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Abstract—Human attention is a fundamental but limited
resource. Especially when performing safety critical tasks a
suitable distribution of attention is essential for safe operation.
E.g., changes in task relevant information have to be recognized
in time in order to react adequately. This paper presents the
Adaptive Information Expectancy (AIE) model, which simu-
lates the scheduling of attention within cognitive architectures.
It can be used for model-based evaluations of interactive
human-machine systems. Results of a first evaluation study
are shown based on a simple laboratory monitoring task. An
overview on the AIE model is given and it is shown how it
was integrated in the Cognitive Architecture for Safety Critical
Task Simulation (CASCaS). A formal model for the laboratory
task was developed and then simulated using CASCaS. Several
aspects of the AIE model are evaluated on the basis of the
simulations of this agent in two main steps. The first step of
the evaluation compares the agent behavior with results from
the studies conducted by Senders. In this step two alternative
AIE model variants are compared to participants’ behavior.
The second evaluation step explores parameter sensitivity and
the convergence behavior of the model.

Keywords-Event expectancy; cognitive model; attention allo-
cation; monitoring behavior;

I. I NTRODUCTION

Detailed knowledge about human attention allocation is
vital for designers of human-machine interaction, e.g., in
cars or aircrafts. It has been acknowledged by many re-
searchers that executable cognitive models have the potential
to capture such knowledge and to make it readily available to
designers (e.g., [1][2][3]). This paper presents the Adaptive
Information Expectancy (AIE) model which is an extension
of the seminal SEEV model introduced by Wickens et al. [4].

How humans distribute their attention depends on several
factors. The SEEV model is a predictive model of attention
distribution that relates the amount of attention allocated
to a specific information source to four influencing factors.
The abbreviations of these factors form the acronym SEEV:
Saliency of information events, Effort required to perceive
the information, Expectancy of new information events and
Value of the task, that requires the information. The SEEV
model can easily be applied to estimate percentage dwell
times (PDTs) – the percentage of time a human operator

spends looking at an information source, e.g., of a human-
computer interface.

The AIE model is based on the two knowledge driven
factors Expectancy and Value. Although it does not consider
Saliency and Effort, it extends the SEEV model in two
ways. (1) It relates the attention distribution to an executable
task model, which can be simulated, e.g., in a cognitive
architecture. Based on the simulation further measures like
gaze frequencies or link values can be estimated, besides the
mere prediction of PDTs as provided by the SEEV model.
(2) The second extension is related to the operationalization
of Expectancy. The SEEV model requires a system designer
or Human Factors Expert (HFE) who applies the model
to give an estimate of each of the influencing factors for
all considered information sources. For this, Wickens et
al. [4] propose a lowest ordinal algorithm as an easy to
use method, that orders the influencing factors by small
integers according to their rank. Although this method has
been proven simple and effective, it is only a very rough
operationalization that is dependent on the subjective rating
of the HFE. The AIE model strives to replace this by de-
riving the expectancy factor dynamically from a simulation
of the task model in a dynamic environment. It is thus
able to adapt its attention distribution automatically to the
current situation, which is an enhancement over the SEEV
model. It furthermore provides a much more detailed view
because it integrates the simulation of task performance and
the simulation of attention control in a tightly coupled way.
The long term goal of this research is to use the AIE model
to predict the allocation of attention dependent on design
characteristics of human-machine interfaces and associated
tasks in complex and safety critical environments.

The following shows results of a preparatory study that
was used to evaluate the AIE model on the basis of a labora-
tory monitoring task, which was developed by John Senders
in the 1960s [5]. The paper starts with an overview on the
AIE model and its integration in the Cognitive Architecture
for Safety Critical Task Simulation (CASCaS) [6][7]. Then
an overview on Senders’ task and the derived task formal-
ization is given in Section III and IV. Section V is dedicated
to the detailed evaluation of the AIE model.
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II. A DAPTIVE INFORMATION EXPECTANCY MODEL

The AIE model and its integration into CASCaS will be
described here briefly on an abstract level to provide a basic
understanding. For a more elaborated description see [7].

Cognitive architectures can be understood as engines that
are intended to execute formal models of tasks in a psycho-
logical plausible way. CASCaS is a modular architecture
consisting of components for perceptual, memory, knowl-
edge processing and motor processes. The AIE model is a
general model of attention allocation and thus is integrated
in CASCaS as part of a general model of human cognition.
In contrast, task models describe task specific aspects of
human behavior. The interpretation of a task model by
the cognitive architecture eventually simulates human-like
behavior. In the following the term(cognitive) agentrefers
to the combination of task model and cognitive architecture.

