
A Black Box Validation Strategy for Self-adaptive Systems

Georg Püschel, Christian Piechnick, Sebastian Götz, Christoph Seidl, Sebastian Richly, Uwe Aßmann
Software Technology Group, Technische Universität Dresden

Nöthnitzer Str. 46, 01062 Dresden, Germany
Email: {georg.pueschel, christian.piechnick, sebastian.goetz1, christoph.seidl, sebastian.richly, uwe.assmann}@tu-dresden.de

Abstract—Self-adaptive systems are able to operate autonomously by
reconfiguring themselves for changing context conditions and tasks. This
capability requires a process of decision making that can only be partially
hard-coded. Some parts of the logic are the result of reasoning and, thus,
implicit to the system designer or user. In consequence, the quality of
the systems functionality has to be extensively validated before delivery.
During the validation, firstly, the response of adaptation decisions as
a result of environment change has to be examined. Secondly, it is
necessary to check the interaction of adaptation and non-adaptation-
related behavior. The management of all this information is expensive.
Therefore, we propose an approach that separates environment change,
functionality and adaptation concerns using expressive models. The
models are executed by a simulator and validated against the real behavior
of the system under test. We illustrate the complete approach using an
example SAS operating a domestic service robot. Our design process
and the proposed modeling principles equip engineers with a toolset that
allows them to face the challenging complexity of self-adaptive system
validation.

Keywords—self-adaptive systems; service robots; model-based testing;
simulation; feedback loops

I. INTRODUCTION

A Self-adaptive System (SAS) [1] adapts itself according
to changes in its environment. The continuous execution of
sensor monitoring, decision making, planning, and adaptation
execution is organized in feedback loops [2]. Due to the use of
intelligent reasoning strategies, the SAS is capable of fulfilling
its tasks more efficiently or it even may find solutions to tasks
that were not explicitly defined at design time.

In our work, we aim to provide solid SAS development
methods and, thus, we also require a validation approach
that is able to deal with the complexity of such self-adaptive
behavior. The mechanisms that decide autonomously have to
be validated extensively before deploying the system in a
productive environment. A limitation is that a SAS can be
adapted from external or reason about unanticipated events can
never be tested comprehensively in this phase of the life cycle.

However, even for these systems, the user’s trust has to
be gained by examining the system in an appropriate variety
of scenarios. Hence, validation methods can be performed
on different abstraction layers as, for instance, the German V-
Modell [3] proposes. On the lowest abstraction layer of modules,
knowledge of code and design models can be utilized. However,
due to the complexity and large variety of possible situations,
performing a comprehensive validation (e.g., by deriving and
executing test cases) on these levels is expensive.

In contrast, validating SAS applications on acceptance level,
based on requirements of a more abstract specification, is more
promising. For this purpose, the engineer no longer relies on
detailed knowledge of the system interior but on a black box
interface that is used to enforce situations and validate the
outcome. Thus, setting up a black box interface that provides

all necessary operations to interact with the system and to query
information that has to be examined, is the first crucial task
during the validation phase.

A validation method for specification-based black boxes
is model-based testing [4]. In this approach, a test model is
specified and test cases are generated from it. Additionally,
a further problem is that SAS can be deployed in complex
environments where not every detailed situation can be enforced.
For instance, some entities the system is interacting with
like hardware controllers or physical objects are difficult to
be formalized. Instead, the test model designer may specify
some future decisions depending on run-time state that is
observed from these entities at runtime. As sequential test
cases cannot support such decisions, the model has to be
executed at run-time. Therefore, we propose using simulation
and capturing the discussed non-specifiable parts of the system
or test environment “in-the-loop”.

The challenge in simulating a SAS is to provide a meta-
model that is expressive enough for compactly specifying all
behavioral and adaptation-related aspects. These aspects are
given by several requirements that we derived from failure
scenarios in our previous work [5]:

(1) Correct sensor interpretation
(2) Correct adaptation initiation
(3) Correct adaptation planning
(4) Consistent adaptation/system interaction
(5) Consistent adaptation execution
(6) Correct system behavior (especially actuator actions)

Goals (1) and (6) include the validation of the correctness
in sensor perception and actuator control. Both properties can
be checked in isolation by instrumenting the respective drivers.
However, in this paper, we focus on the goals (2)-(5), which
directly deal with the SAS feedback loop (sometimes referred
to as MAPE loop: monitor, analyze, plan, execute [2]). In
order to match the requirements, the model has to provide
means for defining in which situations an adaptation has to be
initiated (goal 2), how the system has to adapt (goal 3), how
the adaptation has to be scheduled with non-adaptation-related
behavior (goal 4), and how the end result of the adaptation is
expected to look like (goal 5).

