
DAiSI—A Component Model and Decentralized Configuration Mechanism for
Dynamic Adaptive Systems

Holger Klus
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
holger.klus@tu-clausthal.de

Andreas Rausch
Technische Universität Clausthal

Clausthal-Zellerfeld, Germany
andreas.rausch@tu-clausthal.de

Abstract— Dynamic adaptive systems are systems that change
behavior according to the needs of the user during run time,
based on context information. Since it is not feasible to develop
these systems from scratch every time, a component model
enabling dynamic adaptive systems is called for. Moreover, an
infrastructure is required that is capable of wiring dynamic
adaptive systems from a set of components in order to provide
a dynamic and adaptive behavior to the user. In this paper we
present just such an infrastructure or framework—called
Dynamic Adaptive System Infrastructure (DAiSI). The focus of
the paper is on the underlying component model and the
decentralized configuration mechanism. We will present an
example scenario illustrating the adaptation capabilities of the
framework we introduce.

Keywords-dynamic adaptive systems; component model;
component composition; adaptation; componentware;
component container; decentralized configuration.

I. INTRODUCTION

Software-based systems pervade our daily life—at work
as well as at home. Public administration or enterprise
organizations can scarcely be managed without software-
based systems. We come across devices executing software
in nearly every household. The continuous increase in size
and functionality of software systems has now made some of
them among the most complex man-made systems ever
devised [1].

In the last two decades the trend towards “everything,
every time, everywhere” has been dramatically increased
through a) smaller mobile devices with higher computation
and communication capabilities, b) ubiquitous availability of
the Internet (almost all devices are connected with the
Internet and thereby connected with each other), and c)
devices equipped with more and more connected, intelligent
and sophisticated sensors and actuators.

 Nowadays these devices are increasingly used within an
organically grown, heterogeneous, and dynamic IT
environment. Users expect them not only to provide their
primary services but also to collaborate autonomously with
each other and thus to provide real added value. The
challenge is therefore to provide software systems that are
robust in the presence of increasing challenges such as
change and complexity [2].

The reasons for the steady increase in complexity are
twofold: On the one hand, the set of requirements imposed
on software systems is becoming larger and larger as the
extrinsic complexity increases, in the form of, for example,
additional functionality and variability. In addition, the
structures of software systems—in terms of size, scope,
distribution and networking of the system among other
things—are themselves becoming more complex, which
leads to an increase in the intrinsic complexity of the system.

Change is inherent, both in the changing needs of users
and in the changes which take place in the operational
environment of the system. Hence it is essential that our
systems be able to adapt as necessary to continue to satisfy
user expectations and environmental changes in terms of an
evolutionary change. Dynamic change, in contrast to
evolutionary change, occurs while the system is operational.
Dynamic change requires that the system adapt at run time.

Since the complexity and change may not permit human
intervention, we must plan for automated management of
adaptation. The systems themselves must be capable of
determining what system change is required, and in initiating
and managing the change process wherever possible. This is
the aim of self-managed systems.

Self-managed systems are those capable of adapting to
the current context as required though self-configuration,
self-healing, self-monitoring, self-tuning, and so on. These
are also referred to as self-x, autonomic systems. We call
them dynamic adaptive systems.

Providing dynamic adaptive systems is a great challenge
in software engineering [2]. In order to provide dynamic
adaptive systems, the activities of classical development
approaches have to be partially or completely moved from
development time to run time. For instance, devices and
software components can be attached to a dynamic adaptive
system at any time. Consequently, devices and software
components can be removed from the dynamic adaptive
system or they can fail as the result of a defect. Hence, for
dynamic adaptive systems, system integration takes place
during run time.

To support the development of dynamic adaptive systems
a couple of infrastructures and frameworks have been
developed, as discussed in a related work section, Section 2.
In our research group we have also developed a framework
for dynamic adaptive (and distributed) systems, called DAiSI

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 27

(Dynamic Adaptive System Infrastructure). The first version
of DAiSI was implemented and published in 2006/07 [15],
[10], [14] , [11]. Based on the DAiSI framework a couple of
dynamic adaptive systems (research and industrial
demonstrators) were developed and evaluated within the
following domains: assisted sport training systems [3],
emergency management systems [7], [9], assisted living
systems for elderly people [8], [10], intelligent beer
dispensing systems [5], [6], and airport baggage management
system [12], [13], [11]. All of these systems were exhibited
at CeBIT, such as [4]. Some of them were successfully
transformed into products, for instance [5] and [6].

