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Abstract—Visualizing hierarchical structures is of great impor-
tance in many economic and scientific applications. Many dif-
ferent approaches have been developed and enhanced in the last
decades. Each of them claims specific advantages over competing
methods, usually referring to visual or structural properties.
Although several user studies investigated the usefulness of
specific approaches, for practitioners it often remains unclear
what the practical advantages of the approaches are and in which
contexts they are useful. In our user study, we systematically
investigated the value of three frequently used visualization types
for the intuitive understanding of hierarchical data: treemap,
icicle plot, and nodelink. We measured user performance in terms
of correctness and time and tracked eye movements for each
participant. The results regarding the user performance revealed
that nodelink and icicle plot yield expected and comparable
results, whereas treemap is only exceeding chance level for one
easy task. Still, the analysis of eye-tracking measures suggests
that treemaps draw visual attention better to relevant elements.
Finally, implications for facilitating human intuition and problem
solving strategies are discussed.

Keywords–User Study; Hierarchy Visualization; Perception;
Eye-tracking.

I. INTRODUCTION

Visualizing hierarchical data has a long tradition going
back to the drawings of medieval family trees. A wide research
field with very different visualization approaches developed
over the last three decades, investigating a multitude of differ-
ent visualization properties and aiming at all kinds of different
applications. However, despite this long tradition there are still
new developments in the field through new applications and
demands [1].

A comprehensive overview over most of the proposed hier-
archy visualization techniques is maintained by treevis.net [2].
Every approach was published with several advantages in mind
and was at the time of publication an advancement to the
state of the art. However, for most practitioners the value
of new (and sometimes even older) visualization techniques
for their data remains unclear with the result that they are
unsure, which visualization would fit their needs best. This
issue becomes even more eminent considering the importance
of hierarchical data structures in science [3] and especially
economy [4], where visualizations can significantly influence
large-scale decisions [5].

In this paper, we make a step towards studying which
visualizations are intuitively understandable by non-expert
users. Additionally, we investigate why different visualization
techniques impact the users’ understanding of the data differ-
ently. Since we are treating the visualizations as objectively

as possible, our goal is not to show which visualization is
superior, but to try to understand what problems and pitfalls
arise when typical users try to use different visualizations to
solve typical tasks. Preliminary results of the reported study
were presented at EuroRV3 [6]. In this paper, we report an
extended analysis.

In this first step, we restricted our study to static and
non-interactive visualizations, which are, apart from being
much easier to interpret especially when analyzing problem
solving patterns, still highly practice relevant, since many
practitioners mainly rely on static visualizations on paper or
digital presentations. Since Burch et al. [7] showed that radial
techniques for the visualization of hierarchies are understood
less intuitively, we further restricted our study to linear visual-
ization techniques. After a thorough analysis of several well-
established reporting and analysis software packages, we de-
cided to compare nodelinks, treemaps, and icicle plots, because
they represent the most common visualization techniques.

In addition, we restrict our considerations to the area of
visualizing hierarchical data with additional scalar dimension,
which are highly relevant especially in the business envi-
ronment. More precisely, the data consists of a rooted tree
T = (V,E, vroot), where V is the set of n data elements
(nodes), E is a subset of V × V representing the hierarchy
relations (edges), and vroot ∈ V is the root node of the
hierarchy. Additionally, a function f : V → R

+ is given,
which assigns each node a specific positive value and respects
the hierarchy, i. e., the sum of values of all children of a node
is always smaller or equal than the value of the node. One
example for such data is a company structure with annual
expenses.

In Sections III and IV, we present background about the
tackled visualizations and the relations to cognitive science.
We give a precise description of our study setup in Section V.
In Section VI, we present a detailed analysis of the results of
the user study with respect to participants’ performance and
eye-gaze data.

II. RELATED WORK

General design rules for good visualizations have been
discussed in the last decades intensively and are often based on
the investigation of visual attention [8] and the understanding
of the human cognitive system. In this regard, the effects
of colors in visualizations received much research attention,
because they represent a particular powerful visual cue [9],
[10]. A comprehensive overview about those design rules and
general strategies was presented by Ware [11].
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One of the most-used practical examples when visualizing
hierarchies with an additional scalar component is the file
system of computers. Stasko et al. [12] evaluated the two
visualization techniques treemap [13] and sunburst [14] with
respect to their capabilities for standard file-management tasks,
like locating files or comparing file sizes. They measured user
performance by logging their number of correct answers and
their reaction times. They found that sunburst significantly
outperforms the treemap representation, presumably because
of the more explicit representation of hierarchy relations in
sunburst.

