possible and worst possible values, 

respectively, for the     single objective, then we have the 

following constraints: 

                                       ⁄       (3) 

                                                           (4) 

Each                 represents the worst deviation 

level for the     objective. Each    and    are obtained by 

optimizing corresponding    and     alone, respectively, 

without regard to other objectives. The expression      
    in (3) helps normalize the objective deviation level and 

thus adjust different levels to similar fluctuation ranges. 

With the normalized deviation levels, applying desired 

priorities to different objectives is easier. In consideration of 

the interaction between or among appliances and user time 

preferences,    may be close to but not the real possible 

optimal single objective value. So, an auxiliary coefficient 

  is incorporated to    to help use a better objective value 

than the “false” best possible value. Since in this study the 

best single objective value is the minimum value,    should 

be a positive constant and less than 1.  

    4) Sequential processing between appliances:  Suppose 

appliance  ̃ must be finished before appliance   starts (for 

example, the washing machine operations must be finished 

before the dryer starts), then the following constraint 

restricting the relationship between the last energy phase of 

the appliance  ̃  and the first energy phase of appliance    
must be satisfied: 

                                   ̃  ̃

     
                                      (5) 

    5) Between-appliance delay: In reality, some appliances 

are more closely related than just following the constraints 

restricting their sequential processing. For example, the 

dryer can start running only after the washing machine is 

finished, as specified by (5), and in practice the delay 

between the two appliances usually cannot be very large. 

Suppose, for example, that if the dryer must start working 

within 3 time slots after the washing machine is done, then 

the following constraints holds: 

  ̃  ̃

    ̃  ̃

      ̃  ̃

     
       

       
    

                                         ,                            (6) 

These constraints should be used together with (5), 

namely, appliance  ̃ and   must satisfy (5) first.  

To establish that these constraints are theoretically 

correct, consider the logic below. 

If    is the first time slot after the last energy phase of 

appliance  ̃ is finished, then      is the last slot when the 

last energy phase of appliance  ̃  is being processed. This 

also implies:  

      i) When     ,   ̃  ̃

    ̃  ̃

     , and   ̃  ̃

        , so, 

the left side of the constraints is always equal to or less than 

0. In this case, the constraints hold. Also in this case, the 

appliances sequential processing constraints ensure that all 

   
         . 

      ii) When     ,   ̃  ̃

      ̃  ̃

     , and   ̃  ̃

   , so, 

the left side of the constraints is always equal to 1. In this 

case, the constraints require that at least one of the time slots 

right after the finishing of the previous appliance must be 

used to start processing of the second appliance. 

      iii) When     ,   ̃  ̃

    ̃  ̃

     , and   ̃  ̃

   , so, the 

left side of the constraints is always equal to 0. In this case, 

the constraints hold. 

    6) Sequential processing between energy phases:  

Usually an energy phase of an appliance cannot start 

working unless its preceding phases have finished. The 

following constraints specify this condition:  

                           
     

                                (7) 

    7) Between-phase delay: The delay between two energy 

phases of an appliance is restricted to a specific range. 

Suppose that      and     are the appliance technical 

specifications defining the lower and upper delay, 

respectively, in minutes, then the following constraints must 

be satisfied: 

        ⌈
   

  
 ⌉  ∑    

  
    ⌊

   

  
 ⌋                      (8) 

             
         

     
     

                         (9) 

    8) Uninterruptible operation of an energy phase:       To 

ensure the integrity and continuity of an energy phase, the 

following constraints should be satisfied: 

                          
       

                                       (10) 

             
       

     
                                 (11) 

                  
       

                                     (12) 

    9) Energy phase process time limits: Process time limits 

are enforced by the following constraint: 

                 ⌈
    

  
 ⌉  ∑    

  
    ⌊

    

  
 ⌋                    (13) 

where   is the number of time slots in each hour,     is the 

nominal processing time for energy phase   in appliance   in 

minutes,   and   (              ) are the lower 

and upper processing time limits factor for energy phase   in 

appliance  .  
    10) Energy phase energy assignment requirement and 

bounds: Each energy phase uses a certain amount of energy 

    specified by the manufacturer: 

                            ∑    
  

                                       (14) 

To ensure power safety, the total energy assigned in any 

time slot is not allowed to exceed the peak signal or in other 

words the total slot energy upper bound: 

                     ∑ ∑    
   

   
 
                                 (15) 

The energy assignment in any time slot for each energy 

phase of each appliance should satisfy the following 

constraint: 
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                             (16) 

where,    
  and    

 
 are the lower and upper limits of power 

(not energy) assignment, respectively, to the corresponding 

energy phase. These limits are specified by the appliance 

manufacturer.  

