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Abstract—Human attention is a fundamental but limited spends looking at an information source, e.g., of a human-
resource. Especially when performing safety critical tasks a  computer interface.
suitable distribution of attention is essential for safe operation. The AIE model is based on the two knowledge driven
E.g., changes in task relevant information have to be recognized fact E d Value. Alth hit d id
in time in order to react adequately. This paper presents the ac _ors xpectancy an_ alue. Although it does not C_0ns' er
Adaptive Information Expectancy (AIE) model, which simu-  Saliency and Effort, it extends the SEEV model in two
lates the scheduling of attention within cognitive architectures.  ways. (1) It relates the attention distribution to an exabléa
It can be used for model-based evaluations of interactive task model, which can be simulated, e.g., in a cognitive
human-machine systems. Results of a first evaluation study g chitecture. Based on the simulation further measures lik

are shown based on a simple laboratory monitoring task. An . . . .
overview on the AIE model is given and it is shown how it ~92Z€ frequencies or link values can be estimated, besides th

was integrated in the Cognitive Architecture for Safety Critical mere prediction of PDTs as provided by the SEEV model.
Task Simulation (CASCaS). A formal model for the laboratory ~ (2) The second extension is related to the operationadizati
task was developed and then simulated using CASCaS. Several of Expectancy. The SEEV model requires a system designer
aspects of the AIE model are evaluated on the basis of the or Human Factors Expert (HFE) who applies the model
simulations of this agent in two main steps. The first step of . ; . .

the evaluation compares the agent behavior with results from to give "_’m es“mate of _eaCh of the Influenglng chtors for
the studies conducted by Senders. In this step two alternative @l considered information sources. For this, Wickens et
AIE model variants are compared to participants’ behavior. ~ al. [4] propose a lowest ordinal algorithm as an easy to
The second evaluation step explores parameter sensitivity and yse method, that orders the influencing factors by small
the convergence behavior of the model. integers according to their rank. Although this method has

Keywords-Event expectancy; cognitive model; attention allo- been proven simple and effective, it is only a very rough

cation; monitoring behavior; operationalization that is dependent on the subjectiviagat
of the HFE. The AIE model strives to replace this by de-
|. INTRODUCTION riving the expectancy factor dynamically from a simulation

of the task model in a dynamic environment. It is thus

Detailed knowledge about human attention allocation isable to adapt its attention distribution automatically he t
vital for designers of human-machine interaction, e.g., incurrent situation, which is an enhancement over the SEEV
cars or aircrafts. It has been acknowledged by many remodel. It furthermore provides a much more detailed view
searchers that executable cognitive models have the paitentbecause it integrates the simulation of task performande an
to capture such knowledge and to make it readily available tehe simulation of attention control in a tightly coupled way
designers (e.g., [1][2][3]). This paper presents the Agapt The long term goal of this research is to use the AIE model
Information Expectancy (AIE) model which is an extensionto predict the allocation of attention dependent on design
of the seminal SEEV model introduced by Wickens et al. [4].characteristics of human-machine interfaces and assdciat

How humans distribute their attention depends on severdhsks in complex and safety critical environments.
factors. The SEEV model is a predictive model of attention The following shows results of a preparatory study that
distribution that relates the amount of attention allodate was used to evaluate the AIE model on the basis of a labora-
to a specific information source to four influencing factors.tory monitoring task, which was developed by John Senders
The abbreviations of these factors form the acronym SEEVin the 1960s [5]. The paper starts with an overview on the
Saliency of information events, ffort required to perceive AIE model and its integration in thedgnitive Architecture
the information, Epectancy of new information events and for Safety Qitical Task Smulation (CASCaS) [6][7]. Then
Value of the task, that requires the information. The SEEVan overview on Senders’ task and the derived task formal-
model can easily be applied to estimate percentage dweikation is given in Section Ill and IV. Section V is dedicated
times (PDTs) — the percentage of time a human operatao the detailed evaluation of the AIE model.
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1. ADAPTIVE INFORMATION EXPECTANCY MODEL a certain but short amount of time in a fixed sequence. This

