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Abstract—Many approaches have been developed to tackle
the design complexity of modern robotic systems by using
evolutionary processes. Starting with an initial solution, the
evolutionary process tries to adapt to a given scenario and
in the end produces an improved solution. Previous work
showed that incremental evolution, a stepwise increase in the
scenario difficulty, can increase the success of evolutionary
adaptation. In this work, we clearly confirm this effect in the
context of online evolution of neural networks. The goal of our
online evolutionary approach is to produce on average good,
intermediate solutions while the system is adapting. We show
that also the average performance of the continuous evaluations
is increased by evolving first in a simple scenario and then
transitioning to a more difficult scenario.
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I. INTRODUCTION AND BACKGROUND

In evolutionary robotics, the design of the robot con-
trollers is driven by bio-inspired approaches [1], [2], [3].
Many of them are evolved offline on an external computer.
After optimizing the controllers for a certain task, the best
controllers are deployed to the robots. For the evolution
of robot control, neural networks play an important role
hence to their close relationship to natural systems. In several
approaches it has been shown, that the evolution of neural
networks can be speed up, by structural evolution of the
networks. One of the early works in this field is the Gener-
alized Acquisition of Recurrent Links (GNARL)[4]. In this
work, they developed algorithms for the evolution of neural
networks with recurrent links. The networks are randomly
initialized (random hidden neurons and links) and evaluated.
Afterwards, fifty percent of the population are allowed to
create offspring (two children) for the next generation and
so on. In the NeuroEvolution of Augmenting Topologies
(NEAT)[5] the structural evolution starts with empty neural
networks and develops over time. They also introduced a
cross-over mechanism based on historic information and
showed mechanisms for innovation protection (speciation).
The improvements to the Hypercube-based NeuroEvolution
of Augmenting Topologies (HyperNEAT) [6] extend the

algorithms with a generative encoding and inclusion of
sensors and output geometries [7].

Since robots operate in real world, the environment and
conditions are subject to continuous changes. Through inter-
action and disturbances by other robots, humans or changes
in the environment, control structures or functions can be
obsolete or improper for the current task and need further
adoption. Especially, in dynamic scenarios, the requirements
to fulfil a defined task (implicitly defined in the fitness
function) are subject to changes. Often this changes are hard
to predict and occur randomly. One way to deal with this
is a continuous process of adaptation of the robot controller
to fit to the environment and requirements. This process of
adaptation has to be performed on the robots during runtime,
since the necessary changes are not known in advance. So
the robot needs to evaluate its performance and an integrated
evolutionary engine drives the evolution and thus the online
adaptation. Additionally, this process can be embedded into
an incremental evolution. The advantages of incremental
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Figure 1. (a) Jasmine swarm (b) Prototypes of the Symbrion and
Replicator Robots (c) Exemplary Organism in the Symbrion and Replicator
Simulation.

111

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



evolution were also proved by Gomez and Miikkulainen for
a prey capture scenario [8] and by Barlow [9], where the
complexity of the scenario for an aerial vehicle grows over
time and the controller can develop step-wise.

The main goal of our work with evolutionary robotics is
to create a system that is capable of adapting controllers
online with the necessary complexity for controlling sym-
biotic robotic organisms [10]. This is a major part of the
grand challenges of the Symbrion and Replicator projects
(www.symbrion.eu and www.replicators.eu) both for swarm
robots and artificial organisms like depicted in Figure 1.

The paper is organized in the following way. In Section II
we introduce our approach for evolutionary design of robot
controllers and enlighten the different aspects of ongoing
work and performed experiments. In the following Section
III we present the results of the applied experiments and
their impact to our work and finally we conclude the paper
in Section IV.

II. EXPERIMENTAL SETUP AND IMPLEMENTATION

A. Arena and Experimental Setup

We evaluated our approach for simulated online evolution
in a multi-agent simulation framework that uses a 2D physics
engine to simulate a virtual environment. The robot is
modelled as an agent in a two dimensional square arena with
a size of 500x500 units that is surrounded by impassable
walls. Within this arena, there are always 10 red points
that symbolize energy sources for the robot, power cubes.
These power cubes are static physical objects and pose an
obstacle for the robot of the same size as the robot. If
the robot is in close proximity of a power cube, it gains
one reward point every 50 simulation ticks. After a power
cube has dispensed 10 reward points, it is removed and
a new, fully charged power cube is placed on a random
position in the arena. The sequence of random positions for
power cubes is the same for each run. Two arena setups
are used; one completely empty and one with four large
impassable boxes in a fixed configuration as seen in Figure
2. This particular configuration was chosen to provide a
more complex scenario with more obstacles and a differently
structured environment. In the empty arena the robot has a
red power cube in sight most of the time and can trail a
path from cube to cube without having to actively explore
the arena. We also considered a maze layout with many
thin wall segments scattered in the arena but this promoted
simple wall following behaviours which was more simple to
adapt to than the empty arena.