Based on the evaluation results a couple of drawbacks
were identified. I) DAiSI’s component model was not able to
handle manage service cardinalities, such as exclusive and
shared use of a specific service or service reference sets.
Most of the applications realized needed service
cardinalities. Due to the absence of service cardinalities we
had to create workarounds. II) DAiSI’s dynamic
configuration mechanism was realized as a centralized
component. The centralized configuration component was
easy to implement but obviously it turned out to be a
bottleneck.

For that reasons we have developed and implemented an
improved version of the DAiSI framework. It contains a
sophisticated component model including service
cardinalities and a decentralized system configuration
mechanism. In this paper the new version of the DAiSI
framework will be presented.

The rest of the paper is structured as follows: After a
short description of the related work we provide an overview
of the DAiSI framework. In the following three subsections
we will introduce DAiSI’s main essential: a domain model,
an adaptive component model, and a decentralized dynamic
configuration mechanism. Then we describe a small sample
application to illustrate the decentralized dynamic
configuration mechanism of the adaptive components. A
short conclusion will round the paper up.

II. RELATED WORK

Component-based software development, component
models and component frameworks provide a solid approach
to support evolutionary changes to systems. Components are
the units of deployment and integration. During design time
components may be added or removed from a system [16].

However, dynamic changes, e.g. adding or removing
components from a system during run time is not direct
support. Service-oriented approaches promise a more
flexible approach for dynamic changes. Service users query
for services within a service directory. Once they have found
the corresponding service they can dynamically connect
themselves to the service [17].

Unfortunately in service-oriented approaches the
components are responsible for the dynamic adaptive
behavior. They have to query for the proper services, verify
that the services fit the ones they are looking for and connect
themselves to the corresponding services. For that reason a
couple of frameworks have been developed. Those
frameworks support the component configuration during run

time and thereby form dynamic adaptive systems. CONIC
and REX provide a description technique to describe an
initial system configuration and system adaptions during run
time [18], [19].

Figure 1. Core elements of the DAiSI framework.

Current frameworks such as ProAdapt [20] and
Config.NETServices [21] have a more generic adaption and
configuration mechanism. Components that were not known
during the design-time of the system, are added and removed
from the dynamic adaptive system during run time.
Therefore a generic component configuration mechanism is
provided by the framework. As with our first version of the
DAiSI framework, these frameworks are based on a
centralized configuration mechanism. Moreover the
underlying component model is restricted—for instance the
exclusive usage of services cannot be described.

III. DAISI – DYNAMIC ADAPTIVE SYSTEM

INFRASTRUCTURE

Our approach for self-organizing systems is based on a
specific framework called DAiSI [15], [10], [14] , [11].
DAiSI consists of three main parts or elements: a domain
model, an adaptive component model, and a decentralized
dynamic configuration mechanism. All three will be
introduced at a glance in the following section. The three
elements and their relationship to each other are depicted in
Figure 1 using a UML class diagram. Note, a complete
description of the DAiSI framework can be found in [22].

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 28

A. Domain Model

As in other domains, such as the network domain,
physical connectors (like the RJ 45 connector) and their pin
configurations are standard and well known by all
component vendors. A similar situation can be found in the
operating system domain: The interface for printer drivers is
standardized and published by the operating system vendor.
Third-party printer vendors adhere to this interface
specification to create printer drivers that are plugged into
the operating system during run time.

The same principle is used in the DAiSI framework: The
domain model contains standardized and broadly accepted
interfaces in the domain. The domain model defines the
basic notions and concepts of the domain shared by all
components. This means the domain model provides the
foundation for the dynamic configuration of the adaptive
system and the available components.

The domain model, as shown in Figure 1, consists of the
DomainInterface and DomainArchitecture classes. The
domain model itself is represented by an instance of the
DomainArchitecture class. A domain model contains a set of
domain interfaces, represented by an instance of the class
DomainInterface.

Domain interfaces contain syntactical information like
method signatures or datatypes occuring in the interfaces. In
addition they may also contain a behavioral specification of
the interface following the design by contract approach, for
instance using pre- and postconditions and invariants to
describe the functional behavior of a domain interface [9].

