
Trace-based Task Tree Generation

Patrick Harms, Steffen Herbold, and Jens Grabowski
Institute of Computer Science

University of Göttingen
Göttingen, Germany

E-mail: {harms,herbold,grabowski}@cs.uni-goettingen.de

Abstract—Task trees are a well-known way for the manual
modeling of user interactions. They provide an ideal basis for
software analysis including usability evaluations if they are
generated based on usage traces. In this paper, we present a
method for the automated generation of task trees based on traces
of user interactions. For this, we utilize usage monitors to record
all events caused by users. These events are written into log files
from which we generate task trees. We validate our method in
three case studies.

Keywords-task; tree; generation; usage-based; traces.

I. INTRODUCTION
Task trees are a well-known method to model user interac-

tions as, e.g., done in [1]. They provide a structure to define
how interactions are intended by the interaction designer [2].
They can also be used for comparing expected and effective
user behavior as a basis for a semi-automatic usability evalu-
ation [1]. Task trees are usually defined manually at design
time [3]. For websites, they can also be generated based
on existing Hyper-Text Markup Language (HTML) source
code [4]. In both approaches, they do not describe effective
user behavior but either expected or possible user behavior.

In this paper, we present an approach for automatically
generating task trees based on recordings of user interactions.
Such generated task trees represent the effective behavior of
users and can, therefore, be used for usage analysis, e.g., in
the context of usability evaluations. The results of a usage
analysis can be used for optimizing software with respect to
the user’s needs. Throughout the remainder of this paper, we
use the analysis of websites as a running example. However,
our approach is designed for event-driven software in general
including all kinds of desktop applications.

Task models are used to describe user actions. Task trees
are one possible variant for modeling tasks. The concept of
task trees is applied, e.g., in Goals, Operators, Methods, and
Selection Rules (GOMS) [5], TaskMODL [6], and Concur-
TaskTrees [7] [8]. We reuse the basic concept of task trees,
but apply it in a simplified manner.

There have been several attempts to generate task trees
automatically. For example, the Convenient, Rapid, Inter-
active Tool for Integrating Quick Usability Evaluations
(CRITIQUE) [9] creates GOMS models based on recorded
traces. A similar approach is proposed by John et al. [10].
ReverseAllUIs [4] generates task trees based on models of
the Graphical User Interface (GUI). The resulting task trees
represent all available interactions a user can perform. In
contrast to our work, these approaches do not generate task

trees that represent the effective behavior of the users, but only
a simplified or complete task tree of a website.

A further attempt to identify reoccurring user behavior
is programming by example. Here, user actions are recorded
to determine reoccurring action sequences. The system then
offers the user an automation of the identified action sequence.
An example of this work can be found in [11]. These ap-
proaches only attempt to locally optimize the usability, whereas
we adopt a global view on the system.

Generating task trees for user actions is similar to the
inference of a grammar for a language. The user actions are
the words of a language that the user ”speaks” to the software.
The task tree is the grammar defining the language structure.
However, current approaches for grammatical inference require
the identification of sentences of the language before the
derivation of the grammar [12]. This is not feasible for our
approach as the recorded user actions do not follow such a
structure. For example, a user may interrupt a task execution,
which would lead to an incomplete sentence.

The remainder of this paper is structured as follows: First,
we introduce our approach and the respective terminology in
Section II. Then, we describe an implementation in Section III
and present three case studies in which we tested the feasibility
of our approach in Section IV. We conclude with a discussion
and an outlook on planned future work.

II. TRACE-BASED TASK TREE GENERATION
In this section, we introduce our process for generating task

trees. We commence with the definition of terms that we use
in this paper. Then, we describe our approach of tracing users
of a website. Finally, we provide details about the generation
of task trees based on the traces.

A. Terminology
Users utilize a website by performing elementary actions.

An action is, e.g., clicking with the mouse on a button, typing
some text into a text field, or scrolling a page. Actions cause
events to occur on a website, also known as Document Object
Model (DOM) events. For example, clicking with a mouse
causes an onclick event. Typing a text into a text field
causes an onchange event on the text field. Events are a
representation of actions. For each action there is a mapping
to an event caused by performing the action.