The AIE model and its integration into CASCaS will be Mechanism is now replaced by the AIE model. The AIE
described here briefly on an abstract level to provide a basig'0del assigns a weight to each ggalof all active tasks:
understanding. For a more elaborated description see [7]. w(g)) = U - Ug, LV, 1)

Cognitive architectures can be understood as engines that ! > ug, > Vg,
are intended to execute formal models of tasks in a psycho- 9i€G 9;€G

logical plausible way. CASCaS is a modular architecturein the above equatiod is the set of goals for all active
consisting of components for perceptual, memory, knowltasks,u,, is the expectancy coefficient that describes how
edge processing and motor processes. The AIE model is @uch the agent expects new information for the task of goal
general model of attention allocation and thus is integrate ¢, and vy, is the value or importance of gog}. Thus the

in CASCasS as part of a general model of human cognitionweight w(g;) depends on the relative importance of a task
In contrast, task models describe task specific aspects @ompared to the importance of all tasks and the relative
human behavior. The interpretation of a task model byinformation expectancy of a task compared to all tasks. The
the cognitive architecture eventually simulates humke-li factorstU and V' are used to adjust the overall influence of
behavior. In the following the terrfcognitive) agentefers  task importance and information expectancy.

to the combination of task model and cognitive architecture CASCaS now selects the next goal to be executed in a
A. Control of Attention probabilistic way. The probability of selecting gog| is

defined by the relation of all weights:
While the SEEV model is typically used to predict the I y ! weig

visual attention allocation to multiple information soesg P(g;) = w(g;) @)
the AIE model intends to predict to which task an agent ’ > w(gy)
mentally attends. However there is typically a very strong 9;€G

relationship between visual and mental attention, which In Equation 1 the value and expectancy factors are linked
Just and Carpenter [8] named the eye-mind-assumptionpy addition. However in applications of the SEEV model ad-
This assumption was adopted for the AIE model evaluatiorditive combinations (e.g., [10]) as well as multiplicativees
presented in Section V, where the gaze behavior of thge.g., [11]) can be found. Arguments can be found for both
participants in Senders’ study is compared with the gaze&ariants. This was discussed by Wickens et al. [12]. They
behavior of the cognitive agent. achieved a better model fit with the additive formulationt Bu
An assumption of the AIE model is, that human behaviorstill there is no consensus about this issue. To shed further
is goal oriented and every task serves to achieve one specifiight on this matter, the AIE model was implemented in both
goal. The AIE model is applicable to situations wherevariants. To explicitly distinguish between both variatits
multiple tasks have to be performed in parallel in a time-symbol AIE' is used for the additive formulation and AIE
shared fashion, like e.g., a pilot that has to monitor a set ofor the multiplicative formulation.
displays, while controlling the aircraft and communicgtin )
with the pilot non flying. Attention is a limited resource and B- Event functions
often only one of the tasks can be processed consciously. To use the AIE model the coefficients in equation 1 have
Although in real situations it is often possible to executeto be defined for each task. For the value coefficienisit
some parts of tasks really in parallel, this aspect will et b is suggested to employ the lowest ordinal algorithm that is
discussed in this paper. typically used for the coefficients of the SEEV model [4].
To instantiate a cognitive agent CASCas loads a hierarBut for the expectancy coefficients, an automatic opera-
chical task model. Each task seek to achieve a goal antionalization is proposed.
is modeled by a set of rules. These rules represent the Wickens et al. describe the expectancy factor as an
knowledge of the human operator about the task. For a drivelinformation-related measure of event expectancy (e.g.,
model, for example, they describe how the driver interact9andwidth, event rate; [...])"[4, p.3]. This view is adopted
with the car and the surrounding traffic. The rule languageby the AIE model. The expectancy coefficients are opera-
is based on the well-known GOMS notation [9]. All rules tionalized on the basis of information events. An event is
consist of a left-hand side (IF) and a right-hand side (THEN) defined as follows:
The left-hand side names the goal to be achieved and a If at time ¢ information, which is relevant for a goalis
Boolean condition that defines in which situations the ruleused to achieve, thene = (g, t) is called an event at time
shall be applied. The right-hand side defines the actiorts tha for goal g. Let E be the set of all events that occurred
are executed when applying the rule. during a simulation, thei’, C E is denoted to be the set
Multitasking situations in the task model have been hanof all events for goaly. Events can be ordered and indexed
dled in the past by a very simple mechanism that treatdy their time of arrival. Withe,; the i-th event inE, is
every task as equal and repetitively executes every task fatenoted.
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. A . . . Table |
The identification of events in CASCE‘S 1S Stl’a_lght for_' BANDWIDTHS OF THE GAUGES FOR THE THREE EXPERIMENT