In a very similar study, Bladh et al. [15] evaluated the
usefulness of encoding the depth of nodes in a treemap
using the third dimension in comparison to a traditional
treemap visualization. Again, users had to complete typical
file-management tasks. It turned out that both visualizations
were not significantly different in most tasks, i. e., the third
dimension did not result in a performance loss due to the
additional navigational and cognitive efforts. However, users’
performance was significantly better with the 3D visualization
when having to identify the node with the highest depth in the
hierarchy.

Wang et al. [16] had a very similar experimental setting
by comparing a standard file browser to rings [17] and
treemap [13]. They evaluated the effectiveness of the methods
based on complex questions, such as finding two similar
directories or the most homogeneous directory. The users’
performance was measured by assessing their answering time.
Additionally, they were asked to rate the difficulty of each
question with the respective visualization. In summary, the
file explorer performed significantly worse than both other
methods with no significant difference between rings and
treemap.

In a quite different user study, Ziemkiewicz and Kosa-
ra [18] showed that the methaphoric presentation of tasks
influences users’ performance during the work with hierarchy
visualizations. In our study, we follow the findings and only
formulate the tasks abstractly with respect to the hierarchy.

Borkin et al. [19] presented a new method for visualizing
filesystem provenance data, which relies on a combination of a
radial-based tree layout and a time-based node grouping. The
system was evaluated with domain experts and compared to a
state-of-the-art nodelink tool [20] by measuring accuracy and
efficiency. Results show that the new tool outperforms the state
of the art. A very interesting additional finding was, that there
was a significant gender effect in the state-of-the-art method,
which was not the case for the proposed method.

Teets et al. [21] stressed the need for evaluation of the
effectiveness of visualizations especially in the business envi-
ronment. They analyzed a very specific application in the field
of process monitoring, which was based on production data of
a can factory. Their evaluation relied on cognitive fit theory,
i. e., they investigated how good the visualizations and induced
mental models fit to the problem solving strategies. They found
no information loss when not displaying accurate values in a
tabular fashion as well as a significantly faster solution time
when using visual representations.

While most studies rely on user performance data in terms
of the number of correct answers and reaction times, eye-
tracking studies have been the exception. However, Burch et

al. [7] investigated the impact of different layouts of nodelinks
using eye-tracking. They used one question type and an
explanatory task. The users were confronted with two different
linear layouts with four different placements of the root node
and a radial layout of the nodelink. Burch et al. assessed
both eye-movements and performance data, allowing to sys-
tematically compare the results from different measurement
approaches. The users performed much better with the axis-
aligned layouts than with the circular one, which might be a
result of the typically linear fashion of information display,
the users are familiar with. In line with this argument, the
traditional layout with the root node at the top performed best,
which further emphasizes the role of individual experience
with visualizations in understanding them intuitively and using
them for problem solving.

A recent variation of the treemap design is the angular
treemap [22] with the goal to enhance comprehension of
hierarchy levels by rotating parts of the treemap. Liang et
al. [23] conducted an experiment comparing traditional and
angular treemaps. The study mainly investigated search tasks
and measured completion time. While it turned out that the
new design was significantly better, the flexible method needs
several well-tuned parameters and, thus, should be set up by
visualization experts to achieve comparable results.

The need for visualization expertise is true for many
new and sophisticated visualization techniques. However, there
is an ever growing demand for easily usable and reliable
visualization techniques for hierarchical data in practice that
can be used without much prior knowledge. Therefore, we
investigated the properties of three of the most-used and
practice-relevant visualization techniques with respect to fast
and accurate data comprehension for users with low visualiza-
tion knowledge and only a short time of familiarization with
the type of visualization.

III. VISUALIZATIONS FOR HIERARCHICAL DATA

For our user study, we wanted to choose the most-used and
most practice-relevant visualization techniques for hierarchies
with additional scalar dimension. After elaborate inspection
of the treevis repository and several software packages for
productive use, we decided to compare nodelinks, treemaps,
and icicle plots.

The use of nodelinks for drawing trees is very intuitive
since it replicates the structure of botanical trees. Conse-
quently, nodelinks have already been used for ages to represent
hierarchies and the research on optimal drawing of nodelinks
has a long tradition [24]. The strengths of the nodelink
representation is typically its intuitiveness and clear represen-
tation [25]. However, many competing techniques produce less
empty space and allow a more integrated visualization of the
additional scalar dimension.

