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Abstract— With the increasing deployment of computers in a 

wide variety of applications, the ability to detect the user’s 

attention, or engagement, is becoming more important as a key 

piece of contextual information in building effective interactive 

systems. For instance, one can imagine that a system that is 

aware of whether the user is attending to it would be able to 

adapt itself better to the user activities to enhance productivity. 

The ability to detect attention would also be useful for system 

analysis in designing and building better systems. However, 

much previous work in attention detection is either obtrusive 

or imposes demanding constraints on the context and the 

participants. In addition, most approaches rely on uni-modal 

signals, which are often limited in availability and stability. 

This paper attempts to address these two major limitations 

through a noninvasive multimodal solution, which allows 

participants to work naturally without interference. The 

solution makes use of common off-the-shelf items that could 

reasonably be expected of any computing environment and 

does not rely on expensive and tailor-made equipment. Using a 

three-class attention state setting, it achieves average accuracy 

rates of 59.63% to 77.81%; the best result being 77.81% for a 

general searching task, which shows 11.9% improvement over 

the baseline. We also analyze and discuss the contribution by 

individual features to different models.  

Keywords-Affective computing; keystroke dynamics; facial 

expression; multimodal recognition; attention detection 

I. INTRODUCTION 

Human attention is strongly correlated with a person’s 

efficiency in both working and studying. Considering the 

pervasiveness of computers today, it makes sense to provide 

better interaction between users and computers by taking 

into account contextual information, such as location, 

expertise, and preference, in the development of 

applications [1]. However, one of the most important factors 

in Human Computer Interaction (HCI), the mental state of a 

user, has been largely ignored in real world applications.  

Affective computing [2] and psychophysiology represent 

the most important areas in HCI towards the understanding 

and utilization of human mental states, and there has been 

some work on the automatic detection and recognition of 

human mental states by the computer [1, 3]. Among the 

various mental states, it is known that attention is one of the 

most significant and indicative affects that affects a user’s 

efficiency, productivity and even creativity [4]. 

Recent advancements in technology have enabled more 

precise estimation of a human’s psychological states in the 

form of physiological signals, which formerly could only be 

acquired through the use of intrusive and sometimes even 

invasive medical sensors. These products, such as the 

NeuroSky Mindset [5] and the Emotiv EPOC [6], use a 

headset with dry sensors to detect electroencephalogram 

(EEG) signals, and report the alpha and beta waves. This is 

a large step forward in term of convenience compared to the 

traditional clinical use of EEG, but these devices are still 

intrusive as they require a user to buy and wear them. 

Therefore, we believe that a truly nonintrusive approach in 

obtaining the attention, concentration, and engagement 

levels of a user is necessary and would be a contribution to 

the field. Previous work has explored vision-based 

approaches that estimate the concentration level by 

analyzing the facial expression of a user [7], and keystroke 

dynamics and mouse activities have been used to classify a 

user’s mental state of engagement and boredom [8]. These 

research works focus on attention detection through 

analyzing signals from a single modality.  

We believe that for real world applications, uni-modal 

attention detection approaches may be easily affected by the 

contextual factors and individual differences. To address 

this problem, we propose a multi-modal approach to detect 

attention level in a nonintrusive manner. Our challenge lies 

in the feature representation and selection of modalities. 

Most of the features we adopted have been proven effective 

in state-of-the-art research, while the rest are introduced 

specifically for this work. Our contributions include the 

introduction of useful features in attention recognition, the 

analysis of contributing factors of different features from 

distinct modalities, the evaluation of our proposed solution 

along the feature and temporal dimensions, and the 

identification of important features that are closely related to 

human attention states.  

The rest of the paper is organized as follows. Section II 

first presents an overview of research work in related fields, 

including facial expression and keystroke application.  

Section III describes the multimodal signal features in detail 

and illustrates the collection of ground truth after a short 

analysis on problems of existing solutions. In addition, it 

also illustrates the experimental setting and explains the 

choice of experiment tasks. Section IV follows with a 

performance analysis on proposed models. Results are 

presented and interpreted from both specific and general 

aspects. Based on the results, Section V discusses the 

findings and suggests some potential problems of the work. 
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Finally, the paper ends with an outline of future research 

direction and a brief summary in Section VI. 