    11) Basic decision variable constraints:  

                                 
                                     (17) 

                                  
  {   }                                  (18) 

                                      
  {   }                              (19) 

                           
  {   }                              (20) 

D. Cost function 

Finally, the following total cost function, which 

represents the weighted sum of the maximum objective 

deviation from each single goal, is specified:  

                                         ∑     
   
                                  (21) 

E. General formulation 

The general formulation of the proposed framework is 

summarized as follows:  

                                                  

Subject to:      Constraints (3)-(20) 

This is a MILP formulation transformed from the fuzzy 

goal programming formulation, and it can be solved using 

classical algorithms or heuristic search methods [4][5]. 

IV. NUMERICAL EXPERIMENTS 

All experiments were conducted on a desktop computer 

with an Intel
R
 Core

TM
 3.40GHz CPU and 16GB RAM. The 

optimization problem was solved using MATLAB interface 

of YALMIP and IBM ILOG CPLEX 12.5 solver 

[10][11][12].  

The 24-hour ahead hourly electricity price data of Nov. 

3
rd

, 2013, for Long Island of New York State used in this 

paper was taken from the NYISO [13]. From midnight to 

next midnight, these predicted pricing data in USD/MWh 

were 32.19, 27.63, 26.51, 24.6, 26.41, 22.57, 27.21, 28.6, 

31.45, 35.64, 36.35, 36.86, 36.87, 36.21, 34.82, 35.17, 41.37, 

57.86, 54.65, 55.44, 50.31, 45.73, 39.02, and 35.67. From 

these data it can be seen that the highest price (57.86) was 

2.56 times the lowest price (22.57).  

This study involved three controllable same smart home 

appliances including a dish washer, a washing machine, and 

a dryer, similar to those used by Sou et al. [4]. Three 

different lengths of time slot, 3 minutes, 5 minutes, and 10 

minutes, were investigated in the numerical experiments. 

The dishwasher is not supposed to be run during midnight to 

7 o’clock in the morning, and both the washing machine and 

dryer are not supposed to be run during midnight to 6 

o’clock in the morning. The parameter  , which is the  

penalty term for using user prohibited time, was set to 1.1. 

The dryer can only start working after the washing machine 

has finished, and the delay between them should be no more 

than 3 time slots. The parameters     in (8) for all phases is 

assumed to be 0, and     in (8) for the dishwasher, washing 

machine and dryer were set to 5, 10, and 0 minutes, 

respectively. The parameters   and   in (13) were set to 0.8 

and 1.2, respectively. The peak signals in (15) for 3-minute, 

5-minute, and 10-minute time slots are assumed to be 3300 

Wh, 5500 Wh, and 11000 Wh, respectively. The dishwasher, 

washing machine and dryer have 6, 8, and 1 energy phases, 

respectively. The parameter   in (3) was set to 0.5. The 

detailed technical specifications of the three appliances are 

shown in Table I through Table III. All of the rest of the 

parameter values can be found in these tables. Three 

representative user priority combinations               

for the objective function were selected for study, as is listed 

in Table IV. In reality, all the priority choices are made by 

the users and completely up to them with regard to their 

preferences. 