The concept of treemaps has been introduced by Johnson
and Shneiderman [13]. Since then a lot of different modifica-
tions, additions, and enhancements were proposed [26], [27],
still respecting the initial idea of maximizing screen space
usage and implicit encoding of the hierarchy. These aspects
are often referred to as the main advantages of the concept.
Problematic properties, which are nowadays still constant
topic of further research [28], are the inherent overplotting,
problems with hierarchy perception, and complications with
node distribution.
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The icicle plot is a concept with a long tradition and
was originally proposed by Kruskal and Landwehr [29] for
the display of cluster hierarchies and based on the trees and
castles of Kleiner and Hartigan [30]. Although it has been
shown that users perform worse, when using radial layouts
[7], icicle plots are used less often in practical applications [31]
than their radial counterpart, the sunburst diagram [14], [32],
[33]. The icicle plot combines two strengths of nodelink and
treemap, namely the intuitive top-down design and the implicit
hierarchy encoding. In addition, it inherently features a one-
dimensional encoding of the additional scalar dimension. On
the other hand, the screen-space usage is less efficient than the
one of treemaps.

IV. COGNITIVE PROCESSING OF VISUALIZATIONS

When we want to assess the effectiveness of visualizations,
we first need to distinguish between the visual search phase
and the stage of central information processing. In the visual
search phase, the user has to identify relevant elements of a
visualization. During this process the user constantly reallo-
cates the attention to different elements of a visualization.
Following Schneider and Shiffrin [34], this process can be
characterized as an interplay of bottom-up (automatic) and top-
down (controlled) attention allocation.

Our visual field can be considered as an assembly of
elements competing for our attention [35]. Bottom-up pro-
cesses are triggered by elements, which stand out from their
environment. A node of a visualization could for example be
colored differently or have a different shape compared to other
elements. Top-down attention, on the other hand, is moderated
by the user’s intention and previous knowledge. For example,
when the user’s goal is to compare two elements of a visualiza-
tion, the user employs a strategy of visual search, during which
the positions of all relevant entities are identified. The search
process itself can be carried out both by chaotically searching
for relevant elements (bottom-up) or deducting the relative
position of an element from other elements through previous
knowledge about the type of visualization (top-down) [36].

The first strategy is suited for users without any previous
knowledge and its efficiency depends on the visualization’s
complexity. The latter strategy, however, can be employed by
users, who understood the basic principles of a visualization,
and should result in a more efficient use. Regardless of the
user’s prior experience, both modes are constantly directing
our attention to elements that are relevant to the organism with
one or the other mode being predominant in a certain situation.
Bottom-up attention allocation can be overridden by top-down
processes, which allows users to focus their attention at specific
elements of a visualization. If, however, a stimulus exceeds a
certain threshold it automatically triggers bottom-up attention
towards this stimulus, thereby interrupting top-down attention
allocation. These so-called “orienting responses” are usually
triggered by sudden changes in the environment [37], such as
movement in the peripheral visual area, flashing lights, or loud
sounds.

As we can only observe eye movements by users, we are
usually not able to distinguish between bottom-up and top-
down attention allocation. Both mechanisms directly impact
which elements our eyes fixate. Additionally, the mere fact
that users fixate an element of a visualization does not imply
that this element is being processed centrally. Moreover, it does
not even imply that the user is looking at the element, because

attention can also be allocated towards elements outside of
central vision [38]. Although we are not able to see elements
as clearly when using peripheral vision, humans are still able
to estimate object shape and size rather accurately.

When the relevant elements of a visualization are identified,
the user enters the stage of central information processing.
The success and the efficiency of a visualization depend both
on user and visualization properties. User properties affecting
visualization processing are previous knowledge about the type
of visualization, general intelligence components, especially
those related to visuo-spatial information processing, and pos-
sible impairments (e.g., color or stereo blindness). In terms of
information processing, nearly all properties of a visualization,
like color usage, descriptiveness, intuitiveness, alignment, or
visual data preparation affect success and efficiency. In this
paper, we assess indicators for both phases of visualization
processing.

V. METHOD

We conducted a laboratory experiment, during which par-
ticipants had to solve problems using different visualization
techniques. For each participant, the performance in terms of
accuracy and completion times as well as eye movements were
recorded.

A. Stimulus Materials

We employed a 3 × 4 × 2 within-subjects factor design
with visualization type, task, and hierarchy complexity as
independent variables.