To execute a specific task on a website, a user has to
perform several actions. For example, for logging in on a
website, a user must type in a user name and a password into
two separate text fields and click on a confirmation button.

337Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

Enter user name into Textfield “username“

Sequence

Enter password into Textfield “password“

Click on Textfield “username“

Click on Button “login“

Click on Textfield “password“

Selection

Iteration

Sequence

Sequence

Figure 1. Example for a task tree

Tasks and actions can be combined to form higher level
tasks. For example, the task of submitting an entry on a forum
website comprises a subtask for logging in on the website
as well as several actions for writing the forum entry and
submitting it. Therefore, tasks and actions form a tree structure
called a task tree. The leaf nodes of a task tree are the actions
a user must perform to fulfill the overall task. The overall task
itself is the root node of the task tree. The intermediate nodes
in the task tree structure the overall task into subtasks.

A task defines a temporal relationship for its children,
which specifies the order in which the children (subtasks and
actions) must be executed to fulfill the task. Different task
modeling approaches use different temporal relationships [8].
In our work, we consider the temporal relationships sequence,
iteration, and selection. If a task is a sequence, its children are
executed in a specified order. If a task is an iteration, it has
only one child, which can be executed zero or more times. If
a task is a selection, only one of its children is performed. A
leaf node in a task tree has no children and does, therefore,
not define a temporal relationship.

An example for a task tree is shown in Figure 1. It repre-
sents the actions to be taken to perform a login on a website.
The actions are the leaf nodes. The temporal relationships of
their parent nodes define the order in which the actions have to
be performed. The task starts with an iteration of a selection.
The possible variants are entering a user name or a password
in the respective fields. The user may enter and change his
user name and password several times. The overall task is
completed after the user clicks the login button.

B. User Interaction Tracing
The first step in our approach is tracing user actions on a

website. This is done by recording the events caused by the
actions of a user. We achieve this by integrating a monitoring
module in the website. This module is invisible to the user
and has minimal effect on the implementation, performance,
and stability of the website [13]. The resulting sequence of
events is encrypted, sent to a server, and stored in a log file.
A recorded sequence of events is called a trace.

A simplified example of a trace is shown in Figure 2. It lists
the events recorded for a login of a user on a website. The login
comprises the entering of the user name and the password in
the respective text fields, as well as a confirmation by clicking
on the login button. As the user initially entered a wrong user
name, he reenters it a second time.

1. Left mouse button click on Textfield with id username

2. Text input „usr“ on Textfield with id username

3. Left mouse button click on Textfield with id username

4. Text input „user“ on Textfield with id username

5. Left mouse button click on Textfield with id password

6. Text input „“ on Textfield with id password

7. Left mouse button click on Button with name „login“

Figure 2. Example for a trace

Conceptual Design

Semantic Design

Syntactical Design

Lexical Design

Types of entities and their relationships

Functions to modify entities
Steps to take for executing functions on
entities
Physical execution of steps to execute
functions on entities

Figure 3. Levels of design

C. Task Tree Generation
To describe the process for generating task trees based on

traces, we introduce the levels of design, which are important
for structuring task trees. We then describe the creation of the
initial task tree, which is afterwards refined and condensed
using temporal relationships.

1) Basic Approach: When designing GUIs, four levels of
design are considered: conceptual design, semantic design,
syntactical design, and lexical design. They are shown in
Figure 3. The conceptual design describes the types of entities
that are to be edited with a software [14], as well as their
relationships [15]. For example, in a system for managing
addresses, addresses and persons are the entity types. These
entity types are related, because a person may be assigned
zero or more addresses.

The semantic design specifies functions to edit the entities
defined in the conceptual design [14]. For the address man-
agement example, this includes adding, editing, and deleting
addresses and persons. The syntactical design specifies the
steps to execute a function defined in the semantic design [14].
For example, adding a new address is comprised of steps like
adding a street name, a city, and a zip code. At the most
detailed level, the lexical design specifies means of physically
performing steps defined in the syntactical design [14]. In the
example, defining a street of an address includes clicking on
the respective text field and typing the street name.