II. RELATED WORK 

State-of-the-art affective computing research usually uses 
features from a wide range of areas: facial expression, vocal 
intonation, hand gesture, body posture, language, and 
physiology signals [1, 3]. Of the above, physiological signals 
are the most able to provide a precise measurement, but they 
are often intrusive, in the sense that experimental subjects are 
required to have different sensors, like Electrocardiogram 
(ECG), Electromyogram (EMG), and EEG, attached onto 
their bodies. On the contrary, nonintrusive approaches rely 
on observations of expression, gesture, posture, vocal 
intonation and language, which are captured by camera and 
microphone. Of these, relatively less attention has been paid 
to body posture and hand gesture, partially because it is more 
difficult to accurately infer affective states from these 
modalities, and also because there is some evidence that 
posture can only reflect the quantity (intensity) of the 
emotion, instead of its quality (category) [9]. More recently, 
keystroke dynamics have been investigated as a potential 
nonintrusive input for emotion detection [8], [10]. 

In this paper, we focus on detecting a user’s attention 
level for various tasks that commonly occur in a workplace 
setting. Therefore, our approach requires us to use 
information that can be collected in a nonintrusive approach 
from equipment that is available readily in a standard 
desktop computer. Since similar approaches have been used 
to detect different dimensions and categories of emotions 
and cognitive mental states, we believe that it is also possible 
to detect a user’s attention level based on these modalities in 
a nonintrusive manner.  

A. Facial expression 

Facial affect detection is one of the most popular 
approaches in affective computing. Since facial expressions 
are strongly correlated with emotions, especially basic 
emotions [11], most vision-based affect recognition research 
focuses on facial expression analysis [3], mostly to recognize 
the basic emotions [1, 3], or higher level affects (e.g., 
interest) and cognitive states (e.g., thinking). El Kaliouby et 
al. [7] use dynamic Bayesian networks to model and 
recognize six complex mental states, namely, agreeing, 
concentrating, disagreeing, interested, thinking and unsure. 
Lan et al. compare static and dynamic approaches to model 
and infer fatigue [12], taking into account environment 
factors (e.g., noise, temperature, and humidity), and personal 
physical states (e.g., sleep quality) and visual hints (e.g., 
head and eyelid movements). Ashraf et al. [13] and 
Littlewort et al. [14] attempt to infer pain from facial 
expressions. Subjects are required to act and feel pain by 
putting their hands into the icy water in the control 
experiments. In addition, differences in both appearance and 
timing between posed (simulated) and natural facial 
expressions have been observed. 

B. Keystroke 

Emotion detection based on keystroke dynamics has a 
relatively short history, despite its remarkable success in 
authentication [15], [16]. Vizer et al. [17] detect cognitive 
and physical stress based on keystroke dynamic. Besides 
traditional keyboard event features, their method also 
includes linguistic features like emotive word rate, verb rate, 
conjunction rate, etc. Epp et al. [10] create 2-level classifiers 
using keystrokes to recognize 15 emotional states, among 
which confidence, hesitance, nervousness, relaxation, 
sadness and tiredness accord at least 27% accuracy better 
than chance. The essential keystroke features used are timing 
patterns of single keystrokes, digraphs and trigraphs. Bixler 
et al. [8] investigated 14 emotion states, based on pausing 
behaviors, keystroke verbosity and timing, and found that 
only 6 of them occur with some regularity, among which 
engagement and boredom rank as the most frequent states. 

Our proposed method distinguishes itself from the 
previous works in several essential aspects. First, for 
attention level detection, we apply multimodal features, 
including vision, keyboard, mouse, etc. This allows our 
method to take into account a wide context of the user’s 
environment. Second, we distill the essential features into 
different modalities that contribute significantly in the 
attention level classification. Third, we attempt to classify 
attention levels according to different time intervals and 
compare their performances. Fourth, we generalize our 
approach and evaluate it across dissimilar working tasks 
performed by different subjects. Finally, we also propose a 
novel feature to quantify mouse movements.  