1) Visualization Types: All hierarchies with additional pos-
itive scalar values per node were visualized using three differ-
ent visualization types, illustrated in Figure 1. The nodelinks
were generated using Reingold and Tilford’s algorithm [24].
The additional scalar value per node was indicated by the area
of each node’s circle. As for all three different visualization
types, each non-root node was annotated with an alphanumeric
code to allow for unique identification by the users. The
treemaps were generated using the squarified approach [39],
again encoding each node’s scalar value by area. To enhance
the perception of different hierarchy levels, nodes were color
coded in different grey scales and, following Bladh et al. [15],
stacked in a 2.5D fashion. The icicle plots were generated in
the top-down fashion that is used most often. Screen space was
divided in rows of equal height, depending on the height of
the hierarchy. The root node’s width was set to the full width.
For each node, all children were drawn below the node with
a width proportional to the scalar values, respectively.

2) Tasks: We interviewed several researchers from different
fields of economics and social sciences, who regularly deal
with hierarchical data. We identified four tasks, which are
commonly performed when confronted with the given visual-
izations. From these tasks, three are hypothesized to favor one
of the visualization types, respectively. For the fourth tasks,
we could not find any strong indications on what visualization
might be favored and added it as an exploratory task. In detail,
the tasks were:

T1: Count all leaf nodes of the hierarchy.
T2: Count all nodes of the hierarchy.
T3: Compare the combined area of two pairs of nodes

within one level of the hierarchy.
T4: Compare the combined area of two pairs of nodes

across different levels of the hierarchy.
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low
complexity

high
complexity

nodelink treemap icicle plot

Figure 1. Example stimuli that where used for the user study. For each of the four questions, we presented three different visualization types (nodelink,
treemap, icicle plot) of equivalent hierarchies with additional scalar values per node. In addition, we varied the complexity of the hierarchies, resulting in

visualizations with low (height two, maximum three children per node) and high complexity (height three, maximum five children per node).

It is obvious that tasks differ in difficulty: Counting leaves
and nodes is less cognitive exertive than comparing the sizes
of nodes. However, this does not affect our main goal, the
analysis of differences between the visualization methods.

3) Hierarchy Complexities: As base data set we used two
artificial hierarchies with different levels of complexity. The
hierarchy with low complexity had height two and had a
maximum of three children per node. In contrast, the height of
the hierarchy with high complexity was three with a maximum
number of five children per node. An illustration of the
different complexities can be seen in Figure 1.

Since the hierarchy for all visualizations was initially equal
per complexity level and question, it could have happened
that participants remembered their choice from a different
visualization and just replicated it. To overcome this problem,
we slightly changed hierarchies (changed size of one node
or added/removed one node/leaf) for each visualization of one
complexity-task combination. Consequently, tasks and answers
were not equal per visualization but still comparable in terms
of difficulty. Participants were informed that similar hierarchies
might not always result in the same answers.

B. Hypotheses

From a review of relevant literature and recommendations
in software packages, we extracted several claims of what
benefits the used visualizations should have. Together with the
tailored questions, this resulted in the following hypotheses,
that we wanted to check with our experiment.

H1: Task T1 favors the treemap over both other visu-
alization types.
Counting leaves reduces to the simple task of
counting all non-occluded rectangles when using
a treemap. Users have to traverse the whole hier-
archy to count the leaves in both other visualiza-
tions.

H2: Task T2 favors the nodelink over both other
visualizations.
Counting nodes is reduced to simply counting
all circles in the nodelink visualization, which
are, even in contrast to the icicle plot, clearly
distinguishable from background and auxiliary
lines.

H3: Task T3 favors the icicle plot over both other
visualizations.
Comparing sizes of nodes within one level of hier-
archy reduces to the much easier one-dimensional
task of comparing lengths on one straight line
when using the icicle-plot visualization. In con-
trast, users have to sum up and compare areas
of different proportions when using a treemap
and, even more difficult, sum up differently-sized
circular areas in the case of the nodelink.

H4: Treemap performs worst in the tasks T1, T3, and
T4 due to overplotting.

H5: When only varying hierarchy complexity, users
perform better with the low complex hierarchy
compared to high complexity.

C. Sample

We recruited N = 69 second year university students of
the local communication studies program (age: M = 21.09,
SD = 2.40, female = 53). The students were well-skilled
in reading academic publications and working with statistical
analyses and charts. Apart from their general experience,
they had no specific knowledge in either of the presented
visualization methods nor in visualization of hierarchies in
general. They received study credit for their participation.