The simulated robot is equipped with seven virtual sen-
sors: three sensors to detect the red power cubes in a field of
vision with a range of 200 units; three distance sensors with
a range of 100 units, in the same layout as the red sensors;
one sensor that detects if a power cube is in immediate
vicinity. The orientation and location of the red sensors is
exemplary shown in Figure 2(a). The yellow cone is the

(a) (b)

Figure 2. The two arenas used in the simulated experiment runs: the empty
arena (a) and the arena with boxes (b). Black lines are impassable walls,
red circles are simulated power cubes and the blue circle is the simulated
robot. Shown is the initial configuration of the robot and red points which
was used for each run. Also shown are the three fields of vision of the
sensors of the robot which detect the power cubes.

middle sensor, while the light yellow coloured ranges are
the left, respectively right sensor. The blue circle represents
the robot, the red circles are collectible power resources. The
range of the sensors is limited by the walls and obstacles in
the arena 2(b). The robot has two actuators that simulate a
differential drive with two wheels.

B. Neural Network and Control

The robot is controlled by an artificial neural network
with recurrent connections and no restriction on network
topology. This allows us to find good solutions regarding the
complexity of the neural net. The decision of how many hid-
den layers, connections and neurons are necessary is shifted
from human design to an evolutionary automated process.
Doing so, the evolution of the neural net can find an optimal
balance of the number of neurons and their connectivity.
Design decisions made by humans can have no influence to
the ability to adapt or can hinder the development of the
neural nets by weak start configurations. The network itself
performs one update step at each simulation time tick. It has
eight input neurons (seven sensors plus bias neuron) and two
output neurons. All inputs are mapped to values from 0 to 1,
the output neurons provide values from -1 to 1. The values of
the two output neuron values is transformed with Equation
1, which gives two positive values l′ and r′. These modified
actuator values are interpreted as a change to bearing b and
linear velocity v as seen in Equations 2 and 3. Afterwards,
the output is multiplied with a constant factor to scale the
values to the simulation and set the velocity or change the
bearing directly without simulation of inertia.

o′ =
o+ 1

2
(1)

b = r′ − l′ (2)

v = r′ + l′ (3)
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The described actuator mapping smoothens the fitness
landscape for a completely undifferentiated start network
because output values of 0 produce a straight forward
movement. Note that with this mapping, the network needs
to output -1 on both output neurons to come to a full halt
and it is impossible to drive backwards. Different actuator
mappings had a large impact on the performance of the
evolutionary process during preliminary experiments. This
particular mapping was chosen as a compromise between
a challenge for the evolutionary adaptation and to allow
a smooth evolutionary start with an undifferentiated initial
network.

C. Evolutionary Algorithm

For the evolutionary process, we use a genome that
encodes the neural network in a structure similar to NEAT
[5]. The genome is a list of connection genes and each gene
encodes one neural link with source neuron id, destination
neuron id and link weight. In the mutation operator, each
gene changes its weight with probability 0.2 by applying a
uniform random change from -0.2 to 0.2, capped in the range
-1 to 1. Additionally, with a probability of 0.4, one structural
change is made: Deleting a link, creating a new random link
with weight 0 or creating a new hidden neuron by inserting
it into an existing link. There is no mutation to delete
hidden neurons, however hidden neurons are automatically
removed if they are unconnected. For crossover, we are also
faced with the problem of finding a suitable mechanism to
avoid known problems of recombination of neural networks.
The original NEAT approach [5] and likewise the rtNEAT
extension [11] is not directly transferable due to a missing
supervisor to track the innovations for crossover and due to
the small number of robots for speciation and innovation
protection.

For the evolutionary engine, we use an evolutionary
algorithm based on the (µ+1) algorithm [12] with a random
parent selection and elitism survivor selection scheme and no
cross-over operators. The algorithm maintains a population
of ten genomes. For each evaluation, one genome is uniform
randomly picked to produce one mutated offspring which is
evaluated next. After evaluation, the worst in the population
is replaced if the evaluatee is better.

To evaluate the performance of the individual robot con-
troller we tried to find an implicit fitness value. Since we can
not create new robot offspring, the possibility to measure the
performance by reproduction rate is limited. Alternatively, a
virtual life energy or power resource can be used. Within
the scenario the robots are able to collect power resources.
Finally, the robots with a high rate of collected cubes have
automatically a high fitness. This includes implicitly the
ability of collision avoidance. The robots have to avoid
obstacles and drive on optimal paths in order to keep a high

Figure 3. The six different treatments of the experimental setup. In the
first two treatments, empty and boxes, a basic population of undifferentiated
networks is evolved to adapt to their respective arena. In the second set of
treatments the evolved populations are redeployed and evolved in the other
arena (treatments empty-boxes and boxes-empty) or in the same arena again
(treatments empty-empty and boxes-boxes).

movement speed. In case of collision or suboptimal paths,
the robot is slowed down or fails to collect the resources.