III. METHODOLOGY 

Our method approaches the problem from a nonintrusive 
and multimodal perspective. Since we are interested in real-
use scenarios, our approach assumes only equipment and 
peripherals that would commonly be available on computers 
in an office setting, and signals that can feasibly be collected 
via such devices.  

For ease of explanation, we classify our incoming signals 
into machine- and human-specific features. Machine-specific 
features include keystrokes, mouse activity, window layout, 
and so on, whereas human-specific features include facial 
expressions and head movement. As the various input 
devices collect data at different frequencies, the raw 
incoming data is aligned at the desired frequency via re-
sampling to create a feature vector for every second. A 
nonparametric random forest machine learning algorithm 
then analyzes the features to identify indicative features. 

A. Keyboard features 

As one of the most often-used input devices in a work 
setting, the keyboard is one of the most indicative recorders 
of a user’s behavior and activity.  

Table I shows the different keyboard-related features 
used in our approach. These keyboard features make use of 
both statistical and grammatical information to characterize a 
user’s activity. They include 1) counting of key presses and 
2) time intervals between presses. For example, Feature KB, 
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as a general parameter reflecting overall keyboard activities, 
counts the total number of keyboard press each second, 
including letter, number, punctuation, and control keys. 
Feature BS measures the frequency that a user corrects a 
typo, which implies the user’s level of awareness, and, 
indirectly, the level of attention. Features NWIS and NLIW 
are delimited by “space” and “punctuation”, where “space” 
signifies the end of a word, while punctuation marks like 
period (“.”), question mark (“?”), and exclamation mark (“!”) 
indicate the end of a sentence in modern English. The 
assumption behind these two features is that generally, long 
and complex language processing requires more thinking, 
and these features imply language information that in turn 
would suggest human attention. Features STD and DTD 
record the time intervals between two spaces and 
punctuations, which are used for the calculation of word and 
sentence input rate together with features NWIS and NLIW. 
These keyboard features are highly useful especially for 
typing tasks. 

In addition, feature KIDT is introduced to characterize 
“idle time” on the keyboard. This feature is activated when 
the machine has received no key press for 1 minute. There 
are no conventions that clearly define idle state (i.e., how 
many seconds of inactivity counts as an idle state?), so this 
1-minute threshold is used as a starting point and subject to 
further investigation. When the keyboard enters the “idle” 
state, it resets all other keyboard statistical features, under 
the assumption that they are now outdated. 

The data are further extracted into time frames of 5, 10 
and 15 seconds as in previous approaches [8], [10], under the 
assumption that attention is a temporally changing state. 
Taking this information into consideration helps us to 
understand attention from a temporal aspect. In the 
experiments, these features are denoted with the extensions: -
5, -10, and -15 (e.g., KB-5, KB-10, and KB-15). 

B. Mouse features 

Other than the keyboard, much of the rest of the user 
input takes place through the mouse. Mouse activities 
include click, move and wheel rotation. Table II gives a 
description for each of them. 

Intuitively, characterizing mouse activity might start with 
seeing how far the mouse has moved and how often it 
triggers a click. Feature MC counts the mouse click per 
second, while Feature MM captures the mouse move as a 
number of pixels. In addition to move and click, Feature MR, 
reflecting the rotation direction of mouse wheel, is in use 
when the user is browsing and reading. Since the program is 
able to detect direction of rotation (e.g., toward the monitor 
or backward to the user), this feature can reveal some 
interesting user behavior (e.g., disordered reading pattern).  

Besides the aforementioned features, we also introduce 
the new Unnecessary Mouse Movement (UM) feature. The 
rationale behind this feature is based on the assumption that 
users moving the mouse with a clear target in mind will 
normally follow the shortest path from their current location 
to the target point, and an observation that, often, perhaps as 
a nervous habit, distracted users often move the mouse 
around somewhat randomly, without clicking (as this would 
not trigger an operating system event). Unnecessary Mouse 
Movement is defined by the difference between 1) the actual 
mouse movement path (the dotted line) and 2) the shortest 
distance (the solid line) between the current cursor position 
(B) and the position of the last mouse click (A) (Figure 1). 
This allows us to quantify random and aimless mouse 
movements, which may be potential indicators of a lack of 
user attention.  