D. Procedure

To control for sequence effects, we generated two different
pre-randomized sequences respecting a non-repetition restric-
tion. Each participant was assigned to one of the sequences
in which the combinations were presented, respectively. Both
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sequences did not differ in their performance (t(67) = −0.238,
n.s.). The hierarchies were presented on a 19” computer screen
with a resolution of 1280× 1024 pixels via E-Prime 2.0. An
SMI RED eye-tracker from SensoMotoric Instruments was
installed below the screen and recorded eye movements at
50 Hz. The stimuli were presented at a head distance of
about 700 mm. However, due to the contact-free setup, slight
variations of the distance during the experiment were possible,
which should not affect the results due to the within-subjects
factor design. All participants were calibrated using a five point
matrix according to the standard SMI RED setup procedure.
Each event in E-Prime was logged within the eye-tracking
data file, which allowed to synchronize stimulus presentation
and eye-tracking data. In the first part of the instructions, the
definition of a hierarchy, the difference between leaves and
nodes, and the different types of visualizations were explained
to the participants by showing examples. They also received
a speed-accuracy instruction (i. e., “Please answer as quickly
and accurately as you can!”).

During the experiment, participants were first shown a
textual description of the task (e. g., “How many leaves does
the hierarchy have?”) as well as the possible answers and then
had to press a key to proceed. This allowed each participant to
read and understand the task and the answers at its own pace.
Next, the hierarchy visualization was presented in addition to
the task and the answers. Participants then had to respond by
pressing one of three answer keys, with one correct answer
and two distractors, resulting in a chance level of p = 0.33.
E-Prime automatically logged the participant’s answer and
completion time, i. e., the time of stimulus onset until the
participant’s response. In average, the response time for an
item was M = 19.6 sec (SD = 5.9). This procedure allowed us
to be able to judge users reaction times without the delay of
having them typing in the correct number. All participants were
shown a training sequence of the visualizations. Afterwards, all
three visualizations in both the high and low complexity were
presented. Nodes to be compared were named in the question
before the visualization was shown and remained visible during
the task until an answer was given. The whole procedure took
less than 25 minutes per participant. After the computer test,
participants filled out an electronic questionnaire with items
concerning manipulation checks and demographic data.

VI. RESULTS

We recruited undergraduate students from Chemnitz Uni-
versity of Technology and therefore conducted the study with
a very homogeneous set of participants. Thus, demographic
assessments did not show any correlations or other interesting
variables regarding age, gender, or occupation. Since part of
our analysis was already reported before [6], we focus on
the findings that are relevant to our hypotheses. A plot of
the participants’ performance with respect to the independent
variables is shown in Figure 2.

To test our hypotheses we used a 3 × 4 × 2 repeated
measures ANOVA (analysis of variance) with participants’
performance as dependent variable. Alpha levels for all cal-
culations were set to p < 0.05. Due to the violation of the
sphericity assumption, Greenhouse-Geisser-corrected df s are
reported, if necessary. We found a significant main effect for
the type of visualization (F (2, 136) = 53.77, p < 0.001,
η2part = 0.442). More specifically, performance was signifi-
cantly lower when using treemap compared to nodelink and
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Figure 2. Plot of the average correctness of participants’ answers to the four
questions with respect to visualization type (encoded by color) and hierarchy

complexity (△ = low complexity, • = high complexity). Chance level is
indicated by the dotted horizontal line at 0.33.

icicle plot, whereas the latter two did not differ significantly.
Participants performed well above chance level with both
nodelink (M = 0.55, t(68) = 8.73, p < 0.001) and icicle-plot
visualizations (M = 0.54, t(68) = 9.03, p < 0.001). However,
participants did not perform above chance when presented the
treemap (M = 0.33, t(68) = −0.332, n.s.). These first results
validate hypothesis H4. Furthermore, we found that partici-
pants were able to perform above chance level only in task T2
when using a treemap, i. e., counting nodes at low complexity
(M = 0.48, t(68) = 2.40, p < 0.05). This discovery directly
opposes hypothesis H1 and lets the treemap stand out as the
worst choice for all tasks. Even at its best performing task
T2, nodelink and icicle plot performed significantly better
(F (1, 74) = 50.02, p < 0.001, η2part = 0.403).