Usually components need services from other
components to provide their own service within the dynamic
adaptive system. To indicate which services a component
provides and requires it refers to the corresponding
DomainInterface. As components providing services and
components requiring services refer to the same domain
interface description DAiSI is able to identify those and bind
these components together during run time.

Using simple domain interface descriptions the
correctness of the binding can only be guaranteed on a
syntactical level. Once the domain interface descriptions
contain additional information about the functional behavior,
the correctness of the binding can also be guaranteed on the
behavioral level. Therefore we have developed a sophistic
approach based on run-time testing. Further information of
DAiSI’s solution to guarantee functional correctness of
dynamic adaptive systems during run time can be found in
[9], [23].

B. Adaptive Component Model

Each component in the system is represented by the
DynamicAdaptiveComponent class. Each component may
provide services to other components or use services,
provided by other components. The services a component
provides are represented by the ProvidedService class. The
services a component requires are specified by the
RequiredServiceReferenceSet class, where each instance
represents a set of required services for exactly one domain
interface. The ComponentConfiguration class of the
component model represents a mapping between services

required and provided. If all the required services of a
component configuration are available, the provided services
of that component configuration can in turn be provided to
other components. In the following subsections the
individual parts of the component model are introduced in
more detail. Afterwards, the interplay of these parts during
the configuration process will be explained.

1) Dynamic Adaptive components

Figure 2. DynamicAdaptiveComponent class.

Each component instance within the system is
represented by an instance of the class
DynamicAdaptiveComponent, see Figure 2. By calling the
install or uninstall methods, a component is, respectively,
published or removed from the system. If install is called, all
other parts of that component are informed by calling the
trigger install. The framework then starts trying to resolve
dependencies on other components in order to run
ProvidedServices and provide them to other components
within the system. Each DynamicAdaptiveComponent
realizes a state machine, as shown in Figure 3 whose current
state is stored in a variable called state.

Figure 3. State machine - DynamicAdaptiveComponent class.

Two states are distinguished for
DynamicAdaptiveComponent, namely RESOLVED and
NOT_RESOLVED. In the beginning a component is in the
NOT_RESOLVED state. If, for a single
ComponentConfiguration, all dependencies to services of
other components are resolved, the trigger
configurationResolved of DynamicAdaptiveComponent is
called and the state machine switches to state RESOLVED.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 29

Every time a state transition takes place, the abstract method,
notifyStateChanged, is called. A component developer can
override this method in order to react to certain state
transitions, e.g. by showing or fading out a graphical user
interface.

2) Component Configuration

Figure 4. ComponentConfiguration class.

Each component defines at least one
ComponentConfiguration. Figure 4 shows the corresponding
class diagram for ComponentConfiguration. The defined
ComponentConfigurations are connected to a component by
the association contains. Each ComponentConfiguration
represents a mapping between a set of required and provided
services. If all services required by a
ComponentConfiguration are available, the corresponding
provided services can be provided to other components. That
configuration is then marked as activatable. In case a
component has more than one ComponentConfiguration, an
order must be defined by the component developer. During
run time, at most one ComponentConfiguration can be
active. That one is then marked as current and only those
provided services are executed that are connected to
ComponentConfiguration, which is marked as current.

Figure 5. State machine - ComponentConfiguration class.

Each ComponentConfiguration realizes a state machine,
as shown in Figure 5, with three states, namely
NOT_RESOLVED, RESOLVING and RESOLVED. If a
ProvidedService has to be executed (e.g. because another
component needs it), the trigger mustRun of
ComponentConfiguration is called. Afterwards the trigger
mustResolve is called at each RequiredServiceReferenceSet
in order to initiate the resolving of dependencies to other
components. A RequiredServiceReferenceSet informs the
ComponentConfiguration of the current status of the
dependency resolution by calling the triggers rsrsResolved
and rsrsNotResolved. A ComponentConfiguration is in
RESOLVED state if the dependencies of all required
services are resolved, i.e. all connected
RequiredServiceReferenceSets have called the trigger
rsrsResolved. The ComponentConfiguration in turn calls
configurationResolved to inform the
DynamicAdaptiveComponent.