In our approach, we map the semantic, syntactical, and lex-
ical levels of design onto task trees. For each function specified
in the semantic design, there exists a task for executing that
function. Hence, there is one task tree for each function in
the semantic design. The syntactic design is a decomposition
of functions into individual steps for function execution. This
decomposition corresponds to the definition of subtasks and
their temporal relationships within task trees. The actions on
the lexical level of design are represented through the leaf
nodes of task trees. As we record the events mapped to the
respective actions, we refer to the leaf nodes as event tasks.
Event tasks are considered normal tasks with the constraint of
not having children and not defining a temporal relationship.

Using this basic approach, we create task trees starting
from the leaf nodes, i.e., from the event tasks. For each event in
a trace, we generate an event task. All event tasks are stored in
an ordered list in the order the respective events were recorded.

338Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

a b b b c a

a) Ordered list of event tasks:

a

b

Iteration 1 c a

b) Ordered list of tasks with detected iterations:

Iteration
detection

bb d

b

Iteration 1 d

a

Sequence 1 c d

c) Ordered list of tasks with detected sequences:

a

Sequence 1

Sequence
detection

b

Iteration 1

b

Iteration 1

a = Event Task “a“ = group of tasks detected in next step

Figure 4. Example for the detection of iterations and sequences

An example is shown in Figure 4a where each grey rectangle
denotes an event task and the arrows denote their order.

2) Iteration Detection: The ordered list of event tasks may
contain identical tasks that occur subsequently. For example,
the user might have clicked several times on the same button.
Such tasks are represented in task trees as iterations. Therefore,
we scan the list of event tasks for iterations of identical tasks.
If we observe an iteration, we generate a new task node of
type iteration. This node gets the iterated event task as its
single child. We then replace each occurrence of an iteration
of the event task in the ordered list with the new iteration task
node. Several subsequently occurring identical event tasks are
herewith replaced by a single task node of type iteration. An
example for this approach is shown in Figure 4. There, Event
Task b is iterated several times (denoted by dotted boxes in
Figure 4a). We replace these occurrences in the task list with
single iteration nodes (Figure 4b).

3) Sequence Detection: After the iteration detection, we
scan the list of tasks for identical subsequences. For the
subsequence occurring most often and which is, therefore,
most likely an occurrence of a logical subtask, we generate
a new task node of type sequence. Its children are the tasks
belonging to the subsequence. Each occurrence of the iden-
tified subsequence in the task list is replaced with the new
sequence task node. An example is shown in Figure 4. There,
the subsequence of Event Task a and Iteration 1 occurs most
often (two times) and is, therefore, replaced through task nodes
representing this sequence.

The subsequences replaced through the sequence detection
can have any length. At the minimum, they have a length
of two. Our algorithm searches for the longest subsequences
occurring most often and replaces it accordingly. If several
subsequences have the same maximum occurrence count, we
replace only the longest one. If several subsequences have

the same maximum count and the same maximum length, we
replace only the subsequence occurring first in the ordered list.

4) Repetition of Detections: The iteration and sequence
detection on the list of tasks are repeated alternately until no
more replacements are done. Each time an iteration detection
is done, all iterations are detected and replaced. This also in-
cludes iterations of detected sequences. For each sequence de-
tection the longest sequence occurring most often is replaced.
A detected sequence may include already detected sequences
and iterations. For example, in Figure 4c the detected sequence
contains a previously detected iteration.

If no more iterations or sequences are detected, the algo-
rithm stops. The resulting task list contains detected task trees
as well as event tasks, which were neither iterated nor part of
a sequence occurring more than once. The detected task trees
represent the lexical, syntactical and semantic level of design.
The more recorded events are processed, the more complex
and deeper task trees are created.

Within a recording of only one user session, specific sub-
sequences occur only once. An example is the login process,
which is usually done only at the beginning of a recorded
user session. With our approach, such regularly occurring
subsequences would not be detected if only one session
was considered. Therefore, we consider several sessions of
different users at once for counting the number of occurrences
of subsequences. Due to this, we also detect subsequences
occurring seldom in individual sessions but often with respect
to all recorded users of the website.