TABLE I. DISHWASHER TECHNICAL SPECIFICATIONS 

energy phase Energy 

required 

(Wh) 

Min 

power 

(W) 

Max 

power 

(W) 

Nominal 

operation 

time (min) 

pre-wash 16 6.47 140 14.9 

Wash 751.2 140.26 2117.8 32.1 

1st rinse 17.3 10.28 132.4 10.1 

Drain 1.6 2.26 136.2 4.3 

2nd rinse 572.3 187.3 2143 18.3 

drain & dry 1.7 0.2 2.3 52.4 

TABLE II. WASHING MACHINE TECHNICAL SPECIFICATIONS 

energy phase Energy 

required 

(Wh) 

Min 

power 

(W) 

Max 

power 

(W) 

Nominal 

operation 

time (min) 

movement 118 27.231 2100 26 

pre-heating 5.5 5 300 6.6 

Heating 2054.9 206.523 2200 59.7 

Maintenance 36.6 11.035 200 19.9 

Cooling 18 10.8 500 10 

1st rinse 18 10.385 700 10.4 

2nd rinse 17 9.903 700 10.3 

3rd rinse 78 23.636 1170 19.8 

TABLE III. DRYER TECHNICAL SPECIFICATIONS 

energy phase Energy 

required 

(Wh) 

Min 

power 

(W) 

Max 

power 

(W) 

Nominal 

operation 

time (min) 

Drying 2426.3 120.51 1454 120.8 
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TABLE IV. USER PRIORITIES FOR THREE APPLIANCES AND 

USER TIME PREFERENCE 

Priority choice 1 2 3 

Dishwasher 0.2 0.1 0.4 

washing machine 0.2 0.2 0.3 

Dryer 0.3 0.2 0.2 

user time preference 0.3 0.5 0.1 

V. DISCUSSION OF RESULTS 

A. Computational time 

Prematurely terminating the optimization process using 

the first feasible solution terminating condition can 

dramatically save computational time and at the same time 

have little influence on the final objective function value. 

Table V lists the relative extra time cost in using the default 

optimal solution terminating condition compared to using 

the first feasible solution terminating condition. Table VI 

shows the relative objective function error between the two 

terminating strategies. In view of this fact, our study 

adopted the first feasible terminating strategy in the 

remaining experiments. 

TABLE V. RELATIVE EXTRA TIME COST (%) 

Priority 

choice 

10-min  

time slot 

5-min  

time slot 

3-min  

time slot 

1 121.9013 290.0044 171.1622 

2 49.74624 193.8439 158.5955 

3 19.67994 225.2939 328.6174 

average 63.77581 236.3807 219.4584 

TABLE VI. RELATIVE OBJECTIVE ERROR (%) 

Priority 

choice 

10-min time 

slot 

5-min time 

slot 

3-min time 

slot 

1 4.107487 3.16173 2.773725 

2 2.172829 3.354763 4.889764 

3 1.636755 1.867869 0.46734 

average 2.639024 2.794787 2.710276 

B. Influence of time slot length on electricity cost 

The relative extra total electricity cost using the worst 

solution instead of the best solution is used to facilitate the 

investigation of the influence of time slot length on 

electricity cost, and the results are shown in Table VII. Here, 

the total electricity cost refers to the sum of the three single 

appliance energy cost objectives specified in (1). From 

Table VII, it can be seen that the worst-case total energy 

cost is approximately double that of the best case. The 

average relative extra energy cost for each time slot 

indicates no obvious cost savings between the 10-min time 

slot and the 5-min time slot, while the 3-min time slot can 

save significant money. This is because the smaller the time 

slot length, the more flexibility for appliances scheduling. 

However, the computation time for the 3-min time slot case 

is more than 3 times and 10 times that for the 5-min and 10-

min time slot case, respectively. This illustrates the tradeoff 

between time slot size and computational time.  

TABLE VII. RELATIVE EXTRA TOTAL ELECTRICITY COST (%) 

Priority 

choice 

10-min 

time slot 

5-min 

time slot 

3-min 

time slot 

average for 

each priority 

1 98.25 103.91 112.22 104.79 

2 101.40 102.01 110.13 104.52 

3 113.56 106.73 113.64 111.31 

average for  
each time slot 

104.40 104.22 112.00 106.87  
(overall 

average) 

C. Influence of objective priority choice on electricity cost 

The influence of the single objective priority choice 

made by the user can be seen from Table VII. Priority 

choice 3 (0.4, 0.3, 0.2, 0.1) saves more money because of its 

very low user time preference priority and hence more 

prohibited time used. Using Choice 1 (0.2, 0.2, 0.3, 0.3) and 

Choice 2 (0.1, 0.2, 0.2, 0.5), similar results were produced. 