Results did not show a significant main effect for com-
plexity of hierarchies, (F (1, 68) = 2.607, n.s.). Consequently
it seems that, in the current setting, hypothesis H5 can not
be confirmed. However, revisiting the stimuli and analyzing
the after-test feedback resulted in at least two possible factors
influencing the results with respect to this hypothesis. One
surprising fact is, that participants performed significantly
better with the complex nodelink compared to the less com-
plex nodelink for task T2, counting nodes (t(74) = −4.32,
p < 0.001, η2part = 0.20). It is apparent, that some participants
were uncertain if the root node is also counted as a node
and, consequently, counted one node less. In the high complex
stimulus, this was compensated, because, as all answering
options were above their count, the participants simply chose
the lowest possible answer, which was the right one. In the
low complex stimulus, this strategy did not work, as indicated
in Table I. Due to this occurrence, it is not possible to validate
hypothesis H2 although the performance of the nodelink is still
significantly better than both other visualizations when only
using the complex hierarchy (F (1, 74) = 32.85, p < 0.001,
η2part = 0.307).

We encountered another surprising result when we com-
pared icicle plots of high and low complexity for task T3.
Again, the less complex hierarchy is performing significantly
worse than the complex hierarchy (t(74) = −5.11, p <
0.001). The performance is even significantly below chance
level (t(74) = −2.52, p < 0.05), leading to the conclusion
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TABLE I. OBSERVED RELATIVE FREQUENCIES FOR TASK T2

USING NODELINK REPRESENTATION. FOR LOW AND HIGH
COMPLEX HIERARCHIES, THE CORRECT ANSWER IS

RESPECTIVELY HIGHLIGHTED WITH GREY.

Answer Low Compl. Answer High Compl.

7 6.8% 22 84.7%

8 34,7% 23 13.6%

9 58.5% 24 1.7%

that the participants were confident in their (wrong) answers.
After carefully inspecting the stimulus for the low complex
hierarchy, illustrated in Figure 3, we assume that participants’
confidence was based on a wrong assumption about the
pictorial information. The Gestalt-laws [40] suggest certain
cognitive grouping tendencies when confronted with images.
Based on the Gestalt-laws of proximity, closure, and common
region, the nodes da, db, and dc are perceived as belonging
together. The task, however, asks to judge the combined size of
the first two (da+ db) against the other node and an “external
one” (dc+ea). Due to this, we assume a misleading perception,
which lets the participants underestimate the size of da + db.
The cognitive process of “moving” area dc over to ea (or
reverse) might be influenced by the distance between the two
because of the impression that both nodes together (a gestalt)
require more space due to the empty space between them. This
overestimation could be the reason, why hypothesis H3 cannot
be supported, although in the high complex setting icicle plot
performed, as predicted, significantly better than nodelink and
treemap at T3 (F (1, 74) = 22.57, p < 0.001, η2part = 0.234).

Figure 3. Close-up view of the stimulus for task T3 using the low complex
hierarchy and the icicle-plot visualization. The area da + db is actually

larger than dc+ ea but the latter is overestimated due to the empty space
between both areas.

A. Heatmaps

Beyond looking into the participants’ performance, we
also recorded the eye-movement of all participants during the
tasks. For the analysis, the areas of interest were defined with
respect to each task and fixations were detected, based on
80 ms duration. After careful inspection of the heatmaps for
each task, we decided to enlarge each area of interest by
20 pixels beyond the actual node to account for measurement
error and peripheral vision when looking at rather small
nodes (see for example Figure 6). As a first approach we
analyzed the heatmaps of different tasks and visualizations and
their evolution over time. The heatmaps were generated by
accumulating fixations over a specified period of time and the
calculation of the smoothed average density of fixations for
each pixel. The resulting density function was color-coded in
the range between minimum and maximum using the built-in
color scheme of the eye-tracking software, depicted below:

In Figure 4, we illustrate the heatmaps for different subse-
quent periods of time for nodelink and icicle plot of the high
complex hierarchy and task T2. The heatmaps suggest a top-
down and left-right movement of participants’ fixations which
is consistent with the top-down screen-space structure of the
visualizations. This coincides with the expected gaze direction
that is deeply rooted into cultural education. Eye-tracking
research regarding reading and comprehension in Saudi-Arabia
revealed fixation patterns from right to left [41], in contrast to
the typical findings in western countries. Li and Briley [42]
therefore differentiate between a habitual eye movement and
a situational one, which, on occasions, might be in conflict.

t= 0. . . 4 sec

t= 4. . . 8 sec

t= 8. . . 25 sec

Figure 4. Accumulated heatmaps for the task T2 and the complex hierarchy
for three subsequent periods of time. Note the apparent top-down and
left-right pattern of participants’ gazes when counting the nodes of the

hierarchy.