In order to match these requirements, we contribute a
methodology to separate their different aspects in a composite
simulation model. Parts of our model are enriched with
assertions on the System Under Test’s (SUT) interface in order
to define how a simulation state has to be concretely validated.
We illustrate the complete modeling methodology using our
HomeTurtle domestic robot. In the HomeTurtle scenario, a
robot is deployed in a flat of a handicapped person and is

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

capable of delivering various items, which are stored in a
software-controlled cabinet.

The remainder of this paper is structured as follows: In
Section II, we start with our example adaptive system. In
Section III, we present our approach based on this example.
In Section IV, we illustrate an example simulation run. In
Section V, we present out implementation and experimental
environment. Afterwards, in Section VI, we discuss related
work. In Section VII, conclusion and future work are discussed.

II. EXAMPLE APPLICATION: HOME TURTLE

In this section, we present an illustrative example of a SAS
that supports a handicapped person at home. The scenario
is depicted in Figure 1. A service robot “HomeTurtle” (an
extended version of the TurtleBot platform [6]) is initially
deployed in the flat. The task of the robot is to find and deliver
a desired item to the user (i.e., the inhabitant). Those items
can be dropped from a cabinet into a basket mounted on top
of the robot. Therefore, the cabinet contains several boxes with
magnetically clamped flaps. The magnets are triggered from a
WiFi-connected embedded device.

In the beginning, a user instructs the robot by entering the
desired item (e.g., “towel”) using a Tablet PC that is accessible
nearby. Using a wireless network, the robot can query the flat’s
map, available cabinets including their positions and contents.
After this information has been gathered, the robot is able to
inform the user whether the desired item is available. If the item
has been found, a route is planned and the robot starts driving.
In this process, the robot has to avoid collisions with walls and
other obstacles (symbolized by office chairs). After approaching
a cabinet and parking in a predefined position underneath it, the
robot signals the cabinet to drop the requested item. Afterwards,
it drives back to the user. Additionally, during the complete
process, the environment may signal an emergency (e.g., a fire
or medical emergency). In this situation, the robot is expected
to drive to its emergency position as labeled in our illustration.
Thus, it avoids to obstruct the access of human helpers to the
inhabitant.

The following sensors and actuators are used to accomplish
the robot’s task:

• Robot drive: The robot drive has three modes for
stopping (0=stop) and driving in arbitrary directions
with two different velocities (1=slow, 2=fast).

• Stereo camera: Can be used to recognize walls,
obstacles, and the cabinets.

• On-board computation unit: The robot runs its
operations on-board using a fix-installed netbook that
connects to all the hardware on the robot.

• Smart illumination system: The flat is equipped with
room lights that can be operated by the software system
to improve the flat’s illumination.

• Local WiFi: The robot, as well as the cabinet, are
connected to a wireless network. Thus, the flat’s
map and information about the cabinet’s position and
contents can be shared.

Stereo
Camera

Computation
UnitDrive

Basket

Obstacle CabinetInhabitant

0

1

2

3

0 1 2 3 4

y

x

!
emergency

Illumintation System

Fig. 1. Scenario: HomeTurtle operating in a flat.

driver

<<interface>>

Environment
+setDaylight(daylight:boolean)
+placeObstacles(locations:Point[])
+setupCabinet(items:String[],location:Point)
+signalEmergency()

<<interface>>

HomeAutomationSystem
+request(item:String)
+poll()
+current(): Event

<<Singleton>>

Driver
+d: Driver

Event
+position(): Point
+velocity(): int
+collected(): String
+failed(): boolean
+illumination(): boolean

Point
+x: int
+y: int

+Point(x:int,y:int)

Fig. 2. Test driver interface.

Furthermore, to improve its behavior, assure safety and
minimize operation time, the following adaptations are possible:

• Improve illumination: If the robot enters a room and
daylight from the windows is not sufficient for object
recognition, the robot connects to the illumination
system and activates it.