A. Control of Attention

While the SEEV model is typically used to predict the
visual attention allocation to multiple information sources,
the AIE model intends to predict to which task an agent
mentally attends. However there is typically a very strong
relationship between visual and mental attention, which
Just and Carpenter [8] named the eye-mind-assumptions.
This assumption was adopted for the AIE model evaluation
presented in Section V, where the gaze behavior of the
participants in Senders’ study is compared with the gaze
behavior of the cognitive agent.

An assumption of the AIE model is, that human behavior
is goal oriented and every task serves to achieve one specific
goal. The AIE model is applicable to situations where
multiple tasks have to be performed in parallel in a time-
shared fashion, like e.g., a pilot that has to monitor a set of
displays, while controlling the aircraft and communicating
with the pilot non flying. Attention is a limited resource and
often only one of the tasks can be processed consciously.
Although in real situations it is often possible to execute
some parts of tasks really in parallel, this aspect will not be
discussed in this paper.

To instantiate a cognitive agent CASCaS loads a hierar-
chical task model. Each task seek to achieve a goal and
is modeled by a set of rules. These rules represent the
knowledge of the human operator about the task. For a driver
model, for example, they describe how the driver interacts
with the car and the surrounding traffic. The rule language
is based on the well-known GOMS notation [9]. All rules
consist of a left-hand side (IF) and a right-hand side (THEN).
The left-hand side names the goal to be achieved and a
Boolean condition that defines in which situations the rule
shall be applied. The right-hand side defines the actions that
are executed when applying the rule.

Multitasking situations in the task model have been han-
dled in the past by a very simple mechanism that treats
every task as equal and repetitively executes every task for

a certain but short amount of time in a fixed sequence. This
mechanism is now replaced by the AIE model. The AIE
model assigns a weight to each goalgi of all active tasks:

w(gi) = U ·
ugi∑

gj∈G

ugj

+ V ·
vgi∑

gj∈G

vgj
(1)

In the above equationG is the set of goals for all active
tasks,ugi is the expectancy coefficient that describes how
much the agent expects new information for the task of goal
gi and vgi is the value or importance of goalgi. Thus the
weight w(gi) depends on the relative importance of a task
compared to the importance of all tasks and the relative
information expectancy of a task compared to all tasks. The
factorsU andV are used to adjust the overall influence of
task importance and information expectancy.

CASCaS now selects the next goal to be executed in a
probabilistic way. The probability of selecting goalgi is
defined by the relation of all weights:

P (gi) =
w(gi)∑

gj∈G

w(gj)
(2)

In Equation 1 the value and expectancy factors are linked
by addition. However in applications of the SEEV model ad-
ditive combinations (e.g., [10]) as well as multiplicativeones
(e.g., [11]) can be found. Arguments can be found for both
variants. This was discussed by Wickens et al. [12]. They
achieved a better model fit with the additive formulation. But
still there is no consensus about this issue. To shed further
light on this matter, the AIE model was implemented in both
variants. To explicitly distinguish between both variantsthe
symbol AIE+ is used for the additive formulation and AIE∗

for the multiplicative formulation.

B. Event functions

To use the AIE model the coefficients in equation 1 have
to be defined for each task. For the value coefficientsvgi it
is suggested to employ the lowest ordinal algorithm that is
typically used for the coefficients of the SEEV model [4].
But for the expectancy coefficientsugi an automatic opera-
tionalization is proposed.

Wickens et al. describe the expectancy factor as an
”information-related measure of event expectancy (e.g.,
bandwidth, event rate; [...])”[4, p.3]. This view is adopted
by the AIE model. The expectancy coefficients are opera-
tionalized on the basis of information events. An event is
defined as follows:

If at time t information, which is relevant for a goalg is
used to achieveg, thene = (g, t) is called an event at time
t for goal g. Let E be the set of all events that occurred
during a simulation, thenEg ⊆ E is denoted to be the set
of all events for goalg. Events can be ordered and indexed
by their time of arrival. Witheg,i the i-th event inEg is
denoted.
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The identification of events in CASCaS is straight for-
ward. CASCaS processes tasks using a rule engine similar
to other rule based architectures like e.g., ACT-R. It pro-
vides four different rule types: regular, percept, waitingand
reactive rules. When a task gets actively processed by a rule
engine the process is typically as follows. If the task needs
some information appropriate percept rules are executed that
instruct CASCaS to direct its gaze to an information source,
which provides the information. After the information has
been perceived, it can be used by regular rules to achieve the
task goal. If the perceived information is of no use for the
agent, a waiting rule is fired, which signalizes, that another
task should be executed. Hence the execution of a regular
rule corresponds to the recognition of an information event
for the goal, which is supported by that rule.