3) Provided Service
A component’s provided services are represented by the

class ProvidedService shown in the class diagram in Figure
6. Each one implements exactly one domain interface. For
each ProvidedService the number of service users who are
allowed to use the service in parallel can be specified. This is
done by setting the variable maxNoOfUsers to the required
value. In our component model, a service is executed for
only two reasons. The first reason is that there exist one or
more components that want to use that service. Requests for
service usage can be placed by calling the method wantsUse,
or wantsNotUse if the usage request has become invalid. If
there is a usage request for a ProvidedService, the connected
ComponentConfigurations are informed by calling the
trigger mustRun. The second reason that a service might
have to be executed is that it provides some kind of direct
benefit for end users. A component developer can set the flag
requestRun in this case (e.g. because the service realizes a
graphical user interface).

ProvidedService

- state : StatePS
- maxNoOfUsers : int
- requestRun : bool

serviceRunnable()
serviceNotRunnable()
install()
uninstall()
notifyStateChanged(StatePS newState)
+ wantsUse(RequiredServiceReferenceSet r)
+ wantsNotUse(RequiredServiceReferenceSet r)

Figure 6. ProvidedService class.

A ProvidedService realizes a state machine with three
states namely NOT_RUNNING, RUNNABLE and
RUNNING, as illustrated in Figure 7. A service is in
RUNNABLE state if it is exclusively connected to
ComponentConfigurations whose dependendies are resolved
but none of them is marked as current. This is the case for a
ComponentConfiguration that has higher priority and that is

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 30

marked as activatable. However, a service is in RUNNING
state if it is connected to a ComponentConfiguration which is
marked as current. If a ComponentConfiguration becomes
current, all connected ProvidedServices are informed by
calling the serviceRunnable trigger.

Figure 7. State machine - ProvidedService class.

4) Required Service Reference Set
A component may need functionality provided by other

components in the system. In our component model those
dependencies are specified with the
RequiredServiceReferenceSet class, shown in Figure 8. Each
instance of RequiredServiceReferenceSet represents
dependencies on a set of services that implement the same
domain interface. That domain interface is specified by the
association, refersTo. A component representing a trainer for
example may define a RequiredServiceReferenceSet that
refers to a domain interface called IAthlete in order to get
access to the training data of athletes. The minimum and
maximum number of required references to services can be
specified by setting the variables minNoOfRequiredRefs and
maxNoOfRequiredRefs.

Figure 8. RequiredServiceReferenceSet class.

A RequiredServiceReferenceSet realizes a state machine
with three states, namely NOT_RESOLVED, RESOLVING
and RESOLVED. Figure 9 visualizes this state machine. As

soon as there is a request for resolving dependencies, the
state switches to RESOLVED or RESOLVING, depending
on the value of minNoOfRequiredRefs. If it is zero, then the
requirements are fulfilled and it can switch directly to
RESOLVED. A request for dependency resolution is placed
by calling the mustResolve trigger.

Figure 9. State machine - RequiredServiceReferenceSet class.

5) Notation for DAiSI Components
To describe DAiSI components we use a compact

notation, illustrated in Figure 10. Provided services are
notated as circles, required services as semicircles,
component configurations are depicted as crossbars, and the
component itself is represented by a rectangle. Provided
services that are intended to be activated (flag requestRun is
true) are shown as a black circle.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 31

Figure 10. Notation for DAiSI components.

The component depicted in Figure 10 thus specifies two
component configurations. The first requires exactly one
service, which implements the DomainInterface IPulse. If
such a service is available, the service variable p1 of type
IAthlete can in turn be provided to other components in the
system. If no pulse service is available, the second
configuration can still be activated because that one defines
no dependencies to other services. In that case, the athlete
component provides the service variable p2 to other
components.

C. Decentralized Dynamic Configuration Mechanism

There exist three types of relations between
RequiredServiceReferenceSets and ProvidedServices,
represented by the associations canUse, wantsUse and uses.
The set of services that implement the domain interface
referred by the RequiredServiceReferenceSet is represented
by canUse. Note, this only guarantees a syntactically correct
binding. In [9] and [23] we have shown how this approach
can be extended to guarantee functional-behaviorally correct
binding as well during run time using a run-time testing
approach.

The wantsUse set holds references to those services for
which a usage request has been placed by calling wantsUse.
And the uses set contains references to those services which
are currently in use by the component or by
RequiredServiceReferenceSet.