ward. CASCaS processes tasks using a rule engine similar CONFIGURATIONS
to other rule based architectures like e.g., ACT-R. It pro-
vides four different rule types: regular, percept, waitamy Configuration  Partici- Signal bandwidths per gauge (Hz.)
reactive rules. When a task gets actively processed by a rule pants 1 2 3 4 5 °©
engine the process is typically as follows. If the task needs €1 5 0.08 016 032 064 - -

"y ; : | dth c2 3 0.03 005 012 020 032 048
some information appropriate percept rules are execut c3 5 002 004 008 016 032 064

instruct CASCas to direct its gaze to an information source,
which provides the information. After the information has
been perceived, it can be used by regular rules to achieve the
task goal. If the perceived information is of no use for the
agent, a waiting rule is fired, which signalizes, that anothe For a first evaluation of the AIE model a simple laboratory
task should be executed. Hence the execution of a reguld@sk was selected. It is the monitoring task developed by
rule corresponds to the recognition of an information evenenders [5]. A cognitive agent was developed that relies on
for the goal, which is supported by that rule. the AIE model and is able to interact with this task. The

. . . model is evaluated in section V against data that Senders
During the simulation of the task model CASCasS records,pained in his studies on this task. In this section a short

the events (_)f 6_‘” gpals and_ develops for each a cumulativgeriew on the task and the setup he used in his studies is
frequency distribution functiod, of the distances between given. For more details see the original work [5].

consecutive evenFsgyi andeg.i11. The valueH,(At) can In the Senders Task participants had to observe a set
answer the quegtlon, how often an event occurrgd_not lat%f gauges that displayed dynamic values of currents for
than At 'tlme units after the previous event. This is usedsiioys devices. Every time one of the displayed signals
to describe whether the agent can expect new events for @, o ow -45,,A or above 45:A participants had to push a
specific goal and thus the expectancy coefficients are definggl iton. Senders investigated how bandwidths of the signals
by ug = Hy(t = ty.n)/dy, With ¢ being the current time, ;nq ,6nce the gaze distribution of the participants. He used

n being thg index of the last event fgr_and dg being_the five different tasks configurations. Three of these are used
amount of time that the agent was working@rThusu, is a for the evaluation and are denoted by C1, C2 and C3.

time dependent fu_nctlon Wh'Ch IS cglleo_l the event functibn % The signal bandwidths of each configuration are listed in
g- One effect of this operationalization is that the expesyan apie | 1t must be said, that the configuration C1 belongs

of new events continuously increases since the last event Way o different study than configurations C2 and C3. It was
observed. conducted before the study involving C2 and C3.

Another effect is that the behavior of the agent changes C1 investigates the gaze behavior while monitoring four
over time. At the beginning of the simulation it has no gauges. Five participants executed this task for 1 h per day
knowledge about event distance. But the more events thever 30 days . Gaze behavior of the last three minutes of
agent detects the more stable the event functions get. Thisich day have been analyzed.
the behavior should change less the more time passes.C2 was similar to C1, but six instead of four gauges were
The learning speed of the agent should correspond to thesed. Participants executed the task for 1 h per day over 10
convergence speed of the event functions. According to thdays. Gaze behavior of the last 11 minutes of the last day
Berry-Esseen theorem [13] the pointwise convergence spedthve been analyzed. This configuration is shown in Figure 1,
should be bounded b@(n*%), with n being the number of which shows the geometrical layout of the six gauges (left
events which are recorded H, . If the distribution of event side) and the viewing distance of the observer (right side).
distances does not change over time, having a fixed average C3 was similar to C2, but signal generation was changed,
event rate, this can be expressed in a time-dependent way lyhich resulted in a different set of signal bandwidths.
O(t~2). Unfortunately the assumption that the distributions
do not change over time is false, because there is always