D. Usability Evaluation
We utilize the generated task trees for automated usability

evaluations. For this, we consider violations of generally ac-
cepted usability heuristics (e.g., as provided in [16]) and define
patterns for their reflection in task trees. We then filter our
task trees for these patterns and reason on potential usability
defects. This is possible, as the generated task trees represent
effective user behavior. However, this work is still in its infancy
and, therefore, not described in more detail.

III. PROOF-OF-CONCEPT IMPLEMENTATION
To show that our method is feasible, we implemented it

based on the tool suite for Automatic Quality Engineering of
Event-driven Software (AutoQUEST) [17]. The AutoQUEST
platform provides diverse methods for assessing the quality
of software. AutoQUEST’s internal algorithms operate on
abstract events, which makes AutoQUEST independent of
the platform of an assessed software. AutoQUEST’s modular
architecture allows the extension with modules to support al-
gorithms for quality assurance, as well as feeding AutoQUEST
with events of an yet unsupported software platform. In
the following, we describe how we utilized and extended
AutoQUEST to implement our method.

A. User Interaction Tracing
AutoQUEST provides basic functionality for tracing user

actions. For this, it uses techniques from GUI testing. A
popular approach for GUI testing is capture/replay [18], a
technique where the tester interacts with the software and
a capture tool records the executed actions. Afterwards, the
actions are automatically executable with a replay tool in order
to generate automated software tests. AutoQUEST uses the
capturing to trace users and we reused these capabilities for
our implementation for tracing users of websites.

339Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

<event type="onclick">
 <param name="X" value="87"/>
 <param name="Y" value="213"/>
 <param name="target" value="id1"/>
 <param name="timestamp" value="1375177632056"/>
</event>
<event type="onscroll">
 <param name="scrollX" value="-1"/>
 <param name="scrollY" value="-1"/>
 <param name="target" value="id2"/>
 <param name="timestamp" value="1375177632900"/>
</event>

Figure 5. Example for a trace recorded with AutoQUEST’s HTML monitor

AutoQUEST provides several platform specific plug-ins
to trace the usage of software. This includes plug-ins for
the Microsoft Foundation Classes, Java Foundation Classes,
and websites. All plug-ins are comprised of a monitor to
trace software usage and a trace parser to feed the recorded
events into AutoQUEST. The monitors can be integrated with
minimal effort into the software to be monitored. For example,
for monitoring a website only a JavaScript needs to be added
to each of the pages of the website. In modern content man-
agement systems, this can be configured centrally and easily.
The JavaScript is served by a monitoring server provided
with AutoQUEST. After the integration of the JavaScript in
the website, it automatically records events caused by user
actions. After a specific amount of events is recorded, or if
the user switches the page, the script sends the events to the
AutoQUEST server which stores them into log files.

An excerpt of a trace of AutoQUESTs website monitor
showing a mouse click and a scroll event on a web page is
shown in Figure 5. Both events denote their respective type,
a timestamp, and meta information like the coordinates in the
click event. Furthermore, both events refer to a target, i.e., the
element of the webpage, on which the event was observed.
The identifiers of the targets can be resolved through other
information stored in the log file, as well.

B. Task Tree Generation
For our proof of concept, we extended AutoQUEST with

capabilities to generate task trees based on traces. The im-
plementation follows the overall process described in Sec-
tion II-C. The implementation of the iteration detection is
straightforward and, therefore, not described in more detail.

1) Sequence Detection Implementation: For identifying
and counting subsequences occurring several times, we reused
and extended a data structure provided with AutoQUEST
called trie [13]. A trie in AutoQUEST is a tree structure used
for representing occurrences of subsequences in a sequence. In
our case, we use the trie for representing subsequences of tasks
in the ordered list of tasks considered for the next sequence
detection. An example for a trie is shown in Figure 6.