Similar to keyboard features, we extract the data by time 
frames of 5, 10 and 15 seconds to obtain a temporal view. 

C. Facial features 

From real-life experience, facial expressions, including 
head gestures, are good indicators of a person’s attention. 
Among the various representations of face and head features, 
facial action units [11] have been proven to be valuable 
interpretations of facial expression in both psychology and 
computer vision [7], [14], [18]-[20]. They are the essential 
representation of a facial expression – it is possible to 
describe all facial expressions by combining different facial 
action units. Furthermore, facial action unit based expression 
analysis is relatively robust. Once the facial landmarks are 
accurately identified, the values of action units will not be 
influenced by the variation of environmental factors, such as 

TABLE I. KEYBOARD FEATURES 

Code Description 

KB The number of key presses per second 

BS The number of Backspace and Delete 

key presses per second 

NWIS The number of words since the most 

recently-finished sentence  

NLIW The number of letters since the most 

recently-finished word 

VWIS Word input rate of the last sentence 

VLIW Letter input rate of the last word 

STD Time interval since last Space key press 

DTD Time interval since the last “.”, “?”, and 

“!” press 

KIDT Keyboard idle time 

 

 

Figure 1: Unnecessary Mouse Movement (UM) 

TABLE II. MOUSE FEATURES 

Code Description 

MC The number of mouse click per second 

MM Mouse move by pixel per second 

MR Mouse wheel rotation angle per second 

UM Unnecessary mouse movement 

MIDT Mouse idle time 
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light intensity change and shadow movement. 
In this paper, we apply Constrained Local Models (CLM) 

[21] to track 66 facial landmarks. The model is trained on the 
CMU Multi-PIE Face database [22], which contains over 
750 thousand images from 337 individuals. The CLM 
optimization procedure iteratively adjusts the 2D and 3D 
landmarks and other global and local parameters.  

Figure 2 shows the facial landmarks tracked by CLM and 
Table III presents the 24 facial features adopted in our work. 
The wired models indicate the 2D and 3D tracked facial 
landmarks, and the lengths of the green bars denote the 
intensities of the facial features. The facial features we used 
are similar to motion units [23], which describe facial 
movement; but are numeric in nature and represent both 
direction and intensity of the facial movements.  

Similar to previous work [24], we represent the degree of 

a motion unit by the normalized distance between the 
corresponding feature points. To reduce the influence caused 
by head orientation, we use the 3D landmarks to calculate 
the features in the 3D space, which is more stable than 
calculating the distance features from the aligned face 
through the affine transformation. The five head movement 
features, “FF18-FF22”, capture the head scaling, orientation 
(pitch, yaw and roll) and position (x-axis and y-axis 
translation). Since the CLM model we used does not track 
iris movement, we extract the iris based on the integral 
image [24] of the region covered by the eye landmarks. The 
darkest sub-region in the integral image is considered to be 
the iris. Feature “FF24” represents the distance proportion 
from the pupil center to eye corners. 

D. Other features 

In addition to the keyboard and mouse features, we 
introduced another machine-specific feature: active window 
size (Table IV). The active window size is the proportion of 
size of the window relative to the whole screen. Our 
hypothesis is that the bigger the window size, the less likely 
the user would be distracted by irrelevant information on the 
screen.   

Our input features cover a diverse spectrum of the user’s 
activity on the computer; however, there is one obvious 
feature that is omitted – that being the focus of the user’s eye 
gaze on the screen. We had indeed considered inclusion of 
that feature, but it is very difficult to obtain that information 
accurately without the use of specialized eye-tracking 
equipment and/or requiring the use of wearable devices. 
Since this is not compatible with the assumptions and 
objective of our project, we made the decision not to include 
this as a feature.  

E. Ground truth collection 

In order to classify the incoming signals, the individual 
vectors need to be labeled with the “ground truth” for 
training and testing.  