IIl. SENDERS M ONITORING TASK

a feedback within the cognitive agent when using the AIE . ., Eiogtm\r/nllevlvssmm s mDiSPIY Side view

model: The event functions influence the selection of goals; ___ /N

the selection of goals determine, where the model looks @ @ @ E, \‘\\\

at; where the model looks at influences the perception of T = /f::: -
events distances; finally, the perception of event distance § &23‘3“,\?@\
influence the event functions. But assuming, that the effect - -

of this feedback loop is small, at least a similar learning [ * @ 6\ E,//’/

speed should be obtained. This was considered during model

evaluation and will be addressed in Section V. Figure 1. Task configuration with six gauges (reconstruétedh [5]).
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To evaluate the AIE model CASCaS was connected to a
Figure 2. State diagram of the cognitive agent's task modeé Jtates ~ simulation of the three configurations of Senders Task. The
observegauge5 and observegauge6 are only active for C2and C3.  cognitive agent described in the last section was instautia

in CASCaS. CASCasS itself was connected to a simulation
of the three configurations of Senders Task.

IV. COGNITIVE AGENT A. Additive Variant: AIE

The evaluation starts with an analysis about the model

Senders Task was modeled using the rule based languagge of the AIE* model to Senders’ data. The agent was
of CASCaS. Figure 2 shows the semantics of these rulesimulated 10 times for 3h of simulation time in each of the
in the form of a state chart. The overall goal is to observenree configurations. To avoid that the results are affelsjed
all gauges. This is decomposed into one subgoal for th@arning effects, only the last 1 h from every 3 h simulation
observation of each gauge. This results in four subgoals fofun was analyzed.
C1 and six subgoals for C2 and C3. These subgoals are |n [5] Senders presented the glance frequencies of the
represented in Figure 2 by the top-level states. The task th@garticipants to each gauge. In Figure 3 this data is shown
is executed to achieve each goal is depicted within the topgether with the glance frequencies that have been olserve
level states by the process steps that have been mentio”ﬁ’dgthe simulation of the AIE agent. The figure shows, that
in Section II-B. At the beginning of the task processing thethe agent's behavior well matches the experimental data for
agent executes a percept rule, which instructs CASCaS 12 and C3 with very high trend correlation &?=0.996
look at the information source that provides information fo for C2 andR2=0.984 for C3. Also the absolute deviations
the task. This is in this case the gauge for the SpeCifiC task. h']easured by the root_mean_square error (RMSE) are Sma”
the perceived information demands a reaction of the agent @ith RMSE =0.04 Hz for C2 and RMSE =0.09 Hz for C3.
regular rule is fired. For Senders’ task it happens when thehe situation is different for C1. Although the agent shows
signal is in the alarm region|«| > 45 uA). The response the general trendif? = 0.851), the absolute deviation is quite
button is pressed as reaction by the execution of a regulq;ﬁgh (RMSE =1.1Hz). Especially the overall frequency for
rule. If the signal is not in the alarm region no reaction isc1 is with 3.1 Hz considerably greater than for C2 (2.0 Hz)
required, the agent fires a waiting rule and the task is fiishegng c3 (2.1Hz). The cognitive agent is not able to reach
at least for the moment. In the condition that the Signal is |nthe h|gh g|ance frequencies in Cl, because the model that
the alarm region, the agent uses the perceived informatiofy part of CASCaS and calculates the duration of saccades
to trigger an action by executing a regular rule. Thus thesgng fixations does not permit such small gaze durations,
situations are the events for this task. which are required to simulate these high gaze frequencies.