Each node in a trie represents a task subsequence. The
length of the represented subsequence is equal to the distance
of the node to the root node of the trie. The root node of
the trie represents the empty subsequence. The children of
the root node (in Figure 6 all nodes on Level 1) represent
the subsequences of length 1 occurring in the trace, i.e., all
different tasks. The grand children of the root node (in Figure 6
all nodes on Level 2) represent the subsequences of length two
as their distance to the root node is two, etc. The subsequence
represented by a node can be determined by following the
path through the trie starting from the root node and ending

at the respective node. The length of the longest subsequence
represented through a node in the trie is defined as the depth
of the trie. The depth of the trie in Figure 6 is three.

Each node in a trie is assigned a counter. This counter
defines the number of occurrences of the subsequence repre-
sented by the node. The counter of the root node is ignored.
The example trie in Figure 6 represents the event tasks for
the trace of Figure 2. The trie shows that the event task of
clicking on the user name text field occurs twice and that both
times it is succeeded by entering some text, i.e., a user name,
into the text field. The event of clicking the login button is not
succeeded by any other event task.

We calculate a trie each time a sequence detection on the
ordered list of tasks is done. Based on the trie, we are able
to identify the longest subsequence of tasks with a minimal
length of two occurring most often. The number of occurrences
is determined through the counts assigned to each node in
the trie. The length of the subsequence is determined by
the distance of the trie node representing the most occurring
subsequence to the root node of the trie.

If the length of the identified subsequence is identical to
the depth of the trie, we cannot decide if there is a longer
subsequence with the same count. We, therefore, increase the
depth of the trie until the depth is larger than the length
of the longest subsequence occurring most often. In Figure
6, the longest subsequence occurring most often is clicking
on the user name text field and entering a user name. This
subsequence occurs twice and there is no other subsequence
of the same or a longer length occurring more often. Therefore,
all occurrences of this subsequence in the ordered list of tasks
is replaced through a task node of type sequence.

2) Comparison of tasks: An important challenge in our
implementation was the comparison of tasks. Tasks need to
be compared very often either for compiling the trie or for
detecting iterations. For an effective task generation, some
tasks must be considered equal although they are different.
An example is a task and an iteration of this task. Both must
be considered identical if the iteration is executed only once.
Another example is shown in Figure 6. The represented trie
contains nodes for the event tasks representing the entering
of text into the user name text field. Although different text
is entered in the respective events, the respective event tasks
need to be considered identical for a correct trie calculation.
Therefore, we implemented a mechanism to be able to perform
complex task comparisons. In addition to other comparisons,
it is able to compare a task A with an iteration of a task B
and considers them as equal if task A is equal to task B.

IV. CASE STUDIES
For the validation of our approach, we performed three case

studies. For the first case study, we traced the interaction of
users of our research website [19]. We integrated the HTML
monitor of AutoQUEST in our content management system.
We then recorded interactions of more than 700 users over a
period of 6 months. Afterwards, we fed the gathered traces
containing more than 25,000 events into AutoQUEST and
generated over 600 task trees based on this. This case study
showed that the task tree generation was feasible in general.
The generated task trees represented user behavior occurring
several times. As an example, several users opened the initial
web page and navigated to our teaching page. From there, they
navigated to the information about a specific lecture.

340Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

Left mouse
button click

Textfield with
id username

(2)

Trie root

Text input

Textfield with
id username

(2)

Left mouse
button click

Textfield with
id username

(1)

Left mouse
button click

Textfield with
id password

(1)

Text input

Textfield with
id username

(2)

Left mouse
button click

Textfield with
id username

(1)

Left mouse
button click

Textfield with
id password

(1)

Text input

Textfield with
id username

(1)

Text input

Textfield with
id password

(1)

Left mouse
button click

Textfield with
id password

(1)

Text input

Textfield with
id password

(1)

Left mouse
button click

Button with
name „login“

(1)

Text input

Textfield with
id password

(1)

Left mouse
button click

Button with
name „login“

(1)

Left mouse
button click

Button with
name „login“

(1)L
e

v
e

l
1

L
e

v
e

l
2

L
e

v
e

l
3

Figure 6. Trie generated based on the trace in Figure 2

The first case study also revealed that our mechanism must
be careful with respect to privacy protection. Our research
website includes a log-in mechanism for being able to change
its content. The first version of the tracing mechanism also
traced user names and passwords of all users that logged in on
the website. As this was a severe security issue, we adapted
the tracing mechanism to ignore password fields in general.
Furthermore, a website can be instrumented in a way, so that
contents of selected text fields, e.g., fields for entering a user
name, are not traced anymore.