• Location-dependent velocity: While driving at fast
mode velocity, the robot is not able to stop in time if
an obstacle is detected. As the obstacles’ positions
may change, the robot is expected to run in slow
mode during the current request as long as the current
position was not explored during this request.

In order to send input data to the real system and to
validate its output, the simulation has to communicate with the
system using a test driver. For our example, we implemented
such a driver whose interface is depicted in Figure 2. The
Driver holds a static instance Driver.d and implements
two interfaces: Firstly, Environment provides methods to
enforce an emergency signal, mock a light state, and setup
obstacles and a cabinet. In order to reduce the scenario’s
complexity, we assume that the positions of the inhabitant
and emergency locations as well as the room’s layout are
static. Secondly, the interface HomeAutomationSystem can
be used to request a new item from the robot or to retrieve
events that can be validated during simulation. Each Event
captures information about the current position, velocity, and
illumination. It also informs whether an item was collected or
the search has failed.

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Process Model
uses

Adaptation Model

Environment
Reconfiguration
Model

events
Real

environment
and system
(black box)

manipulates

validatesStructual Simulation
Model

Configuration
Variability Model

initiates

validates

events

manipulates

initiates

depends on

Fig. 3. Concern-separated components of the simulation model.

III. VALIDATING SAS BY USING AN ADAPTIVE
SIMULATION MODEL

In this section, we present our methodology. The briefly
discussed challenges are tackled in different components of
a black box simulation model. These components, as well as
their dependencies, are depicted in Figure 3. Each component
matches a set of specific concerns that were separated in order
to decouple the responsibilities during the design process. The
model is as much as possible based on Unified Modeling
Language (UML) 2 [7], Object Constraint Language (OCL) [8]
and a special version of equivalence class trees [9].

The recent state of the performed scenario is reflected
by the Process Model that is based on state charts. The
actions performed during execution are, firstly, the requests
that are sent to the test driver and, secondly, assertions that
determine whether the received events are correct in the
current state. Thus, the state of the simulation model represents
assumptions on the state of the real system. In order to work
with more detailed state-defining information, the Structural
Simulation Model (i.e., a UML class model) is used. During
the initiation of the system, the environment is set up and,
synchronously, the Structural Simulation Model is configured
with information that reflects this initial environment setting.
As there may be different variants of initial configurations, the
Environment Variability Models defines an equivalence class
tree that allows to derive such configurations. The Environment
Reconfiguration Model contains state charts with actions that
define environment manipulations in order to trigger adaptation
in the real system. As it defines an operational order of
manipulations, requirement (3)–correct adaptation planning—
can be dealt with. Regarding the requirement (2) (cf. Section I),
it has to be validated whether system correctly adapts to
these changes. Therefore, the Environment Reconfiguration
Model produces events that are consumed by an Adaptation
Model that reflects adaptation modes and validates them using
assertions (requirement (5)–consistent adaptation execution).
This Adaptation Model is a state charts as well. Events can
also be produced by the Process Model and its behavior can
be tailored to the Adaptation Model’s state. Thus, requirement
goal (4)–consistent adaptation/system interaction–is matched.
The details of the individual model components are explained
in the following.

driver simulation

<<Singleton>>

Simulation
+s: Simulation
+placedItems: String[]

obstacles

*

Point
+x: int
+y: int

+Point(x:int,y:int)

locationCabinet1

visited

*

destination

1

Fig. 4. Structural simulation model.

[visited->includes(Driver.d.
current().position())]

[visited->includes(Driver.d.
current().position())]

[not(visited->includes(Driver.d.
current().position()))]

[not(visited->includes(Driver.d.
current().position()))]

entry/Driver.d.request(„tissue“)
exit/Driver.d.poll()

entry/assertTrue(Driver.d.current().failed())

[not(placedItems->includes(„tissue“))][not(placedItems->includes(„tissue“))]

entry/visited.add(Driver.d.current().position());
exit/Driver.d.poll()

[placedItems->includes(„tissue“)]
/assertTrue(not(Driver.d.current().failed()))

[placedItems->includes(„tissue“)]
/assertTrue(not(Driver.d.current().failed()))

NewLoc

OldLocentry/assertTrue(not(obstacles->
includes(Driver.d.current().position())
&& Driver.d.current().position().x<5
&& Driver.d.current.positon().x>=0
&& Driver.d.current().position().y<4