The AIE model comes into play at the decision point For details on this model see [14]. The reason for the high
marked with aD in the figure. Here the agent selects which frequencies in C1 compared to C2 and C3 are not known.
subgoal it will process next. According to the AIE model the It might be due to the additional 20 days of practice that
agent will select to observe a gauge, where it highly expectparticipants had for C1, or just due to differences in the eye
an alarm, in order to detect as much alarms as possiblelata processing, which was done by a frame-by-frame rating
The expectancy coefficients; will be derived during the for videos of participants’ eye movements.
simulation. The task values; have to be assigned by the However, Senders also calculated link values for C1.
model developer. Because all tasks have the same priorit{,he link value probability according to ISO 15007-1:2002
these coefficients have been selected to be 1 for each tag#escribes for two information sources the relative fregyen
Expectancy and Value factors are weighted equdlly=£ of gaze transitions between these information sources com-
V=1). pared to all observed gaze transitions. The link values
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Figure 4. Correlation of link value probabilities for configtion C1. A Figure 5. RMSE and Rvalues obtained from simulating the AlEagent
data point ++j represents the link value probability between gauge i andwith different values ofU/V.
gauge j.

] ] ] ) one free parameter. A sensitivity analysis was conducted to

obtained during the simulation of the AlEagent correlate qgtimate the effect of the relatidsi/V on the model fit. A
well with the ones observed by Senders for G € 0.87) set of selected relations were analyzed:
as can be seen in Figure 4. 91, Y5, Ya, Y3, Y2, 93, Y4, 45, Y1, Y4, 43, 32, 71, 31, 41, 91, o0

For each relation 10 simulations with a duration of 3h
have been executed like described in Section V-A. The

In equation 1 it can be seen, that there are quite a lojptained RMSE and Rvalues are displayed in Figure 5.
of coefficients that have to be determined before using thepe highest correlation values have been obtained in the
model. Compared to the SEEV model the AIE model alread)fange from 0.2 to 2.0 with R> 0.98, while the lowest
eliminates the need to define the expectancy coefficients gpsolute deviations have been found in the range between
by expert knowledge. 1.0 and 1.5 with a RMSE: 0.04 Hz. So the popular choice

But still the value coefficients; and the general weights of {7 = 1V = 1 was obviously also for this task an adequate
U and V' remain. A high number of parameters bearspne, although a slightly better fit has been observed with
the danger that it allows, in principal, to fit the model 5 glightly higher value of/. This is a satisfactory result.
predictions to any kind of data. Wickens addresses thi®issuaccording to Pitt et al. [15] a model should be stable around
by proposing the lowest ordinal algorithms to restrict thea reasonable region of parameters. As an equal weighting
choice of coefficient for the application of the SEEV model. of expectancy and value is a usual assumption, this property
This approach is also proposed for the value coefficients ofeems to be well met by the cognitive agent.
the AIE model. However, for the monitoring task discussed |t should be noted that the considerations made in this
in this paper this is meaningless, because Senders did Nggction are only valid for the presented task model. For
instruct the participants to prioritize any of the gauges.; more general view on the AIE model this work has to
Therefore the value coefficients are all equal and thus arge repeated for a set of different task models in different
not free parameters at least for this agent. application domains.

In applications of the SEEV model the issue of weighting
the influence factors Expectancy and Value differently isC. Multiplicative Variant: AIE
typically not addressed and the factors are weighted gguall

The same was done for the weights of the AllRgent . ;
. : . _ . about how expectancy and value are linked. In the following
presented in the previous sectioi €V = 1), which led to . ; .
the simulation results are shown using the Al&gent. In

very good results fqr C2 and C3. Nevertheless'th.ese arehe multiplicative variant of equation 1 the weighting farst
free parameters, which have only the weak restriction th an V are eliminated when the fraction in equation 2

usually they are chosen equally. Although it seems that is reduced. Thus there is no free parameter. Executing the

and V' are two parameters, it is effectively one parameter. . ) . . : . .
V. P . ; y i P simulation again in the way described in Section V-A using
Inserting equation 1 into equation 2 leads to:

the AIE* formulation produces the glance frequencies shown

B. Sensitivity Analysis

In Section Il it was mentioned, that there is no consensus

g. z':‘gu + ngl'u in Figure 6.
R It can be seen, that the model fit is worse than for
P(gi) = —7 1 : (3)  the AIE" agent. The differences are clearly visible for C2
v and C3 for which the AIE agent showed a very good

