
Tracing Structural Changes of Adaptive Systems

Kai Nehring
AG Software Engineering: Dependability

University of Kaiserslautern
Kaiserslautern, Germany

Email: nehring@cs.uni-kl.de

Peter Liggesmeyer
AG Software Engineering: Dependability

University of Kaiserslautern
Kaiserslautern, Germany
liggesmeyer@cs.uni-kl.de

Abstract—The internal structure of an adaptive system is
subject to change. An unforeseen and unwanted component
composition can cause serious malfunction in a system, which
can be difficult to track. Knowledge of the system’s internal
structure at runtime helps to understand the system and, in
the end, helps to test a system more thoroughly. In this paper,
we present the provisional result of our ongoing research on
an approach that tests the reconfiguration of adaptive systems.

Keywords-adaptive system; BTrace; component composition;
internal structure; state tracking

I. INTRODUCTION

In a demanding world where systems not only have to
be available incessantly but also have to adapt to changing
environments and/or requirements, (dynamically) adaptive
systems gain popularity. Testing such systems is still a chal-
lenging task. Several approaches have been published over
the years, such as [1][2][3] to name a few. Most approaches
test the functionality of an adaptable system but not the
quality requirements, such as elapse time of the adaptation
or the states which occur during the reconfiguration.

Other approaches take some of these requirements into
account [4][5] but often require specialised knowledge and
complicated system descriptions, often in terms of temporal
logic (A-LTL) [6][7] which can be a challenging task, too.

In our work, we focalise on a test approach for qual-
ity requirements of adaptive systems that uses information
which are already available, such as component diagrams,
and a methodology which does not need in-depth knowledge
beyond that of an average system developer.

Our current work is concerned with the internal structure
of a system and the representation of changes which occur at
runtime. These information can be used to gain knowledge
of the system, e.g., the individual states of an application
during reconfiguration. Furthermore, these data can be used
to evaluate the architecture by applying metrics [8] and
eventually to improve the system’s design.

In Section II, we present a general approach to track
structural changes. Section III introduces the toolset we use
to track changes in Java applications. We also applied the
suggested approach to a demonstration system and present
the result of that experiment in Section IV. Section V gives
an overview of the future work.

II. TRACING STRUCTURAL CHANGES

A structural change appears if one component is replaced
with another. Several steps are usually necessary to replace a
component. At least all references which point to that com-
ponent have to be reset in order to point to the replacement.
This can require many operations, depending on the number
of references which have to be updated. Often a dedicated
controller is responsible to reconfigure the system, e.g., a
component manager or a configuration manager. Various
information can be of interest, depending on the point of
view, such as:

• How long did the reconfiguration take?
• What components are currently (or previously) con-

nected with the component of interest?
• What configurations passed the system through the

reconfiguration?
The reconfiguration elapse time can be of great impor-

tance whenever time constrains have to be fulfilled, e.g.,
the reconfiguration elapse time for an ordering system must
not exceed 1500 ms. Since the reconfiguration of a system
is usually done within a set of methods, the elapse time
of these methods have to be recorded. During application
tracing, the time stamp of both the entry-point and return-
point of a method have to be recorded in order to calculate
the elapse time. Depending on the structure of the system,
multiple methods might have to be traced and elapse times
have to be summarised.

To answer the second question, an approach is necessary
that allows to add probes into the runtime system which
fire whenever an attribute of interest will be changed, e.g.,
references to components which are likely to be replaced at
runtime. It is important to observe all components which use
these replaceable components in order to track configuration
changes. A recorded change (delta set) comprises the

• source of the change, i.e., name of the component and
its identification hash code

• attribute that held the reference and then holds the new
reference after the modification

• target reference, i.e., name of the new component and
its identification hash code

• time of occurrence when the change took place

142

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

A probe is a piece of code that will be executed whenever
a certain event occurs. This can be

1) a method in the original code, i.e., additional code in
a set-Method,

2) an aspect that has been woven around an at-
tribute/method or

3) code that has been injected into the runtime system.
The probe has to log the original value (before-value)

and the new value (after-value). The change in value can
be used to track configuration changes: a reference of a
component now points to a different component; therefore,
the configuration has changed.

That leads to the answer to the third question. To identify
and eventually analyse the different states during the recon-
figuration, all delta sets have to be applied on the initial
state (before the reconfiguration) of the system in order of
occurrence, i.e., the final state of the system is built upon
the initial state and the delta sets. Based on that, evaluation
methods can be applied to find illegal states, e.g., to mark
all occurrences of components which hold a reference to an
outdated component.