During the simulation of the task model CASCaS records
the events of all goals and develops for each a cumulative
frequency distribution functionHg of the distances between
consecutive eventseg,i and eg,i+1. The valueHg(∆t) can
answer the question, how often an event occurred not later
than ∆t time units after the previous event. This is used
to describe whether the agent can expect new events for a
specific goal and thus the expectancy coefficients are defined
by ug = Hg(t − tg,n)/dg, with t being the current time,
n being the index of the last event forg and dg being the
amount of time that the agent was working ong. Thusug is a
time dependent function which is called the event function of
g. One effect of this operationalization is that the expectancy
of new events continuously increases since the last event was
observed.

Another effect is that the behavior of the agent changes
over time. At the beginning of the simulation it has no
knowledge about event distance. But the more events the
agent detects the more stable the event functions get. Thus
the behavior should change less the more time passes.
The learning speed of the agent should correspond to the
convergence speed of the event functions. According to the
Berry-Esseen theorem [13] the pointwise convergence speed
should be bounded byO(n− 1

2 ), with n being the number of
events which are recorded inHg. If the distribution of event
distances does not change over time, having a fixed average
event rate, this can be expressed in a time-dependent way by
O(t−

1

2 ). Unfortunately the assumption that the distributions
do not change over time is false, because there is always
a feedback within the cognitive agent when using the AIE
model: The event functions influence the selection of goals;
the selection of goals determine, where the model looks
at; where the model looks at influences the perception of
events distances; finally, the perception of event distances
influence the event functions. But assuming, that the effect
of this feedback loop is small, at least a similar learning
speed should be obtained. This was considered during model
evaluation and will be addressed in Section V.

Table I
BANDWIDTHS OF THE GAUGES FOR THE THREE EXPERIMENT

CONFIGURATIONS.

Configuration Partici- Signal bandwidths per gauge (Hz.)
pants 1 2 3 4 5 6

C1 5 0.08 0.16 0.32 0.64 - -
C2 3 0.03 0.05 0.12 0.20 0.32 0.48
C3 2 0.02 0.04 0.08 0.16 0.32 0.64

III. SENDERS’ M ONITORING TASK

For a first evaluation of the AIE model a simple laboratory
task was selected. It is the monitoring task developed by
Senders [5]. A cognitive agent was developed that relies on
the AIE model and is able to interact with this task. The
model is evaluated in section V against data that Senders
obtained in his studies on this task. In this section a short
overview on the task and the setup he used in his studies is
given. For more details see the original work [5].

In the Senders Task participants had to observe a set
of gauges that displayed dynamic values of currents for
fictitious devices. Every time one of the displayed signals
fell below -45µA or above 45µA participants had to push a
button. Senders investigated how bandwidths of the signals
influence the gaze distribution of the participants. He used
five different tasks configurations. Three of these are used
for the evaluation and are denoted by C1, C2 and C3.
The signal bandwidths of each configuration are listed in
Table I. It must be said, that the configuration C1 belongs
to a different study than configurations C2 and C3. It was
conducted before the study involving C2 and C3.

C1 investigates the gaze behavior while monitoring four
gauges. Five participants executed this task for 1 h per day
over 30 days . Gaze behavior of the last three minutes of
each day have been analyzed.

C2 was similar to C1, but six instead of four gauges were
used. Participants executed the task for 1 h per day over 10
days. Gaze behavior of the last 11 minutes of the last day
have been analyzed. This configuration is shown in Figure 1,
which shows the geometrical layout of the six gauges (left
side) and the viewing distance of the observer (right side).