Each time a new service becomes available in the system,
the newService method is called with a reference to the
service as parameter. The new service is added to all canUse
sets, if the corresponding RequiredServiceReferenceSet
refers to the same DomainInterface as the ProvidedServices.
If there is a request for dependency resolution (by a call of
the mustResolve trigger), usage requests are placed at the
services in canUse by calling wantsUse and those service
references are copied to the wantsUse set. ProvidedServices

The management of these three associations—canUse,
wantsUse and uses—between RequiredServiceReferenceSets
and ProvidedServices is handled by DAiSI’s decentralized
dynamic configuration mechanism. This configuration
mechanism relays on the state machines, presented in the
previous sections, of the corresponding classes in the DAiSI
framework and their interaction. In the following section we
will first describe the local configuration mechanism
component and then the interaction between two components
for inter-component configuration.

1) Local Configuration Mechanism

Assume a given component as shown in Figure 11. The
component t of type CTrainer has a single configuration. It
provides a service of type ITrainer to the environment,
which can be used by an arbitrary number of other
components. The component requires zero to any number of
references to services of type IAthlete.

Figure 11. CTrainer component.

The boolean flag requestRun is true for the service
provided. Hence, DAiSI has to run the component and
provide the service within the dynamic adaptive system to
other components and to users. As the component requires
zero reference to services of type IAthlete, DAiSI can run the
component directly and thereby provide the component
service to other components and users as shown in the
sequence diagram in Figure 12.

Figure 12. Local configuration mechanism component.

2) Inter-Component Configuration Mechanism

Figure 13. CAthlete and CPulse components.

Now assume two components: The CAthlete component,
shown on the right hand side of Figure 13, requires zero or
one reference to a service of type IPulse. The second
component, CPulse, shown on the left hand side of Figure
13, provides a service of type IPulse. Note, this service can
only be exclusively used by a single component.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 32

Figure 14. Inter-component configuration mechanism.

Once the CPulse component is installed or activated
within the dynamic adaptive system, DAiSI integrates the
new service in the canUse relationship of the
RequiredServiceReferenceSet r1 of the component CAthlete.
Then DAiSI informs (calling the method newService) the
CAthlete component that a new service that can be used is
available as shown in Figure 14. DAiSI indicates that
CAthlete wants to use this new service by adding this service
in the set of services that CAthlete wants to use (set wantUse
of CAthlete). Once the service runs it is assigned to the
CAthlete component which can use the service from now on
(added to the set uses of CAthlete).

IV. SAMPLE APPLICATION – SMART BIATHLON TRAINING

SYSTEM

As already mentioned we have realized and used a couple
of dynamic adaptive systems based on DAiSI. One of the
first domains for which we developed dynamic adaptive
systems was training systems for athletes. For that reason we
have chosen this domain to implement the first dynamic
adaptive system on top of the new DAiSI version.

A. Domain Model

In the desired dynamic adaptive system, athletes
(IAthlete) and trainers (ITrainer) can supervise the pulse
(IPulse) of the athlete (see Figure 15). Moreover athletes my
use ski sticks (IStick), which have gyro sensors. Once
connected with the sticks the athlete as well as the trainer can
monitor the technically appropriate use of the sticks during
skiing for the required skiing style. Once the biathlete has
reached a shooting line (IShootingLine) he is allowed to use
the shooting line only if a superviser is available
(ISupervisor).

Figure 15. Domain model - "Smart Biathlon Training System".

B. Available Components

For a simple version of the system only three component
types have been realized (see Figure 16): CPulse, CAthlete,
and CTrainer. Note that additional components have been
realized and evaluated for more sophisticated systems. For
the purposes of this paper we only use these three
components to show the decentralized configuration
mechanism.

Figure 16. Adaptive components: CPulse, CAthlete, CTrainer.

The CPulse component provides an exclusive usable
service IPulse and requires no other services from the
dynamic adaptive system. The CAthlete component provides
two services: IPerson and IAthlete. In conf2 it provides the
service, IPerson, which has the flag, requestRun, and
requires no service from the environment. In conf1 it
provides the service, IAthlete, but therefore requires a
service, IPulse. And finally the CTrainer component may
supervise an arbitrary number of athletes and thus provides a
corresponding number of ITrainer interfaces to the real
trainer, supporting him with the online training information
of the supervised athletes.