Since the participants for the presented study were all
originating from Germany, we assume homogeneous habitu-
ated reading patterns: Since most of their reading materials in
everyday life are dextrograde, a gaze movement pattern from
left to right and top to bottom was to be expected. One of
the most prominent indications for this habituated behavior is
visible in the fixations on the answer options at the bottom
of the screen moving from left to right on every visualization
within this study.

A very similar habitual top-down pattern in the heatmaps
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t= 0. . . 7 sec t= 7. . . 21 sec t= 21. . . 30 sec

Figure 5. Accumulated heatmaps for the task T2, counting all nodes of the
hierarchy, and the complex hierarchy. For three subsequent periods of time,
we indicate the heatmaps of the treemap visualization. Although treemaps
feature only limited top-down characteristics in screen space, the typical

European pattern of top-down processing is apparent.

is encountered when visualizing the same hierarchy with a
treemap (Figure 5), although this visualization does not imply
an inherent top-down screen-space structure. Because treemaps
do not explicitly follow this structural order with several
clearly distinct hierarchy levels, participants constantly have to
reorient and remember which elements were already processed.
We suspect that this discrepancy is partially responsible for
the participants’ bad performance with treemaps. The same
applies to task T1 where participants again followed a top-
down strategy, as illustrated in Figure 6.

t= 0. . . 5 sec t= 5. . . 10 sec t= 10. . . 40 sec

Figure 6. Accumulated heatmaps for the task T1, counting all leaves of the
hierarchy, and the complex hierarchy. The heatmaps of the treemap

visualization are depicted for three subsequent periods of time. Again, the
top-down tendency of processing, although the screen space design of the

treemap has no such component, is apparent.

One further interesting, but unexpected finding with respect
to the treemap visualization was that participants’ performance
at T3 with the complex hierarchy performing significantly
worse than chance level (t(74) = −4.54, p < 0.001). This
again indicates that participants were confident in giving a
wrong answer. When inspecting the respective heatmap for the
whole task processing time (Figure 7), it becomes apparent that
fixations concentrate mainly in the upper parts of the relevant
regions. Due to the self-occluding design of treemaps, these are
the only parts of occluded regions that are directly observable.
When only concentrating on the non-occluded parts the areas
of nodes l and k are quite equal, although the area of node
k is in fact much larger than the area of l. This might have,
in combination with the very small area of node o and the
relatively large, but mostly occluded area of n, led to the
impression that the area of l+n is smaller than the area of k+o.
Thus, the participants might have followed a misconception of
the treemap visualization. The same explanation can account
for the significantly lower-than-chance performance of the less
complex treemap at T4 (t = −2.52; p < 0.05).

B. Odds Ratios

In addition to inspecting the heatmaps, we used a measure
for the chance that fixations in task-relevant areas of interest
are succeeded by task-relevant fixations, i. e., the participants

Figure 7. Accumulated heatmap for the whole time of T3 using the treemap
visualization for the complex hierarchy. Participants’ fixations concentrated
mainly on the upper, non-occluded, parts of the relevant regions, making it

hard to correctly estimate the areas.

visual attention remains at task-relevant nodes. For this, we
computed odds ratios, which compare the odds of remaining
at task-relevant nodes of two visualizations for each task. We
first divided the chance of task-relevant fixations by the chance
of irrelevant fixations after looking at relevant areas of interest.
This gives us an odd of relevant follow-up fixations for each
visualization. We then divided the odds of one visualization
by the odds of another visualizations to get the respective
odds ratio. We used the nodelink visualization as a baseline for
the other two visualizations, because it is the most established
one. Respective confidence intervals (95%) for the odds ratios
allow comparisons of the suitability of a given visualization
to promote fixations that remain within task-relevant areas.
Odds ratios of around 1.0 indicate that the chance of hitting an
important area of interest is not significantly different in both
visualizations. Non-overlapping confidence intervals of differ-
ent visualization combinations indicate a significant difference
between them. An illustration of the different odds ratios and
confidence intervals with respect to task and visualization type
combinations is given in Figure 8.