C3 was similar to C2, but signal generation was changed,
which resulted in a different set of signal bandwidths.
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Figure 1. Task configuration with six gauges (reconstructedfrom [5]).
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Look at
Gauge 1
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observe gauge 1
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Press
button

|x|≥45µA

|x|<45µA done

observe gauge 3

Look at
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|x|≥45µA
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|x|<45µA done

observe gauge 5

Look at
Gauge 6

Press
button
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|x|<45µA done

observe gauge 6

D

Figure 2. State diagram of the cognitive agent’s task model. The states
observegauge5 and observegauge6 are only active for C2 and C3.

IV. COGNITIVE AGENT

Senders Task was modeled using the rule based language
of CASCaS. Figure 2 shows the semantics of these rules
in the form of a state chart. The overall goal is to observe
all gauges. This is decomposed into one subgoal for the
observation of each gauge. This results in four subgoals for
C1 and six subgoals for C2 and C3. These subgoals are
represented in Figure 2 by the top-level states. The task that
is executed to achieve each goal is depicted within the top-
level states by the process steps that have been mentioned
in Section II-B. At the beginning of the task processing the
agent executes a percept rule, which instructs CASCaS to
look at the information source that provides information for
the task. This is in this case the gauge for the specific task. If
the perceived information demands a reaction of the agent a
regular rule is fired. For Senders’ task it happens when the
signal is in the alarm region (|x| ≥ 45µA). The response
button is pressed as reaction by the execution of a regular
rule. If the signal is not in the alarm region no reaction is
required, the agent fires a waiting rule and the task is finished
at least for the moment. In the condition that the signal is in
the alarm region, the agent uses the perceived information
to trigger an action by executing a regular rule. Thus these
situations are the events for this task.

The AIE model comes into play at the decision point
marked with aD in the figure. Here the agent selects which
subgoal it will process next. According to the AIE model the
agent will select to observe a gauge, where it highly expects
an alarm, in order to detect as much alarms as possible.
The expectancy coefficientsui will be derived during the
simulation. The task valuesvi have to be assigned by the
model developer. Because all tasks have the same priority,
these coefficients have been selected to be 1 for each task.
Expectancy and Value factors are weighted equally (U =
V = 1).

Figure 3. Glance frequencies of participants and AIE+ agent for each
gauge in each configuration.

V. EVALUATION

To evaluate the AIE model CASCaS was connected to a
simulation of the three configurations of Senders Task. The
cognitive agent described in the last section was instantiated
in CASCaS. CASCaS itself was connected to a simulation
of the three configurations of Senders Task.

A. Additive Variant: AIE+

The evaluation starts with an analysis about the model
fit of the AIE+ model to Senders’ data. The agent was
simulated 10 times for 3 h of simulation time in each of the
three configurations. To avoid that the results are affectedby
learning effects, only the last 1 h from every 3 h simulation
run was analyzed.

In [5] Senders presented the glance frequencies of the
participants to each gauge. In Figure 3 this data is shown
together with the glance frequencies that have been observed
in the simulation of the AIE+ agent. The figure shows, that
the agent’s behavior well matches the experimental data for
C2 and C3 with very high trend correlation ofR2 = 0.996
for C2 andR2 = 0.984 for C3. Also the absolute deviations
measured by the root-mean-square error (RMSE) are small
with RMSE = 0.04 Hz for C2 and RMSE = 0.09 Hz for C3.
The situation is different for C1. Although the agent shows
the general trend (R2 = 0.851), the absolute deviation is quite
high (RMSE = 1.1 Hz). Especially the overall frequency for
C1 is with 3.1 Hz considerably greater than for C2 (2.0 Hz)
and C3 (2.1 Hz). The cognitive agent is not able to reach
the high glance frequencies in C1, because the model that
is part of CASCaS and calculates the duration of saccades
and fixations does not permit such small gaze durations,
which are required to simulate these high gaze frequencies.
For details on this model see [14]. The reason for the high
frequencies in C1 compared to C2 and C3 are not known.
It might be due to the additional 20 days of practice that
participants had for C1, or just due to differences in the eye
data processing, which was done by a frame-by-frame rating
for videos of participants’ eye movements.

However, Senders also calculated link values for C1.
The link value probability according to ISO 15007-1:2002
describes for two information sources the relative frequency
of gaze transitions between these information sources com-
pared to all observed gaze transitions. The link values
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Figure 4. Correlation of link value probabilities for configuration C1. A
data point i↔j represents the link value probability between gauge i and
gauge j.

obtained during the simulation of the AIE+ agent correlate
well with the ones observed by Senders for C1 (R2 = 0.87)
as can be seen in Figure 4.