Previous work has pioneered the use of the Neurosky 
Mindset device [27] as an off-the-shelf EEG device to 
provide the ground truth in an objective manner for attention 
detection [26]. The Mindset collects brainwave data (i.e., 
alpha, beta, and theta waves) [27] and also processes the raw 
brainwave data into integer values ranging from 0 to 100, 
which indicate the level of “concentration” of the user. The 
accuracy of the Mindset’s attention detection algorithm has 
been verified in previous work [27], which measured a 
positive correlation between the Mindset-measured and user-
self-reported results. Given these results and the fact that we 
wish to detect attention as it relates to brain activity level, 
e.g., the intensity of mental “focus” that occurs during 
intense concentration [28], we believe that the Mindset is 
reliable as a measure of ground truth for our work. 

The MindSet’s attention detection algorithm returns an 
integer that indicates a user’s attention level. The MindSet 
Instruction Manual [28] provides an interpretation that 
classifies the attention level into five equally divided classes 
of incremental attention level. We further simplify this into a 
three-class model dividing the range uniformly across the 
three classes to produce the three levels: non-attentive, 
neutral, and attentive.  

F. Machine Learning Classification 

The data collected for this project includes multiple 
signals from various channels. These features may contribute 
differently, depending upon the user’s context or his/her task. 
For example, we would hypothesize that the keyboard-based 
activities would be more indicative during typing tasks, but 

TABLE III. FACIAL FEATURES 

Code Description 

FF1-FF4 Inner and outer eyebrow movement 

FF5-6 Eyebrow movement 

FF7-8 Eyelid movement 

FF9 Upper eyelid movement 

FF10-11 Lip corner puller or depressor 

FF12 Lower lip depressor 

FF13 Lip pucker 

FF14 Lip stretcher  

FF15 Lip funneler  

FF16 Lip tightener 

FF17 Lip separated 

FF18-FF22 Head movement 

FF24 Eye gaze 

 

TABLE IV. MACHINE-SPECIFIC FEATURE 

Code Description 

WS Proportion of current active windows to desk top 

 

 

Figure 2 Illustration of CLM face tracking results of two facial 

expressions (left: attentive; right: non-attentive).  
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would contribute far less when the user is web browsing. 
Therefore, our machine learning algorithm has to be able to 
identify useful features among large numbers of signals and 
to avoid overfitting at the same time.  

We use the Random Forests [29] machine learning 
algorithm for this work. The random forest algorithm 
constructs multiple decision tree classifiers and aggregates 
the result using the mode of the output results of the 
individual classifiers. It is known to have several advantages: 
1) it yields better accuracy than many current algorithms; 2) 
it can handle large number of variables; and 3) it weights 
importance of different features; 4) it is known to be fairly 
robust to overfitting; and finally, 5) it does not require 
unified data types in the same feature vector.  

G. Experimental Tasks and Setup 

A total of 10 participants were recruited for our 
experiments (5 male and 5 female, aged 22-29, 3 
undergraduates and 7 graduates).  All participants were 
proficient in using a computer running Windows 7 and read 
and write English fluently. They were first asked to search 
for academic papers relevant to their research or coursework 
for 30 minutes. They then spent another 30 minutes reading 
papers. Finally, in the last 30 minutes, they did some 
academic writing. The materials involved in the three tasks 
may or may not be relevant to each other.  

The three tasks were chosen because they are simplified 
versions of commonly-performed tasks in the office or lab 
space, and thus provide a realistic picture of user interaction. 
The tasks also represent three common modes of interactions 
with the computer: input-oriented, output-oriented, and 
hybrid, which triggers or relies on different interaction 
patterns: in the reading task, neither keyboard nor mouse is 
active, while in writing, the keyboard produces the main 
source of signals. Finally, the searching task expects both 
keyboard and mouse activities.  

The experimental setup was kept as close to that of a 
normal workplace as possible. With the exception of the 
Mindset, which was connected to the computer via a 
Bluetooth link, the rest of the experimental setup consists of 
equipment that would commonly be found in an office or lab 
setting: a desktop computer running Microsoft Windows 7 
with keyboard, mouse, and webcam.  