D. Experiments

In one treatment, we let the robots evolve in an empty
arena for 100 evaluations (empty treatment). Afterwards
we placed these controllers in the same arena for another
100 evaluations (empty-empty treatment). Additionally, we
placed the same controllers in the arena with obstacles
(empty-boxes treatment). The motivation of changing the
arena is to simulate unforeseen changes in the environment.
A preevolved controller is suddenly faced with a new
situation. In the empty arena, a controller implicitly avoids
obstacles, as long as it can see any red power cube to
follow. The chance to see power cubes is minimized in the
second arena and the controller has to advance the ability for
exploration. The fitness function was always the same. Each
robot was awarded for collecting the power cubes. Possible
collisions are implicitly punished by slowing down the robot.

The initial population of treatments empty and boxes is a
genome for a perceptron without hidden neurons. There are
links from each input neuron to each output neuron and each
links’ initial weight is 0. At each run, the robot is placed
in the same starting position with 10 power cubes placed in
the same initial configuration. Each run lasts 100 evaluations
and each evaluation is done for 5000 simulation ticks. No
changes to the arena and agent states is done in between
the evaluations to simulate online evolution. Specifically, the
robot remains in its position as well as the power cubes.

An overview of the experimental setup is given in Figure
3. After the 100th evaluation in treatments empty and boxes,
the final population of each run is stored. These evolved
populations are used as starting populations for a second
set of treatments. The evolved populations are put into a
different arena in treatments empty-boxes and boxes-empty
or put into the same arena again in treatments empty-empty
and boxes-boxes. The runs in this second set of treatments
last again 100 evaluations. For each treatment of the second
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(a) (b)

Figure 4. The collection performance of different treatments. The middle bar marks the median, the
box marks the lower and upper quartile and the whisker the minimum and maximum values of the 40
replicates. (a) Shown is the summed score of the last 10 evaluations of 100. The performance is lower in
the arena with boxes (Wilcoxon Rank Sums test n = 40 z = −5.2 p < 0.0001) indicating that it is more
difficult to collect points than in the empty arena. (b) The end performance after 100 more evaluations
of the final populations of treatments empty and boxes in different arenas. The treatments that evolved
first in the empty arena show a better final performance both in the empty arena (Wilcoxon Rank Sums
test n = 40 z = 5.6 p < 0.0001) and in the box arena (Wilcoxon Rank Sums test n = 40 z = −3.9
p < 0.0001).

set one different, evolved population of the first set was used
for each run. The evolved genomes were not mixed between
populations and each evolved genome was only used once
per treatment.

III. RESULTS

The performance of the evolutionary process was mea-
sured by summing the collected score in a window of 10
consecutive evaluations. After the first set of treatments of
simulated online evolution over 100 evaluations in the empty
and boxes arenas, the performance of the last 10 evaluations
is shown in Figure 4(a). The evolved controllers were able
to collect significantly more power cubes in the empty arena
than in the boxes arena. This shows that the robot collects
power cubes slower in the arena with boxes. This arena is
more difficult, likely because the robots’ sensors are blocked
by the boxes and because the robot has to manoeuvre more
to drive around the boxes.

After the populations have evolved for 100 more evalu-
ations in the second set of treatments, a general increase
in collection performance is seen compared to the first set
(Figure 4(b)). The evolutionary process did not fully adapt
in the first 100 evaluations and the additional time allowed
a further optimisation. Surprisingly, the treatments that were
first in the empty arena perform better both in the same arena
and in the different arena. It was expected that treatments
perform better when they evolved the entire time in one
arena rather than when the arena was switched in the middle.

This can explain that treatment empty-empty performs better
than boxes-empty. However, it is surprising that treatment
empty-boxes performs better than treatment boxes-boxes.
Generally, the arena where the population spent their first
100 evaluations in had a much larger impact on the final
performance than the arena switch.

In Figure 5 the collection performance in time windows
of 10 evaluations is shown over the course of both treatment
sets. The values for the second treatment set are appended to
the first treatment set to show the continuous development.
There are small peaks in all treatments at evaluation 10
and 110 which must be an artefact of the starting phase of
the runs. Presumably, in the random positions of the power
cubes there are positions that are easier to collect and these
are harvested first. In the initial configuration of power cubes
there seems to be a high ratio of those “easy” cubes. After
the initial phase, the number of “easy” cubes on the field is
lower since they are continuously collected faster than the
more difficult ones.