There are three reasons for this. First, the user time 

preference deviation objective    has great influence on the 

general fuzzy goal objective relative to appliance-related 

deviation objectives.  We observe that the average optimal 

value of the user time preference-related deviation objective 

is more than 10 times that any of the other single objective 

values. Although the use of the worst and best objective 

values in constructing the fuzzy objective dramatically 

resizes the fluctuation range to a range that is similar to that 

of the other objectives, the great difference still exists. 

Second, the user time preference objective priority level 0.3 

and 0.5 have almost the same effects on this single objective 

value. Third, only three appliances were involved in this 

study and two of them are closely related, resulting in small 

scheduling flexibility. Separately selecting and treating the 

user time preference objective priority levels can produce 

better effects.  

Illustrations of the price data (Fig. 1) used in this study 

and some typical energy assignment examples (Fig. 2 – Fig. 

4) are given below. All the energy assignment examples are 

based on the 10-min time slot. With the increase of the user 

time preference-related objective priority, the violation of 

the user prohibited time decreases, and eventually no 

prohibited time is used when this priority is very high. 
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Figure 1. Hourly pricing data. 

 

Figure 2. Total energy assignment under priority choice 3 (0.4, 0.3, 0.2, 

0.1). 

 

Figure 3. Total energy assignment under the priority choice (0.14, 0.23, 

0.20, 0.43). 

 

Figure 4. Total energy assignment under the priority choice (0.02, 0.04, 

0.04, 0.9). 

D. Comparative discussion 

The research of applying adaptive fuzzy goal 

programming theory with priority considered to the area of 

optimal scheduling of smart home appliances is still quite 

new. Compared with the reported existing models, our 

model is more realistic and practical with the new developed 

between-appliance delay constraints, the soft user time 

preferences, and the priorities imposed on each single 

objective. In [4] and [14], only the plain MILP formulation 

was used to model the home appliance scheduling problem 

based on rigid user time preferences and without 

considering the priority of each appliance. A very simple 

household appliances scheduling formulation taking into 

account only  the peak hourly load constraints was proposed 

[15]. Samadi et al. [16] proposed a real-time residential load 

scheduling that took consideration of the load uncertainty, 

but quite different energy phase concepts such as sleep, 

awake, active, finished, etc., were used. A type of semi-soft 

user time preference constraints were proposed in home 

appliances scheduling [17], however, there are two 

limitations in this study: the user time preference constraint 

under each discrete sensitivity level was still a rigid one; no 

energy phase concepts were adopted for detailed 

investigation. Direct comparison of the energy saving 

between the proposed model and other models would be 

totally meaningless as each model was established based on 

quite different assumptions, objective, and constraints. In 

many cases, electricity cost is only part of the general 

objective.  

The proposed fuzzy goal programming model for home 

appliances scheduling does involve more variables and 

constraints than does a plain MILP model. The 

implementation time required for our model is 13% more on 

average than that for [3]. Since the proposed scheduling is 

supposed to make one day in advance and only a few 

minutes or even less than one minute is needed to finish the 

implementation, the extra time cost becomes marginal. 
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VI. CONCLUSION AND FUTURE WORK 

The proposed mixed integer fuzzy goal programming 

model for adaptive scheduling of smart home appliances 

was shown to be effective in saving user’s total electricity 

cost. The user time preferences were transformed from rigid 

constraints to soft violation penalty objectives and 

integrated into the fuzzy goal programming formulation. 

Our optimization solution also allows users to give preferred 

priorities to different appliances objectives and the user time 

preference objective as well. The newly introduced 

constraints that restrict the delay between two closely 

related appliances make the proposed framework practical. 

More appliances with same or different type are to be 

included in the future research to further investigate the 

performance of the proposed method. The general 

conclusion of the study is that a closed-form optimization 

model is an effective approach for adaptation of home 

appliance schedules to changing prices of electrical power.  

Future work is to include more common and frequently-

used smart home appliances in the study to further test the 

validity of the proposed model. 
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