The previously mentioned approach requires the state
of the system right before the reconfiguration takes place,
i.e., the initial state. Although it is possible to trace an
application right from the start, it is often impossible or
at least very difficult, especially if an application shall be
observed under real-life conditions. The initial state can be
calculated, too, by using the before-values of the recorded
changes. A before-value correlates with the association to
another component before it is going to change. Both the
association and the associated component must be preserved
in order to calculate the initial state. By iterating over all
changes, the state will be built up. Attributes with value
null, however, must be ignored. Components that are
newly created usually have all attributes set to null. In
that case, the whole component has to be ignored since
it was not part of the composition before. The remaining
connections among components have to be summed up in
order to create the previous state right before the first change.
This state, however, does not include components, which
hold references to one of the displayed components, that do
not anticipate in the reconfiguration process, i.e. the state
might be incomplete.

III. RECORDING CHANGES WITH BTRACE

We use BTrace [9] to trace changes at runtime. BTrace
allows to insert probes into the Java Virtual Machine and
therefore to observe applications even if their source code
is not available by using the Java Instrumentation API.
Applications do not need to be modified or recompiled in
any way.

BTrace offers a set of probes which fire on certain events,
such as entry or return of a method or whenever an observed
attribute will be modified. It also allows to record the values

of attributes before and after the manipulation. A probe
typically consists of an action method which should be
executed if a certain event occurs and an annotation which
tells BTrace when to fire.

The action method is similar to a Java method but its
functionality is reduced to a minimum. It is not possible
to overwrite attributes of the application nor to create new
objects. BTrace also prohibits loops and some long running
operations. It is basically an observation tool designed for
minimal impact.

The annotation of an action method tells BTrace what
to observe, when to fire and what information to collect.
The following annotation causes BTrace to fire whenever
the method reconfig in class pwgen.Main is executed. An
action method annotated that way would be executed right
before (Kind.ENTRY) the execution of the reconfig-method.

@OnMethod(clazz="pwgen.Main",
method="reconfig",
location=@Location(Kind.ENTRY))

The annotation that is necessary to trace field manip-
ulation is insignificantly more complex. Please note, that
a wildcard is used to declare the method tag since all
manipulation attempts should be tracked regardless which
method causes the manipulation of an observed attribute.

@OnMethod(clazz="pwgen.Main",
method="/.*/",
location=@Location(

value=Kind.FIELD_SET,
clazz="pwgen.Main",
field="pwGen",
where=Where.BEFORE))

A special compiler compiles the script and BTrace will
inject the resulting class into the JavaVM for a defined
Java process. It is therefore possible to observe several Java
processes in parallel, each with a different script. BTrace
currently exists as a console application and as an add-on
for VisualVM [10]. Latter offers an easy to use graphical
user interface.

IV. TRACE OF A DEMO-SYSTEM

We applied the approach on a demonstration system which
is used to teach adaptive behaviour in software. Following
the procedure, we have found a so far unknown defect in
one of the software components which could cause a failure.

The system under test was a password generator which is
comprised of the following components:

SRG: A SimpleRandomGenerator that produces random
numbers. It can be connected to only one client at a time.

PwGen2: Password generator with reduced character set
(literal only). For further speed optimisations, the length of
the password is limited to 6 characters.

143

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

PwGen2 Client

SRG

Figure 1. Configuration 1 (initial state): fast, but only suitable for weak
passwords

PwGen1: Enhanced password generator that uses an
extended character set (literal, digit and special character)
and offers a more liberal limitation of the password length.
The enhanced feature set results in lower execution speed.

Client: The client uses a password generator, either
PwGen2 (default) or PwGen1 (if strong passwords are
requested).

Please note that each component comprises its own com-
ponent manager, not shown in the figures. The component
manager sets up each component if necessary and connects
it with required services, e.g., the component manager of
PwGen2 requests the service of SRG and injects its reference
into PwGen2 if SRG is available. It also releases SRG if its
service is no longer needed.

Method calls are performed asynchronous. Each compo-
nent therefore requires not only a reference to a service
provider but also needs to inject its own reference to the
provider in order to receive the provided service, depicted
in Figure 1.