T1 produced significant differences between all visualiza-
tions in their ability to draw user attention to task-relevant areas
of interest. Within this particular task, the treemap visualization
outperforms the other visualizations, regarding its chance to
draw attention to task-relevant areas. The odds of looking
at important areas of a treemap during the task are four
times higher compared to a nodelink (∆oddsT/N = 4.22; CI:
[3.36, 5.30]). Comparing icicle plots and treemaps also indi-
cates a one-to-two advantage for the treemap (∆oddsI/T =
0.51; CI: [0.42, 0.63]). Furthermore, the odds for the icicle-
plot visualization are twice as high compared to the nodelink
(∆oddsI/N = 2.17; CI: [1.71, 2.75]). These results can be
explained by the ratio of relevant to irrelevant screen space,
which is highest for the treemap and lowest for nodelink.
However, the significant advantage of the icicle plot over
the nodelink cannot be explained by the small difference in
relevant screen space, but might be a result of the eye-trackers
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T1: Count Leaves T2: Count Nodes

T3: Compare in Level T4: Compare Between Levels

Figure 8. Plots of odds ratios and confidence intervals. For each task and
combination of visualizations (N = nodelink, T = treemap, I = icicle plot),

the respective odds ratio is indicated together with its 95% confidence
interval.

resolution.

T2 presents a similar pattern, but with overall higher odds
ratios. The improvement in odds for treemap compared to
icicle plot relative to nodelink, however, is only marginally
significant. Still, both perform again better than the nodelink in
keeping the participants’ attention within task-relevant areas.
However, when counting nodes, the ratio of relevant screen
space to overall screen space is nearly one for the treemap
and close to one for the icicle plot. Consequently, participants
have only few chances to actually look at non task-relevant
positions, directly explaining the very high odds.

The tasks of comparing the volume of two groups of areas
T3 and T4 reveal rather different odds ratios. Within one
level of the hierarchy there is almost no difference between
the treemap and the nodelink visualization (∆oddsT/N =
1.07; CI: [0.88, 1.3]), but a slightly higher odds ratio for
the icicle plot compared to nodelink (∆oddsI/N = 1.47;
CI: [1.19, 1.81]) and treemap (∆oddsI/T = 1.37; CI:
[1.13, 1.66]). When looking at comparisons between different
levels of hierarchy, however, both treemap (∆oddsT/N =
2.32; CI: [1.93, 2.79]) and icicle plot (∆oddsI/N = 1.64;
CI: [1.37, 1.97]) again outperform the nodelink visualization.
Additionally, the treemap is again significantly better than the
icicle plot (∆oddsI/T = 0.71; CI: [0.6, 0.84]).

These results suggest that the treemap visualization is
indeed effective in promoting task-relevant fixations due to
its maximization of screen space. Additionally, the icicle plot
performs better in guiding user gaze compared to nodelinks.
However, these benefits in visual perception are not reflected
in the user performance measure, because nodelinks still
perform rather good compared to the visually more efficient

visualization techniques. This could be seen as an indicator of
the high relevance of previous experience with visualization
techniques compared to their visual arrangement.

VII. CONCLUSIONS

We presented a user study which allowed us to analyze
three of the most commonly used visualizations for hierarchi-
cal data with additional scalar dimension, namely nodelink,
treemap, and icicle plot. These three visualization techniques
of two hierarchy complexities (high, low) were tested at four
tasks that are common for these types of visualizations. In
addition to measuring completion time and correctness of
responses, we analyzed the participants eye movements during
problem solving. The statistical analysis of the participants’
performance revealed that the treemap visualization performed
worst. It barely exalted chance level and never performed better
than fifty percent. For nodelink and icicle plot, our hypotheses
were mostly supported due to well-known properties of both
visualizations. However, we also found some puzzling effects:
The analysis of gaze heatmaps revealed that the 2.5D represen-
tation format of treemaps was possibly misleading participants
during area judgments of occluded nodes. Additionally, we
found that the use of icicle plots, with a better screen-space
usage compared to nodelinks, comes along with the problem
that areas might be judged differently simply because of their
mutual distance, i. e., the sum of closely spaced nodes is
perceived smaller than nodes with a higher distance.

A deeper analysis of the eye-tracking data enabled us to
calculate the odds of continued visual attention at relevant
nodes. Here, treemaps performed superior in most tasks, which
can be seen as proof of its optimized screen-space usage. How-
ever, the user performance contradicts this finding: Optimized
screen-space usage is no guarantee for good user performance.
Interestingly, icicle plots outperformed nodelinks in both com-
parison tasks with respect to odds ratios, suggesting that icicle
plots concentrate participants’ attention to the relevant areas
by omitting unimportant structures.

In sum, we were able to replicate several findings from
earlier studies, especially about the problematic properties
of treemaps. Our analyses also revealed several pitfalls for
visualization design as well as for visual user-study planning
and execution, particularly dealing with the powerful Gestalt-
laws. Those findings facilitate different directions for future
analyses, for example if the choice of nodes’ positions plays
a crucial role for area perception or if area shape, circular or
squared, is a significant factor for good counting, finding, or
comparing performance.
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