C. Decentralized Dynamic Configuration Mechanism

Assume the following situation in the dynamic adaptive
system. The component, CPulse, is activated and the
component, CAthlete, is activated, see Figure 17 As the
requestRun flag of the provided service of conf2 is set and no
additional service references are needed, this configuration is
activated and the service is provided within the dynamic
adaptive system.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 33

Figure 17. Initial situation in the Dynamic Adaptive System.

For the higher configuration, conf1, CAthlete requires a
reference to a service of type IPulse. The CPulse component
is able to provide this service. As the provided service,
IAthlete, of configuration conf1 of component CAthlete is
not requested by any other component and has not set the
requestRun flag, this higher configuration is not activated.

Figure 18 shows the following situation: A component,
CTrainer, has been activated and integrated into our dynamic
adaptive system. In the following the decentralized dynamic
configuration mechanism is shown. Based on the interaction
between the state machines of the adaptive components the
dynamic adaptive system is reconfigured and the component
is dynamically integrated into the system.

The configuration strategy is then as follows. Each
service with requestRun flag set—in Figure 18 the new
service ITrainer of the CTrainer component—resolves the
required services transitively from the root to the leaf. Once
all required services are resolved these services are activated
(RUNNING) from the leaf to the root. If not all required
services were resolvable, the resolved services are set back to
NOT_RESOLVED. This allows other services to resolve
these services.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 34

Figure 18. Step-by-Step decentralized dynamic configuration of the Smart

Biathlon Training System.

V. CONCLUSION

The DAiSI approach is that a developer does not have to
implement a whole dynamic adaptive system on his own.
Instead the developer can develop one or more components
for a specific domain. This is only possible if a domain
model is available as described. This domain model has to
define the interfaces between the adaptive components of the
dynamic adaptive system in the specific domain.

Based on this, the developer can develop even a single
component and define which interfaces from the domain
architecture are required or provided in the different
configurations of this component. Moreover one can develop
mock-up components providing the required interfaces in
order to test the new component during development.

To support the component development DAiSI comes
with two implementation frameworks. These frameworks
provide several helper classes enabling a quick
implementation of dynamic adaptive systems in Java as well
as in C++, concentrating on the functional features of the
component to be developed. DAiSI-based dynamic adaptive
systems can be distributed across various machines. DAiSI is
also able to establish dynamic adaptive systems across
language barriers—Java- and C++-based DAiSI components
can be linked together through DAiSI to form a dynamic
adaptive system.

Figure 19. DAiSI Dynamic Adaptive System Monitor.

In order to monitor and debug a DAiSI-based dynamic
adaptive system during development, the developer may use
the so called “Dynamic Adaptive System Configuration
Browser.” This allows to view the internal structure of the
dynamic adaptive system in a graphical tree view.

As discussed in the introduction, DAiSI was used to
realize and evaluate a couple of different applications. This
allowed two main drawbacks of DAiSI to be identified: lack
of service cardinalities and the centralized configuration
mechanism.

In this paper we have shown DAiSI’s new component
model supporting service cardinalities and the new
decentralized dynamic configuration mechanism. A first
dynamic adaptive system has been successfully implemented
in the assisted sports training domain.

Consequently, further systems will be realized based on
the new DAiSI version. Additional research is required to
establish concepts to provide a proper balance between
controllability of the system’s applications and the autonomy
of the system components participating in these applications.

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 35

REFERENCES
[1] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R.

Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K.
Sullivan, and K. Wallnau. Ultra-Large-Scale Systems—The
Software Challenge of the Future. Software Engineering
Institute, Carnegie Mellon, Tech. Rep., June 2006.

[2] J. Kramer and J. Magee. A rigorous architectural approach to
adaptive software engineering. Journal of Computer Science
and Technology, 24(2):183{188, 2009}.

[3] T. Jaitner, M. Trapp, D. Niebuhr, and J. Koch, “Indoor
simulation of team training in cycling,” in ISEA 2006, E.
Moritz and S. Haake, Eds. Munich, Germany: Springer, Jul.
2006, pp. 103–108.

[4] Emergency assistance system, Webpage of the cebit exhibit
2009, http://www2.in.tu-
clausthal.de/~Rettungsassistenzsystem/, accessed 2014

[5] Intelligent beer dispensing system, Webpage of the cebit
exhibit 2010”, http://www2.in.tu-
clausthal.de/~smartschank/systembeschreibung.php, Online;
accessed 2014

[6] DIRMEIER SmartSchank, Intelligent Beer Dispensing
System, DIRMEIER GmbH,
http://www.dirmeier.de/DIRMEIER-0-0-0-1-1-1.htm, Online;
accessed 2014

[7] A. Rausch, D. Niebuhr, M. Schindler, and D. Herrling.
Emergency Management System. In Proceedings of the
International Conference on Pervasive Services 2009 (ICSP
2009), 2009.