B. Sensitivity Analysis

In equation 1 it can be seen, that there are quite a lot
of coefficients that have to be determined before using the
model. Compared to the SEEV model the AIE model already
eliminates the need to define the expectancy coefficientsui

by expert knowledge.
But still the value coefficientsvi and the general weights

U and V remain. A high number of parameters bears
the danger that it allows, in principal, to fit the model
predictions to any kind of data. Wickens addresses this issue
by proposing the lowest ordinal algorithms to restrict the
choice of coefficient for the application of the SEEV model.
This approach is also proposed for the value coefficients of
the AIE model. However, for the monitoring task discussed
in this paper this is meaningless, because Senders did not
instruct the participants to prioritize any of the gauges.
Therefore the value coefficients are all equal and thus are
not free parameters at least for this agent.

In applications of the SEEV model the issue of weighting
the influence factors Expectancy and Value differently is
typically not addressed and the factors are weighted equally.
The same was done for the weights of the AIE+ agent
presented in the previous section (U =V = 1), which led to
very good results for C2 and C3. Nevertheless these are
free parameters, which have only the weak restriction that
usually they are chosen equally. Although it seems thatU
and V are two parameters, it is effectively one parameter.
Inserting equation 1 into equation 2 leads to:

P (gi) =

U
V
·

ugi∑

gj∈G

ugj

+
vgi∑

gj∈G

vgj

U
V
+ 1

(3)

Note that this conversion is only valid forV 6= 0. As can be
seen nowU andV only occur asU/V and thus this is only

Figure 5. RMSE and R2 values obtained from simulating the AIE+ agent
with different values ofU/V .

one free parameter. A sensitivity analysis was conducted to
estimate the effect of the relationU/V on the model fit. A
set of selected relations were analyzed:

0/1, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 1/1, 5/4, 4/3, 3/2, 2/1, 3/1, 4/1, 5/1, ∞
For each relation 10 simulations with a duration of 3 h

have been executed like described in Section V-A. The
obtained RMSE and R2 values are displayed in Figure 5.
The highest correlation values have been obtained in the
range from 0.2 to 2.0 with R2 > 0.98, while the lowest
absolute deviations have been found in the range between
1.0 and 1.5 with a RMSE< 0.04 Hz. So the popular choice
of U = V = 1 was obviously also for this task an adequate
one, although a slightly better fit has been observed with
a slightly higher value ofU . This is a satisfactory result.
According to Pitt et al. [15] a model should be stable around
a reasonable region of parameters. As an equal weighting
of expectancy and value is a usual assumption, this property
seems to be well met by the cognitive agent.

It should be noted that the considerations made in this
section are only valid for the presented task model. For
a more general view on the AIE model this work has to
be repeated for a set of different task models in different
application domains.

C. Multiplicative Variant: AIE∗

In Section II it was mentioned, that there is no consensus
about how expectancy and value are linked. In the following
the simulation results are shown using the AIE∗ agent. In
the multiplicative variant of equation 1 the weighting factors
U an V are eliminated when the fraction in equation 2
is reduced. Thus there is no free parameter. Executing the
simulation again in the way described in Section V-A using
the AIE∗ formulation produces the glance frequencies shown
in Figure 6.

It can be seen, that the model fit is worse than for
the AIE+ agent. The differences are clearly visible for C2
and C3 for which the AIE+ agent showed a very good
model fit. Here the AIE∗ agent especially underestimates
the frequencies to the gauges with low signal bandwidths.
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Figure 6. Glance frequencies of participants and AIE∗ agent for each
gauge in each configuration.

Giving the data a closer look reveals that the obtained
frequencies are almost identical to the frequencies of the
AIE+ agent using weightsU = 1 and V = 0. And both
models are in fact identical. The value coefficients of the
AIE∗ model disappear when reducing equation 2, because
they are all equal. This is equivalent to disabling the value
factors in the AIE+ model (V = 0).