It can be seen in the graph that the performance is
continuously increasing over time which shows the adaptive
nature of the evolutionary process. The maximum score in
one of the 10-evaluations windows is 703 in the empty
arena and 517 in the boxes arena and thus we assume that
the average performance will further increase after the 200
evaluations in our setup. In this graph it is of note that
the boxes treatment seems almost stagnant and only after
more evaluations in the boxes-boxes treatment a significant
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Figure 5. The development of the collection performance over time. Each data point is the
summed collection score of a window of 10 evaluations, averaged over 40 runs. After 100
evaluations, the populations were stored and restarted on the same or a different arena. The
peaks at 10 and 110 evaluations are an artefact from the initial placement of red points at the
start of the runs. The treatment empty-boxes is able to maintain some of its advantage of the
empty arena in the more difficult box arena. It performs better than the boxes-boxes treatment,
which had spent more time evolving in this arena.

(a)

(b)

Figure 6. Two exemplary neural networks from the experiments. (a) The
initial network with all input neurons connected to the output neurons but
with a link weight of zero. (b) An evolved, successful neural net for the
boxes arena.

upwards slope can be seen. This might explain the bad
performance of the treatments that started in the boxes arena
because the initial population of undifferentiated networks
seems to be very unsuited to evolve efficiently in the boxes
arena. In the empty arena on the other hand, the initial
population evolves quickly as seen in the much steeper

slope of the empty treatment. At the switching point of the
second treatment set after 100 evaluations, the runs seem to
quickly adapt to their new surroundings. The performance
growth of the empty-boxes and empty-empty treatments, as
well as boxes-empty and boxes-boxes treatments are almost
the same. In particular, the boxes-empty treatment increases
its performance faster after the switch from the boxes to
the empty arena. Although it is difficult to see due to
the aforementioned artefact peaks, the arena switch did
not incur a large immediate reduction of performance. The
performance of the empty-boxes treatment did drop after the
switch, but it did not drop below that of the boxes-boxes
treatment. It seems like the neural networks of the empty
arena evolved faster and produced more flexible control
structures. These networks had the plasticity to perform well
or even better in a different arena compared to the population
of networks that were “native” to this arena.

When we take a look at the evolving neural networks, we
can clearly see, the structural grow of the networks. Figure 6
depicts the initial network and a exemplary neural network
after 200 steps in the empty-box scenario. The top row are
the three camera sensors for the red pixels (red1, red2. red3),
the proximity sensors (prox1, prox2, prox3), the sensor for
touching a food source and an additional bias neuron (not
used by this net). The nodes h1, h2, h3, h4 are the evolved
hidden neurons and left and right describe the motor output.
In Figure 7(a) shows an exemplary run of a robot in the
empty arena and Figure 7(b) a more advanced controller in
the box arena. In both figures, the view of the sensors and
the path of the robot is shown. The cross marks the starting
point.
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(a) (b)

Figure 7. Paths of evolved successful controllers for the empty (a) and
box (b) arenas. The cross marks the starting point. The duration of the trace
is the same as the evaluation time of the experiment (5000 ticks). Note the
tight circling around red points, which is the commonly evolved strategy
to stay close to a power cube until it is completely harvested. Only very
late controllers evolved that halted in front of the cubes.

IV. CONCLUSIONS

In this paper, we showed the feasibility and advantages
of structural online evolution combined with a stepwise
increase of the scenario difficulty. We showed ways for
structural online and onboard evolution and performed ex-
periments with promising success. It is obvious, that future
more complex tasks need a big amount of hidden neurons
and recurrent links. The proposed system gives a design tool
and automatism at hand, to unburden the developers from
the decision of structure and number of neurons.

Regarding incremental evolution, we showed that artifi-
cial evolution has different speeds of adaptation depending
on the scenario and the initial population. With a given
initial evolutionary population and a given target scenario
there is a set of intermediate evolutionary scenarios with
relaxed difficulty where evolutionary speed is higher than
in the target scenario. As seen in our experiments, with
the initial population of undifferentiated networks and the
target scenario of the boxes arena, the fastest adaptation
to the boxes arena was achieved by first evolving in the
empty arena and later transitioning to the boxes arena. In
this case, the empty arena acted like a relaxed scenario with
reduced difficulty than the boxes arena. Skills and structures
are quickly evolved in relaxed environments that still give
an advantage in different and more difficult environments.

For future work, we want to extend the scenarios with
additional robots and a non-supervised mechanism for
crossover, so that evolved controllers can be transferred to
less evolved robots. Even so, the focus shifts to the transition
from robot swarms to artificial organisms and their actual
control.
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