In our second case study, we traced the users of an appli-
cation portal of our university over a period of 3 months. This
case study traced over 500 users producing more than 150,000
events resulting in 5,320 generated task trees. When feeding
this data into AutoQUEST, we initially observed performance
problems of our approach. Especially, the large number of
distinct events caused the creation of a large trie for sequence
detection. We, therefore, implemented several optimizations.
For example, click events on the same button but with different
coordinates are now treated as the same event task. However,
click events on other website elements are still considered
different, if their coordinates differ.

The second case study showed that our approach is able
to correctly identify effective user behavior. The application
portal also provides a login mechanism. Our task tree genera-
tion created several different task trees for the login process of
users. One of them showed the behavior of those users using
the mouse to set the focus on the password field after having
entered the user name. The other task trees showed the usage
of the tabulator key instead. A visualization of the second login
variant as displayed by AutoQUEST is shown in Figure 7. This
presentation is a further extension done for AutoQUEST in the
context of our work. The example shows, that many iterations
are generated in the task tree. This is due to the fact, that some
users corrected the entered data several times. Furthermore, if
the users entered wrong credentials, the website returned to
the same view and the users started the login process again.

In our third case study, we developed a sandbox example
to validate the task tree generation with a subsequent usability

Figure 7. Task tree generated in the context of the second case study

evaluation. The sandbox contains several distinct views, each
focused on a specific usability defect. We recorded our inter-
actions on the sandbox, generated task trees, and performed an
automated usability evaluation. The case study showed, that an
automated usability evaluation is possible in general. However,
the current implementation produces many false positives and
is not mature enough to be described in more detail.

V. DISCUSSION OF OUR METHOD
The generated task trees represent the effective user be-

havior. This is important to analyze the usage of a monitored
website, e.g., with respect to usability. Currently, our approach
is not able to identify distinct ways of executing semantically
equal tasks. As an example, the different ways of filling out
the login form in the case studies are treated as different tasks
in the generated task tree.

341Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

At each repetition, the detection of subsequences chooses
the longest sequence occurring most often and replaces it as
described. This heuristic prefers shorter sequences as the count
decreases with an increasing sequence length. The resulting
task trees are, therefore, deeply structured. Hence, it would be
better to apply a more sophisticated heuristic such as selecting
a subsequence occurring more seldom but being much longer.

VI. SUMMARY AND OUTLOOK

In this paper, we described a method for generating task
trees based on tracing user interactions. We implemented this
method for websites and performed three case studies to
validate its feasibility.

In our future work, we will improve and extend the task
tree generation. We especially focus on the detection of an
enhanced set of temporal relationships not considered in our
work, yet. An example is the detection of selections of different
approaches for executing the same task. We also plan to
support a manual merging of such tasks to be able to treat
them as identical in a subsequent usage analysis. Furthermore,
we plan to implement both, a better heuristic for detecting
more intuitive subsequences, as well as a flattening algorithm
for reducing the complexity of the generated task trees. In
addition, we improve the existing AutoQUEST plug-ins and
implement plug-ins for further platforms, e.g., for operating
systems with a focus on touch-based interaction. Finally,
we improve the automated usability evaluation based on the
generated task trees.

ACKNOWLEDGMENT

This work was done in the context of the project MIDAS
(Model and Inference Driven - Automated testing of Services
Architectures).

REFERENCES

[1] F. Paternò, “Tools for remote web usability evaluation,” in HCI In-
ternational 2003. Proceedings of the 10th International Conference on
Human-Computer Interaction. Vol.1, vol. 1. Erlbaum, 2003, pp. 828–
832.

[2] L. Paganelli and F. Paternò, “Tools for remote usability evaluation
of web applications through browser logs and task models,” Behavior
Research Methods, vol. 35, 2003, pp. 369–378.