[8] Bilateral German-Hungarian Collaboration Project on
Ambient Intelligent Systems. http://www.belami-
project.hu/~micaz/belamiproject/history/part1. Online;
accessed 2014.

[9] D. Niebuhr and A. Rausch. Guaranteeing Correctness of
Component Bindings in Dynamic Adaptive Systems based on
run-time Testing. In Proceedings of the 4th Workshop on
Services Integration in Pervasive Environments (SIPE 09) at
the International Conference on Pervasive Services 2009
(ICSP 2009). 2009.

[10] H. Klus, D. Niebuhr, and A. Rausch. A Component Model for
Dynamic Adaptive Systems. In Proceedings of the
International Workshop on Engineering of software services
for pervasive environments (ESSPE 2007), 2007.

[11] H. Klus, D. Niebuhr, and A. Rausch. Dependable and Usage-
Aware Service Binding. In Proceedings of the third
International Conference on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE 2011), 2011.

[12] A. Rausch and D. Niebuhr. ECas News Journal, DemSy—A
Scenario for an Integrated Demonstrator in a Smart City.
2010.

[13] C. Deiters, M. Köster, S. Lange, S. Lützel, B. Mokbel, C.
Mumme, and D. Niebuhr, NTH computer science report,
DemSy—A Scenario for an Integrated Demonstrator in a
SmartCity. 2010.

[14] D. Niebuhr, H. Klus, M. Anastasopoulos, J. Koch, O. Weiß,
and A. Rausch. DAiSI—Dynamic Adaptive System
Infrastructure. Technical Report Fraunhofer IESE, 2007.

[15] M. Anastasopoulos, H. Klus, J. Koch, D. Niebuhr, and E.
Werkman. DoAmI—A Middleware Platform facilitating (Re-
)configuration in Ubiquitous Systems. In Proceedings of the
Workshop on System Support for Ubiquitous Computing
(UbiSys). 2006.

[16] C. Szyperski. Component Software. Addison Wesley
Publishing Company. 2002.

[17] M. P. Papazoglou. Service-Oriented Computing: Concepts,
Characteristics and Directions. In: Proceedings of the 4th
International Conference on Web Information Systems
Engineering (WISE 2003). 10-12 December, Rome, Italy:
IEEE Computer Society Press, 2003, S. 3–12.

[18] J. Magee, J. Kramer, and M. Sloman. Constructing
Distributed Systems in Conic. In: IEEE Transactions on
Software Engineering 15 (1989), Nr. 6, S. 663–675

[19] J. Kramer. Configuration Programming: A Framework for the
Development of Distributable Systems. In: Proceedings of
IEEE International Conference on Computer Systems and
Software Engineering (COMPEURO 90). 8-10 May 1990,
Tel-Aviv, Israel: IEEE Computer Society Press, 1990. ISBN
0818620412, S. 374–384

[20] R. R. Aschoff, and A. Zisman. Proactive adaptation of service
composition. In: H. A. Müller, L. Baresi (Hrsg.): Proceedings
of the 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS'12):
Zürich, Switzerland, June 4-5, 2012. Los Alamitos,
California: IEEE Computer Society Press, 2012, S. 1–10

[21] A. Rasche, A. Polze. Configuration and Dynamic
Reconfiguration of Component-based Applications with
Microsoft .NET. In: Proceedings of the 6th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC 2003). 14-16 May 2003, Hakodate,
Hokkaido, Japan: IEEE Computer Society Press, 2003. ISBN
0-7695-1928-8, S. 164–171

[22] H. Klus. Anwendungsarchitektur-konforme Konfiguration
selbstorganisierender Softwaresysteme, Ph.D. Thesis,
Technische Universität Clausthal, 2013.

[23] D. Niebuhr. Dependable Dynamic Adaptive Systems:
Approach, Model, and Infrastructure. Clausthal-Zellerfeld,
Technische Universität Clausthal, Institut für Informatik.
Dissertation. 2010

ADAPTIVE 2014, The Sixth International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-341-4 36