H. Data logging and preprocessing 

The preprocessing procedure transforms the computer 
interaction log into the set of previously-mentioned features. 
The programs use windows hook to collect data and produce 

event-based logs. A new entry is appended to the log 
whenever there is a key press or mouse activity on the 
computer. At the same time, the Mindset device returns a 
temporal log. The raw data is then preprocessed into features 
suitable for classification. Human-specific features from the 
video stream and machine-specific features (keyboard, 
mouse, etc.) from the computer log were extracted according 
to the re-sampling frequency, and then were aligned with the 
temporal readings from the Mindset.  

IV. RESULTS 

A total amount of 54000 seconds of responses were 
gathered, each participant contributing about 5400 seconds. 
The data from each task was preprocessed into four sets with 
different lengths of time frames: 5, 10 and 15 seconds, as 
previously mentioned. Following previous work [17], we 
evaluated the results using 10-fold cross-validation. The 
results were also compared across different feature 
combinations, i.e., machine-specific features alone, human-
specific features alone, and fusion of the two. We use 
accuracy, i.e., Correctly Classified Rate (CCR) and Kappa 
statistics [30] to study the classification performance. 

One observation that was made early on in our 
experiments was that the raw data collected follows a normal 
distribution. Given this, our three-class model for the ground 
truth places more than half of the data into the neutral class. 
This uneven distribution obviously will affect the evaluation 
benchmark, so we also provide a comparison between our 
model and the “most-frequent class” baseline to provide a 
fairer picture. 

A. Performance of specific models 

Table V shows our evaluation results. Our method 
constructs individual models for each user in each task. The 
mean and standard deviation of the performance by CCR are 
presented, and the best value along each row is bolded. The 
reported performances here represent the average 
performances over all subjects. 

The results, achieved from three-class models (attentive, 
neutral, and non-attentive), are generally appreciable. The 
best result reported is 77.81%, when the searching task is 
performed, with a moving window of 15 seconds. It is 
11.90% better than the benchmark 65.91%. 

An inspection of our results shows that fusion of both 
human-specific and machine-specific features achieves better 
results. Almost all (11 out of 12) of the fused, multimodal 
models achieve the best performance for each sample set. 

   

Figure 3: Performance Changes as a Function of Time Interval 

196Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions



This bears out our hypothesis that a multimodal approach 
that integrates both machine-specific and human-specific 
features performs better than using either of the two alone. 

Besides feature combination, we can also analyze the 
performance along the dimension of window size. As the 
time interval increases, the classification accuracy increases 
as well. For example, on the reading task, using only 
machine-specific features, changing the window size from 1 
to 15 seconds gives us an accuracy gain of 14.46%, which 
outranks the improvement achieved using feature 
combination. Generally speaking, as the window size 
increases from 1 to 5 seconds, the performance increases 
significantly, and flattens out after that (Figure 3). In our 
research, a moving window with time interval of 15 second 
yields the best result. This is consistent with previous work 
[8], [10], [27], which also use a 15-second time interval in 
data preprocessing, albeit for uni-modal models.  

B. Performance of general models 

Our results so far produce a user-specific, task-specific 
model. In order to get a sense of how well our model would 
work when extrapolated to a general usage, we combined our 
data from all the participants to create general models for 
each task: reading, searching, and writing, using a 15-second 
time window. In addition, we also combine all data to create 
a universal model that is independent of the task context.  

Table VI presents the results, with the accuracy measured 
by CCR and Kappa statistics. It can be seen that again, a 
multimodal model using feature fusion yields the best 
results, and the combination of machine- and human-specific 
features perform better than any of the two alone in both 
task-specific models and the universal model. With one 
exception, the models achieve Kappa statistics between 0.4 
and 0.6, which gives us a good support of classifier 
agreement. The best classification result is 77.46% 
(Searching task, All features considered), 12.35% above 
baseline. The worst case (Reading Task, Machine-specific 
features only) achieves a performance of 73.07%, which is 
still 6.61% better than baseline. 

To better understand the role of the different features, we 

performed a leave-one-out evaluation on all three tasks. The 
model was trained and tested multiple times, each time with 
one feature omitted.  