&& Driver.d.current().position().y>=0)

after(3s)after(3s)

context: Simulation.scontext: Simulation.s

S0

S1

S4

S3

S2

[olcInState(Emergency)
or Driver.d.currrent().position().equals(destination)]

[not(olcInState(Emergeny)
or Driver.d.current().position().equals(destination))]

[Driver.d.current().position().equals(destination) and
not(destination=null) and not(destination.equals(locationCabinet))]
/assertTrue(oclInState(Emergency) || collected = „tissue“)

[olcInState(Emergency)
and not(Driver.d.current().position().
equals(new Point(4,0))]
/destination = new Point(4,0)

[not(olcInState(Emergency))
and destination = null]
/destination = locationCabinet

[not(olcInState(Emergency))
not destination=null]
/destination = new Point(1,3)

Fig. 5. System process model.

A. Structural Simulation Model

During the simulation, several assumptions on the real
system have to be managed that are represented by a sim-
ulation state. For our example application, the locations of
obstacles and the cabinet has be remembered as well as the
locations that were already visited. This state is captured by
a structural model as depicted in Figure 4. The singleton
object SimulationState.s holds attributes and aggregates
objects that can be manipulated or evaluated by the central
System Process Model.

B. System Process Model

The System Process Model defines the task-specific behavior
of the system and how it interacts with its adaptation feedback
loops. For our example, we defined these aspects in an UML
State Chart as depicted in Figure 5. It uses OCL constraints
whose context is the static instance Simulation.s. In state
S0, a request for a towel is initiated and the first event is polled.
If the initial configuration set up the cabinet with the desired
item, S1 is reached, otherwise S2. The action of the latter
transition (i.e., the entry action of S1) performs an assertion
on whether the real system has either failed or not. If any
assertion in the models fails, the simulation is cancelled and an

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Environment

placeObstacles(X)
Simulation.obstacles=X

placeCabinet(X,Y)
Simulation.s.placedItems=X
Simulation.locationCabinet=Y

[]
[new Point(1,2)]

[new Point(0,3),
new Point(2,2),
new Point(4,3)]

[Inv: Simulation.s.obstacles->union(Set{new Point(4,0),
new Point(1,3),Simulaton.s.locationCabinet})->forAll(a,b|a<>b)]

X

[]
new Point(1,2)

new Point(0,3)
new Point(2,2)

X
[]

[„tissue“]
[„towel“]

[„tissue“,“towel“]

Y

Fig. 6. Environment configuration variability model.

error is signaled. Starting from state S2, the robot’s destination
is determined by evaluating the previous destination value
(either null, the start place, the cabinet’s place or the emergency
position).

States S3 and S4 form a feedback loop. When entering S3,
the current position is appended to the list of visited locations
and the next event is polled. In the next step, the loop sleeps
three seconds (indicated by the AcceptTimeAction, cf.
UML spec. [7]). Thus, the Adaptation Models are expected to
enforce changes to the environment that are interleaved with
the process. Subsequently, in S4 an assertion is performed in
order to ensure no obstacle has been hit and the robot did not
leave the boundaries of the scenario. Depending on whether
the current position is contained in the visited collection, a
signal OldLoc or NewLoc is produced. Therefore, we use the
SendSignalAction UML element. These signal events are
later used to synchronize with the adaptation models. At this
point, the feedback loop is restarted. As soon as the destination
is reached, the transition to state S2 is triggered. Another exit
possibility from the loop is triggered when the Emergency
adaptation mode is active. This information can be queried
by the oclInState(...) function, which is applied to the
Adaptation Models. In this way, an interaction between the
task-related process and the adaptation mode of the SAS can
be modeled. The final state is enabled if the robot reaches a
destination that is not the location of the cabinet. The respective
transition checks an assertion whether either an emergency was
signaled or the correct item was collected.