[3] F. Paternò, “Model-based tools for pervasive usability.” Interacting with
Computers, vol. 17, no. 3, 2005, pp. 291–315.

[4] R. Bandelloni, F. Paternò, and C. Santoro, “Engineering interactive
systems,” J. Gulliksen, M. B. Harning, P. Palanque, G. C. Veer, and
J. Wesson, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. Reverse
Engineering Cross-Modal User Interfaces for Ubiquitous Environments,
pp. 285–302.

[5] Q. Limbourg and J. Vanderdonckt, “Comparing task models for user
interface design,” in The Handbook of Task Analysis for Human-
Computer Interaction, D. Diaper and N. Stanton, Eds. Mahwah:
Lawrence Erlbaum Associates, 2004.

[6] H. Trætteberg, Model-based user interface design. Information Systems
Group, Department of Computer and Information Sciences, Faculty
of Information Technology, Mathematics and Electrical Engineering,
Norwegian University of Science and Technology, May 2002.

[7] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A dia-
grammatic notation for specifying task models,” in Proceedings of the
IFIP TC13 International Conference on Human-Computer Interaction,
ser. INTERACT ’97. London, UK, UK: Chapman & Hall, Ltd., 1997,
pp. 362–369.

[8] F. Paternò, “ConcurTaskTrees : An engineered approach to model-
based design of interactive systems,” The Handbook of Analysis for
HumanComputer Interaction, 1999, pp. 1–18.

[9] S. E. Hudson, B. E. John, K. Knudsen, and M. D. Byrne, “A tool for
creating predictive performance models from user interface demonstra-
tions,” in Proceedings of the 12th annual ACM symposium on User
interface software and technology, ser. UIST ’99. New York, NY,
USA: ACM, 1999, pp. 93–102.

[10] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predic-
tive human performance modeling made easy,” in Proceedings of the
SIGCHI conference on Human factors in computing systems, ser. CHI
’04. New York, NY, USA: ACM, 2004, pp. 455–462.

[11] A. Cypher, “Eager: programming repetitive tasks by example,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’91. New York, NY, USA: ACM, 1991, pp. 33–39.

[12] A. D’Ulizia, F. Ferri, and P. Grifoni, “A survey of grammatical inference
methods for natural language learning,” Artif. Intell. Rev., vol. 36, no. 1,
Jun. 2011, pp. 1–27.

[13] S. Herbold, “Usage-based Testing of Event-driven Software,” Ph.D.
dissertation, University Göttingen, June 2012 (electronically published
on http://webdoc.sub.gwdg.de/diss/2012/herbold/ [retrieved: 1, 2014]),
2012.

[14] R. J. Jacob, “User interface,” in Encyclopedia of Computer Science,
ser. Encyclopedia of Computer Science, A. Ralston, E. Reilly, and
D. Hemmendinger, Eds. Nature Publishing Group London, 2000, pp.
1821–1826.

[15] J. Foley, Computer Graphics: Principles and Practice, ser. Systems
Programming Series. Addison-Wesley, 1996.

[16] U.S. Department of Health & Human Services. Usability.gov -
improving the user experience - guidelines. [Online]. Available:
http://guidelines.usability.gov/ [retrieved: 1, 2014] (2013)

[17] S. Herbold and P. Harms, “AutoQUEST - Automated Quality En-
gineering of Event-driven Software,” submitted to the Testing Tools
Track of the International Conference on Software Testing (ICST) 2013,
unpublished.

[18] J. H. Hicinbothom and W. W. Zachary, “A Tool for Automatically
Generating Transcripts of Human-Computer Interaction,” in Human
Factors and Ergonomics Society 37th Annual Meeting, vol. 2 of Special
Sessions, 1993, p. 1042.

[19] Software Engineering for Distributed Systems Group. Software
Engineering for Distributed Systems. [Online]. Available:
http://www.swe.informatik.uni-goettingen.de/ [retrieved: 1, 2014]
(2014)

342Copyright (c) IARIA, 2014. ISBN: 978-1-61208-325-4

ACHI 2014 : The Seventh International Conference on Advances in Computer-Human Interactions