The requirements on the password strength changes at
runtime. The generator reconfigures itself to use PwGen1
instead of PwGen2. Several steps are necessary to replace
this component:

1) Client: remove client reference in PwGen2 that points
to the Client component

2) PwGen2: release SRG, i.e., the client reference of SRG
that points to PwGen2 has to be removed

3) PwGen2: release reference to SRG
4) PwGen2: release reference to Client
5) Client: establish connection to PwGen1 and inject

reference to Client
6) PwGen1: establish connection to SRG and inject ref-

erence to PwGen1
7) SRG: establish connection to PwGen1 and inject ref-

erence
8) PwGen1 (now fully functional): inject reference into

Client
In the end, the composition of components should look

PwGen2

SRG

Client

Figure 2. First step of the reconfiguration: Connection between PwGen2
and Client was removed

PwGen2

SRG

Client

Figure 3. PwGen2 releases SRG; SRG can now be used by another
component

PwGen2

SRG

Client

PwGen1

Figure 4. Client requests service of PwGen1 and injects its reference

like Figure 1 but with PwGen1 in place of PwGen2.
We added probes to trace important events, such as

changes in component connections and ran the demo ap-
plication. We then analysed the trace result and generated a
visual representation of the component composition before,
during and after the reconfiguration, depicted in Figure 2 to
Figure 7.

The result of the reconfiguration, depicted in Figure 7,

144

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

PwGen2

SRG

Client

PwGen1

Figure 5. PwGen1 requests service of SRG and injects its reference

PwGen2

SRG

Client

PwGen1

Figure 6. SRG accepts PwGen1’s service request and injects its reference
to PwGen1

PwGen2

SRG

Client

PwGen1

Figure 7. Configuration 2 (final state): resulting composition after
reconfiguration (PwGen1 has injected its reference to Client)

derives from the expected result. It turned out that the
component manager of PwGen2 did not release the refer-
ence to SRG. The resulting composition can cause serious
malfunction if PwGen2 is used accidentally. In that case,
PwGen2 would request a new random number from SRG.
The request would not fail since the reference to SRG is
still valid. SRG would generate a new random number but
would send it to PwGen1 since its client reference points to
PwGen1, which doesn’t expect a new number. The impact

of this event depends on the implementation of PwGen1. In
our case, it added a new character to the current password
and, if the minimum password length was (already) reached,
sends the password to the Client. The client overwrote the
old password with the new one although it didn’t request
that password.

V. CONCLUSION AND FUTURE WORK

As the demonstration shows, serious malfunctions can
appear due to erroneous composition of components. Mis-
behaviour can be difficult to track because its origin was a
component that ought to be not active anymore. Knowledge
of the actual component composition can help to understand
certain failures and can help to identify defects. Furthermore,
it can help to create a new class of test cases to test a system
more thoroughly.

In future work, we will define metrics and a methodology
to determine whether a reconfiguration process satisfies
given quality requirements, such as reconfiguration elapse
time or latency caused by the adaptation. Target of our
research will be the adaptation process itself.

REFERENCES

[1] X. Bai, Y. Chen, and Z. Shao. Adaptive web services test-
ing. Computer Software and Applications Conference, Annual
International, 2:233–236, 2007.

[2] J. Grundy, G. Ding, and G. Ding. Automatic validation
of deployed j2ee components using aspects. In In Proc.
2002 IEEE International Conference on Automated Software
Engineering, pages 47–58. IEEE CS Press, 2001.

[3] component+ Partners. Built-in testing for component-based
development. EC IST 5th Framework Project IST-1999-20162
Component+, Technical Report D3, 2001.

[4] H. J. Goldsby, B. H. Cheng, and J. Zhang. Amoeba-rt: Run-
time verification of adaptive software. pages 212–224, 2008.

[5] K. N. Biyani and S. S. Kulkarni. Assurance of dynamic
adaptation in distributed systems. J. Parallel Distrib. Comput.,
68(8):1097–1112, 2008.

[6] J. Zhang and B. H. C. Cheng. Using temporal logic to specify
adaptive program semantics. Journal of Systems and Software,
Volume 79(10):1361–1369, 2006.

[7] J. Zhang, H. J. Goldsby, and B. H. Cheng. Modular verification
of dynamically adaptive systems. In AOSD ’09: Proceedings
of the 8th ACM international conference on Aspect-oriented
software development, pages 161–172, New York, NY, USA,
2009. ACM.

[8] C. Raibulet and L. Masciadri. Evaluation of dynamic adaptivity
through metrics: an achievable target? In WICSA/ECSA, pages
341–344, 2009.

[9] http://kenai.com/projects/btrace 06.18.2010

[10] https://visualvm.dev.java.net 06.18.2010

145

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-109-0