C. Environment Configuration Variability Model

The state space of an environment situation can be enor-
mously large. In testing, this problem is usually dealt by
using classification. For instance, data ranges of the system’s
input parameters are split into equivalence classes and only
representatives are tested. All representatives of an equivalence
class are assumed to produce the same output. For our example,
we designed a special model as depicted in Figure 6. The
hierarchical structure serves as a decision tree for determining
under which initial conditions a simulation can be started.
Each one of the Environment child nodes performs multiple
operations: Firstly, the real system is initiated (e.g., the robot is
set up in its initial location) and secondly, the simulation state
is manipulated such that it reflects this initial configuration.
The operations are parameterized with one or two substitution
variables. Each variable can be replaced by one of the concrete

Day

Night

entry/setDaylight(true)

entry/setDaylight(false)

after(2s)after(2s)

after(5s)after(5s)

context: Driver.d

after(3s)after(3s)
entry/signalEmergency()

Emergency

Fig. 7. Environment reconfiguration model.

values in its leaf nodes. The latter ones are the equivalence class
representatives. Furthermore, the model contains an invariant
to prohibit configurations where the robot’s start position,
obstacles, or the cabinet are put in the same location.

Basically, this model represents the variability of possible
environment settings. Thus, more sophisticated models of
variability (e.g., attributed feature models [10]) can also be used
for the same purpose. Inherent invariants of such models can
restrict the configuration variability space to a manageable size.
However, a specific challenge of SAS is to validate whether
to system adapts correctly the changes of this configuration.
Therefore, in the next section, the configurations dynamics are
defined.

D. Environment Reconfiguration Models

Figure 7 depicts a simple model of environment reconfigu-
ration. In the upper chart, the entry point of the first state sets
the environment daylight to true. The driver is now in charge
of mocking the brightness sensor’s input data and thus enforces
the system to adapt. In order to reflect the expected adaptation
in the simulation model, a signal Day is produced that later will
be received by the Adaptation Model. After five seconds, the
daylight setting is inverted and the Night signal is sent. After
additional two seconds, the reconfiguration loop restarts. The
lower chart performs a loop that every three seconds demands
the simulation to decide of an emergency is signalled or not.
This decision can, for instance, be determined randomly or by
the user.

Using such environment reconfiguration models, scenarios
with different operational orders can be generated. Based on
these scenarios, the SUT is stressed and its reactions are
exhaustively validated. Using timing, the variety of interleaving
possibilities with actions from the Process Model can be
reduced.

E. Adaptation Model

Adaptation models define how a configuration has to be
altered in response to a received signal. Signals have been
produced by either the Environment Reconfiguration Models or
by the Process Model in order to notify about a condition that
may cause an adaptation. Figure 8 depicts three state charts
for the velocity, illumination, and emergency adaptations.

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

entry/assertTrue(current().velocity()==1)

entry/assertTrue(current().velocity()==0) entry/assertTrue(current().velocity()==2)

NewLoc OldLoc

Stop

Night

Day

entry/assertTrue(current().illumination())

entry/assertTrue(not(current().illumination()));

context: Driver.dcontext: Driver.d

/poll()

/poll()

/poll()

/poll()

/poll()

Emergency

Emergency

NoEmergency

/poll()

Fig. 8. Adaptation models.

placeObstacles(new Point(1,2));
Simulation.s.obstacles=new Point(1,2);
placeCabinet([„tissue“],new Point(0,3));
Simulation.s.placedItems=[„tissue“];
Simulation.s.locationCabinet=new Point(0,3);

Driver.d.request(„tissue“);
Driver.d.setDaylight(true); //signal Day sent
assertTrue(Driver.d.current().velocity()=0);
assertTrue(not(Driver.d.current().illumination()));

assertTrue(not(Driver.d.current().failed());

Simulation.s.visited.add(Driver.d.currentPosition());
Driver.d.poll();

Driver.d.signalEmergency(); //signal Emergency thrown

//signal Emergency received
poll();

3s3s

…

(1) initial values from
Environment Variability Model

(2) initial actions from Process Model and
Environment Reconfiguration Models

(3) transition S0 => S2

(5) entry and exit of state S3

Simulation.s.destination=Simulation.s.locationCabinet

(4) transition S2 => S3

(6) Environment Reconfiguration Model

(7) Adaptation Model

Fig. 9. Excerpt of an example simulation run.

States of an adaptation state chart may contain an entry op-
eration, which performs a validation on the system’s adaptation
mode. Using UML AcceptEventActions, the automaton
is designed to wait for the signals. After a signal was received, a
new system event is retrieved (poll()) such that the assertion
is performed on a fresh information basis. Each Adaptation
Model stores a specific aspect of the SUT’s adaptation mode.
Behavioral adaptations are defined using constraints on the
Adaptation Models’ states.