Table VII shows the features that produced the biggest 
drop in accuracy when they were omitted. Both machine-and 
human-specific features contribute to the top 10 most 
contributing features. Of the mouse features, only one of 
them (UM – unnecessary mouse movement) makes it to the 
top 10. The rest are keyboard features, especially content-
aware features that take linguistic information into account 
(e.g., letter input rate of the last word). It is also observed 
that most of the highest-contributing features rank highly in 
more than one task scenarios (highlighted in Table VII), 
which gives us a sense of the overall most indicative features 
for the general attention detection problem. 

V. DISCUSSION 

A. Findings 

Our results have demonstrated the feasibility of detecting 
user attention and engagement from their behavior and 
interaction with the computer, using a nonintrusive approach 
and deploying only standard off-the-shelf equipment. Our 
models have been evaluated under different task scenarios 
that were chosen to be representative and realistic, and 
achieve significant performance gain over the baseline.  

An analysis of our results shows that both fusing multiple 
features from multiple modalities and lengthening the time 
window for sampling contribute to performance 
improvement. Using 40 features, including 16 machine-
specific features and 24 human-specific features, the results 
from the multimodal models almost always outperform the 
uni-modal models. A leave-one-out analysis shows that both 
machine- and human-specific features contribute to the 
classification result, which supports our hypothesis of the 
value of a multimodal approach.  

In addition to feature combination, temporal-smoothing 
of the data also contributes to performance. This can be 
understood from two aspects: on one hand, lengthening the 
time frame produces a smoothing effect and reduces 

TABLE V. PERFORMANCE OF USER-SPECIFIC, TASK-SPECIFIC MODELS 

Task 
Time 

Interval (s) 
Majority Baseline (%) All Features (%) 

Machine-specific 

Features (%) 

Human-specific 

Features (%) 

Reading 

1 63.86±6.20 67.41±2.73 59.63±7.20 66.73±3.52 

5 69.40±6.07 76.18±2.48 71.41±4.08 75.17±2.17 

10 67.04±6.30 76.44±1.97 73.23±3.12 76.55±2.22 

15 66.34±6.03 76.72±1.39 74.09±2.44 76.67±0.87 

Searching 

1 63.23±6.38 67.56±4.35 64.20±4.58 65.65±4.44 

5 69.26±8.37 76.62±2.92 74.16±2.74 75.65±2.81 

10 66.88±6.84 76.73±2.63 75.41±2.81 76.18±2.23 

15 65.91±6.76 77.81±2.91 76.07±2.90 76.80±2.26 

Writing 

1 66.25±5.58 70.60±3.52 69.96±3.11 67.81±3.15 

5 70.64±5.98 77.17±2.27 75.71±2.31 76.02±2.17 

10 69.05±5.86 77.49±1.40 76.14±2.19 76.63±1.52 

15 67.91±5.52 77.10±2.16 77.07±1.41 76.91±1.67 

NOTE: Numbers are averaged across all users. The best performance for each model class is bolded. 
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fluctuation of the data. Intuitively, it seems reasonable that a 
user’s attention at a particular point in time is not an isolated 
“event”, but is in fact linked to many factors, including those 
that occurred shortly before the current moment.  

B. Specific or general 

Our work started off by constructing user-specific and 
task-specific models, and then generalized to a task-specific 
model and then a universal model. We found several 
challenges to creating a truly universal model. Facial features 
are highly distinct and it is very difficult to generalize 
without substantial training data. This is especially a 
challenge for our approach as we rely significantly on facial 
features. We plan to address this weakness in the future.  

To a lesser extent, the variability of the tasks also hinders 
our efforts to create a universal model. Even though we 
specify the nature of the tasks, there is still substantial 
ambiguity present in the content. This may make it difficult 
to generalize our model across the same task for different 
users, as individual user differences, such as language ability 
or familiarity with the topic, will influence the result.  