D. Learning Convergence

In Section II-B it was assumed that the learning speed
should be bound byO(t−

1

2 ) if feedback effects can be
neglected. To investigate this the same agent as in Sec-
tion V-A was used. But now 20 simulation for C2, each
with a duration of 9 h were made. Every 5 minutes the event
functions of all 20 simulations were pairwise compared
using the difference measureV from Kuiper’s test, which
describes the similarity of two frequency distributionsu1

and u2. The symbolV k is used to avoid a mix-up with
the weight of the value factors. According to [16]V k is
calculated by:

V k = max
0<∆t<∞

(u1(∆t)− u2(∆t))

+ max
0<∆t<∞

(u2(∆t)− u1(∆t)) (4)

This resulted in 190 comparisons every 5 minutes. It was
expected that the event functions are getting more and more
similar over time and thus the averageV k should converge

Figure 7. Convergence of event functions. Differences between event
functions of different simulation runs measured byV k are displayed on a
log-log plot and asymptotically approach 0.

Gauge a c

1 -0.082 0.216
2 -0.072 0.233
3 -0.035 0.292
4 0.006 0.354
5 0.058 0.429
6 0.081 0.475

b 0.682

Figure 8. Learning effect on glance frequencies. Frequencies over time
are fitted to functions of the forma · tb + c. Fitted parameters are listed
on the right side.

towards 0. The averageV k values are plotted on a log-
log graph in Figure 7. It can be seen, that these values
form straight lines for the event functions of each task. This
strongly supports the initial assumption, that the learning
speed can be expressed by a function of the forma · tb. It
also supports the assumption that the event functions always
converge against the same function.

In the same way the consequences of the learning process
on the glance frequencies of the cognitive agent were
analyzed. It turned out, that these reflect the learning process.
They develop according to functions of the forma · tb + c.
This knowledge now allows to fit the simulation data to
such functions, and to estimate their asymptotical value.
In Figure 8 this can be seen for C2. In the left graph the
average glance frequencies are plotted over time by dotted
lines. With solid lines functions of the forma · tb + c are
plotted that were fitted to the data using the method of least
squares. In the table on the right side the fitted coefficient are
listed. Thec-coefficient is the estimation of the asymptotical
glance frequency value. This graph helps to identify how
much simulation time should be dedicated to learning the
event distance distributions. For the AIE+ agent a learning
phase of at least 30-50 minutes should be used. After this
time there is only little change in the glance frequencies.

The same analysis was conducted for the AIE∗ agent. It
required a much longer learning time. The parameterb that
determines the learning speed for the glance frequencies is
for the AIE∗ agent only atb = 0.432.

VI. CONCLUSION AND FUTURE WORK

The AIE model supports the simulation of task models
within the cognitive architecture CASCaS, by providing a
model of attention control. It was shown how the AIE model
automatically derives expectancy for information events and
uses this to guide its attention. A good model fit was
achieved between the agents glance frequencies and results
taken from studies conducted by Senders [5]. The issue of
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combining the Expectancy and Value factors additively or
multiplicatively was addressed by evaluating both variants.
The additive variant provided a better model fit. A sensitivity
analysis for the free parameter revealed that the agents
behavior is stable within a reasonable parameter region. It
was analyzed how fast the agent is able to recognize the
distribution of events. The hypothesized speed functiona ·tb

was successfully fitted against the observed simulation data.
The AIE model is strongly related to the SEEV model

and extends it in some ways. However, it is more an
alternative for the SEEV model than a replacement. The
SEEV model provides a simple and fast way to estimate the
distribution of attention. But its static way of application
does not provide a detailed insight in the situation under
investigation. This is provided by the AIE model, as it is
integrated in a cognitive architecture as basic simulation
framework. The AIE model additionally benefits from the
simulation, because it dynamically derives expectancy values
during simulation, which in contrast has to be done by
human factors experts for the SEEV model. Thus from an
application point of view the AIE model trades off simplicity
for richness of detail.

It should although be noted, that the results presented in
this paper are only valid for the investigated monitoring
task and the transferability as well as scalability remains
to be investigated. There are some aspects that reduce the
representativeness of the study. Senders did not manipulate
the information value for the gauges. Thus changes in the
value coefficients are not addressed. However the expectancy
coefficients are the main focus of the AIE model. In addition,
the participants did not influence the displayed signals,
which is unrealistic for most human-machine systems. This
application served as a first evaluation step for the model.
More and richer applications are required to ground the
findings of this study. A subsequent step to this study is
the application of the AIE model to a cognitive car driver
model. In the long term, this work shall lead to a general
evaluation method for human machine interaction that is
based on virtual human-in-the-loop simulation.
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