Fig. 10. The HomeTurtle lab.

IV. SIMULATION

To clarify the models’ interactions, we illustrate an excerpt
of an example simulation run in Figure 9. The simulation
is indeterministic as there can be several execution paths.
Sequence (1) of operations is generated by the Environment
Variability Model. The simulator automatically selects a solution
of the model’s invariant such that no obstacle position equals the
positions of the inhabitant, cabinet, or emergency stop. When
the different state charts are initiated, operations sequence
(2) is performed as defined in the initial states. When the
Environment Reconfiguration Model sets the daylight property,
a signal Day is produced. However, as the respective Adaptation
Model has no matching outgoing transitions in its initial state,
this signal is ignored in this specific state. Sequences (3) and
(4) are generated when the transitions S0->S2 and S2->S3
are triggered. S0->S1 cannot be executed as tissue item
was placed in the cabinet during operation of sequence (1).
Subsequently, in sequence (5) the entry and exit action of S3
are executed. After this point, the Process Model waits for three
seconds as defined and, consequently, there is an indeterministic
decision point in the Environment Reconfiguration Model where
either an emergency is signaled up or not. We assume that the
simulation determines to generate the emergency such that in
sequence (6), the driver is called and the respective signal is
produced. In sequence (7), the Adaptation Model receives this
signal and switches to the emergency mode after polling a new
event. Afterwards, the simulation starts validating whether the
robot correctly drives to the emergency stop.

V. IMPLEMENTATION AND EXPERIMENTAL ENVIRONMENT

Syntax and semantics of all used models were implemented
in our Model-driven Adaptivity Test Environment (MATE). It
provides an EMF (Eclipse Modeling Framework [11]) based
metamodel and a simulator that can be used to execute the
model automatically or—in order to debug it—step-wise.

In our previous work, we developed the Smart Application
Grid (SMAG) framework that can be used for architectural
run-time adaptation [12]. Based on SMAG, we created the self-
adaptive HomeTurtle software. An impression of the physical

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

experimental environment is given in Figure 10. In order to
show the feasibility of our validation approach, a platform-
specific HomeTurtle test driver was developed as well. It
directs the operation calls produced by the model to the real
system and—vice versa—generates events from the system’s
observed behavior. However, not every modeled operation
can be performed automatically. The initial configuration of
the environment (setting up the cabinet’s content, placing
obstacles, etc.) and the validation whether the correct item
was collected are performed manually by the test engineer.
During the automatable phases, the validation directly benefits
from the model-driven nature of our approach, its advantage
in manually performed action is given by the reproducability
of simulation paths. If any path fails during a test, it can be
recorded, analyzed and later even be re-executed.

VI. RELATED WORK

Validation approaches for self-adaptive systems are still rare
in literature. An advanced strategy was proposed within the
DiVA project [13]. The validation of DiVA-based implementa-
tions can be performed in two phases: (1) In the early phase,
instances of the context model are generated and associated
with partial solutions. Those describe how parts of the systems
have to be configured after a certain context instance was
applied and the corresponding adaptation was performed. (2)
In an operational validation phase, the system’s behavior is
investigated during a sequence of contextual changes. The DiVA
validation methods neither consider any system/adaptation
interaction, nor do they propose specific test models.

Nehring and Liggesmeyer proposed in [14] a process for
testing the reconfiguration of adaptive systems. The validation
is performed in six iterations: In the beginning, a system model
is derived and representative workload is prepared by a domain
expert and later executed by developers or system engineers.
In the second iteration, a system architect checks if structural
changes are performed correctly. Thereby, the reconfiguration
actions have to be in the correct order such that the system
ends in a valid state and the quality of service is only affected
minimally during reconfiguration. The third iteration considers
data integrity while stressing the system with increasing load.
In the fourth iteration step, state transfer between replaced
components is investigated. An interaction issue between system
transactions and the adaptation is tested in the fifth iteration.
The last iteration considers the identity of components and
component types before and after adaptation. In comparison to
our approach, Nehring and Liggemeyer assume the adaptive
system to be component based and the validation can be
sufficiently investigated by a debugger-like tool chain. Thus,
their approach is exploratory and hard to use for integration
and system testing.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a concept to build black box
simulation models for validating SAS. Our models are based
on UML class models, state charts plus equivalence class trees
with invariants. Automatons communicate by events such that
the different concerns of the system process and adaptation
can be separated. Our approach does not rely on any design
model such that engineers are able to build discrete simulation
models of arbitrary self-adaptive systems. The methodology