Even so, we made an attempt to build general models and 
received recognizable results. Interestingly, the model that is 
trained on data from all the participants achieves better 
performance than some of individual models. This can be 
interpreted into two ways: 1) we are not using enough data 
when constructing our user- or task-specific models, and so 
our models suffer from robustness, and 2) even though we 
collected individually distinct data, the algorithm is still able 
to generalize across different users and tasks to create a 
classification with accuracy close to that of the specific 
models. This result implies that creating universal models 
has its potential regardless of task type or participants. 

C. Lab or field study 

In order to mimic the real world as much as possible, our 
experiments were carried out in a lab setting, with all the 
chatting, phone calls and discussions that usually go along 
with it. The tasks are based on commonly-performed jobs 

and are familiar to the subjects. In other words, the subjects 
just need to transfer their normal tasks to the experimental 
computer and carry on as normal. 

However, even though efforts have been made to 
simulate a real-world environment, there are still various 
factors affecting the results. To begin with, the subjects are 
not using their own machines (the presence of the key and 
mouse logger would have created serious privacy issues if 
installed on the subjects’ personal machines), and they are 
also not in their “regular” environments, which may affect 
their engagement with the task. The need to wear the 
Mindset device to get the ground truth labels would also 
assuredly affect their performance! Therefore, we would 
assume a certain level of nervousness or anxiety that would 
perhaps not be present in a real-world setting. 

In the future, we plan to conduct longer-term experiments 
that will allow users to work on their own machines in their 
familiar environments. Assuming that the privacy issues can 
be worked out, this allows us to observe user interactions in 
a more realistic context, which would create a more suitable 
model, which would be closer to a truly generalizable model.  

VI. CONCLUSION AND FUTURE WORK 

We have presented a nonintrusive, multimodal method to 
detect and classify user attention in a realistic setting. We 
obtain a performance (correctly classified rate) of 77.46% 
using a user-general model for a searching task, 12.34% 
above baseline, while our universal (user-general, task-
general) model achieves a performance of 75.15%, which is 
8.65% better than baseline. 

Our analysis of the results brings us to the following 
conclusions: (1) A multimodal approach, as in a combination 
of machine-specific and human-specific features, achieves 
better performance than a uni-modal approach; (2) for 
attention detection, using a longer time window (e.g., 15s) 
yields better results than with shorter windows, suggesting 
that attention is a more stable attribute that does not change 
rapidly with time; (3) features contribute differently under 
different task scenarios; and 4) it is possible to build up 

TABLE VI. PERFORMANCE OF GENERAL AND UNIVERSAL MODELS 

Task ANA-15 (%) ANK-15 MNA-15 (%) MNK-15 HNA-15 (%) HNK-15 

Reading 76.57 0.49 73.07 0.39 76.41 0.49 

Searching 77.46 0.53 75.89 0.49 76.17 0.50 

Writing 76.95 0.48 76.48 0.46 76.31 0.46 

Universal 75.15 0.46 73.41 0.41 74.31 0.44 

NOTE: AEA-15/AEK-15: All features, Even distribution, Accuracy/Kappa Statistics, in 15 seconds; CEA-15/CEK-15: 

Computer features; FEA-15/FEK-15: Facial features. 

TABLE VII. TOP 10 MOST CONTRIBUTING FEATURES FOR EACH TASK 

 1 2 3 4 5 6 7 8 9 10 

Reading NLIW FF10 FF9 UM BS FF15 WS MIDT FF19 STD 

Searching FF5 FF11 UM FF21 FF16 VLIW NLIW KBIDT NWIS FF23 

Writing NWIS FF9 FF16 FF19 FF6 WS KB MR NLIW FF5 

NOTE: Highlighted features rank among the top 10 for more than one task. 
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general and universal models with recognizable accuracy.  
We believe that our approach has much potential, both in 

terms of providing a means through which to detect the 
user’s attention, as well as a novel mode of human-computer 
interaction. We believe that the ability to detect the user’s 
attention could be important in the development of a better 
interactive system which would be able to deduce users’ 
attention state and adapt itself to enhance users’ productivity.  

In future work, we plan to investigate more deeply the 
contribution of the various features, including the use of 
linguistic and sequential models in the keyboard and the 
mouse movement features. We also plan to deploy our 
system as input for interactive systems and applications.  
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