comprises a process of classifying environment variability and
defining an explicit model on its change. Using this toolset,
we match the requirements (2)-(5) as stated in Section III.
Requirement (2)–Correct adaptation initiation is considered
by letting Adaptation Models receive signal events from the
Environment Reconfiguration Models. Thus, the change in
context can be causally connected with an adaptation of the
system. As Adaptation Models define an operational order of
adaptation actions, goal (3)-Correct adaptation planning is dealt
with. Requirement (4)-Consistent adaptation/system interaction
can be validated as the Process Model accesses the state of the
Adaptation Models and defines conditions on this state. Thus,
the system’s adaptive behavior can be defined. As Adaptation
Models can also check an adaptation’s outcome by assertions,
requirement (5)-Correct adapation execution is addressed.

In our future work, we are going to enrich the employed
formalism (i.e., state charts, equivalence class trees, etc.) for
more compact definitions and experiment with more complex
scenarios in order to expand the evaluation. Concerning the
improvement of formalism, for instance, we consider using
Petri nets as they are more flexible in describing parallelism and
synchronization, which is especially important when multiple
widely-independent system parts interact.

ACKNOWLEDGMENT

This work is funded within the projects #100084131 and
#100098171 (VICCI) by the European Social Fund as well as
CRC 912 (HAEC) and the Center for Advancing Electronics
Dresden (cfaed) by Deutsche Forschungsgemeinschaft.

REFERENCES

[1] B. H. C. Cheng et al., “Software Engineering for Self-Adaptive Systems:
A Research Roadmap,” in Dagstuhl Seminar 08031 on Software
Engineering for Self-Adaptive Systems, 2008, pp. 1–26.

[2] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[3] IABG, “V-Modell XT 1.4,” http://v-modell.iabg.de, visited 04/01/2014,
2012.

[4] M. Utting and B. Legeard, Practical model-based testing: a tools
approach. Morgan Kaufmann, 2010.

[5] G. Püschel, S. Götz, C. Wilke, and U. Aßmann, “Towards Systematic
Model-based Testing of Self-adaptive Software,” in Adaptive, 2013, pp.
65–70.

[6] “TurtleBot 2,” http://turtlebot.com, visited 04/01/2014.
[7] Object Management Group (OMG), “UML Specification, Version 2.4.1,”

http://www.omg.org/spec/UML/2.4.1/, visited 04/01/2014.
[8] Object Management Group (OMG), “Object Constraint Lanugage,

Version 2.3.1,” http://www.omg.org/spec/OCL/2.3.1/, visited 04/01/2014.
[9] M. Grochtmann, “Test case design using classification trees,” Proceedings

of STAR, vol. 94, 1994, pp. 93–117.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,

“Feature-oriented Domain Analysis (FODA) Feasibility Study,” DTIC
Document, Tech. Rep., 1990.

[11] “Eclipse Modeling Framework Project,”
http://www.eclipse.org/modeling/emf/, visited 04/01/2014.

[12] C. Piechnick, S. Richly, and S. Götz, “Using Role-Based Composition
to Support Unanticipated , Dynamic Adaptation - Smart Application
Grids,” in Adaptive, 2012, pp. 93–102.

[13] A. Maaß, D. Beucho, and A. Solberg, “Adaptation Model and
Validation Framework – Final Version (DiVA Deliverable D4.3),”
https://sites.google.com/site/divawebsite, visited 02/01/2014, 2010.

[14] K. Nehring and P. Liggesmeyer, “Testing the Reconfiguration of Adaptive
Systems,” in Adaptive, 2013, pp. 14–19.

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4

ADAPTIVE 2014 : The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

	I Introduction
	II Example Application: Home Turtle
	III Validating SAS by Using an Adaptive Simulation Model
	III-A Structural Simulation Model
	III-B System Process Model
	III-C Environment Configuration Variability Model
	III-D Environment Reconfiguration Models
	III-E Adaptation Model

	IV Simulation
	V Implementation and Experimental Environment
	VI Related Work
	VII Conclusions and Future Work
	References