Note that this conversion is only valid féf # 0. As can be  model fit. Here the AIE agent especially underestimates
seen nowJ andV only occur adJ/V and thus this is only the frequencies to the gauges with low signal bandwidths.
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Giving the data a closer look reveals that the obtained
frequencies are almost identical to the frequencies of the
AIET+ agent using weight¥/ = 1 andV = 0. And both Figure 8. Learning effect on glance frequencies. Freqasnoier time
models are in fact identical. The value coefficients of the?"® fitted to functions of the form - t* + c. Fitted parameters are listed
. ) . . on the right side.

AIE* model disappear when reducing equation 2, because 9

they are all equal. This is equivalent to disabling the value

factors in the AIE" model (/' = 0). towards 0. The averag&” values are plotted on a log-
log graph in Figure 7. It can be seen, that these values

form straight lines for the event functions of each tasksThi

In Section II-B it was assumed that the leaming speedirongly supports the initial assumption, that the leagnin
should be bound byO(¢™2) if feedback effects can be gpeeq can be expressed by a function of the farnt’. It

neglected. To investigate this the same agent as in Segis, gypports the assumption that the event functions alway
tion V-A was used. But now 20 simulation for C2, each converge against the same function.

with gduration of9h were made. Every 5 ,mi'?UteS the event |, the same way the consequences of the learning process
funct|ons of all 20 simulations were Ppairwise com_paredon the glance frequencies of the cognitive agent were
using the difference measuié from Kuiper's test, which  5nay76d. It turned out, that these reflect the learninggsmc
describes the similarity of two frequency distributiong They develop according to functions of the foemt* + c

A ) ) i .
and up. The symbolV* is used to avoid a mix-up. With  This knowledge now allows to fit the simulation data to
the weight of the value factors. According to [18]" i g,ch functions, and to estimate their asymptotical value.
calculated by: In Figure 8 this can be seen for C2. In the left graph the

D. Learning Convergence

VE — max (u1 (At) — us(AL)) gverage.glancg fr_equencies_ are plotted over time by dotted
0<At<oo lines. With solid lines functions of the form - t* + ¢ are
+, dnax (uz(At) —u1(At)) (4)  plotted that were fitted to the data using the method of least

. . ) ) squares. In the table on the right side the fitted coefficiemt a
This resulted in 190 comparisons every 5 minutes. It Wagigioq Thec-coefficient is the estimation of the asymptotical

expgcted thaF the event functions are getting more and MOMance frequency value. This graph helps to identify how
similar over time and thus the averaé should converge e simulation time should be dedicated to learning the

event distance distributions. For the AlEagent a learning
phase of at least 30-50 minutes should be used. After this

('BaL'Jgé 1' —I Ga'uge4'

[ e Gauge2 mmm=  Gauge5 ------- 1 time there is only little change in the glance frequencies.

The same analysis was conducted for the ‘AHgent. It
required a much longer learning time. The paramettrat
determines the learning speed for the glance frequencies is
for the AIE* agent only ab = 0.432.

VI. CONCLUSION AND FUTURE WORK

The AIE model supports the simulation of task models
_ R .. within the cognitive architecture CASCasS, by providing a
10 100 model of attention control. It was shown how the AIE model
Simulation duration [min] automatically derives expectancy for information evemis a
Figure 7. Convergence of event functions. Differences betwevent use_s this to guide its attention. A good quel fit was
functions of different simulation runs measured B¥ are displayed on a  achieved between the agents glance frequencies and results
log-log plot and asymptotically approach O. taken from studies conducted by Senders [5]. The issue of
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combining the Expectancy and Value factors additively or [3] F. E. Ritter, G. D. Baxter, G. Jones, and R. M. Young,
multiplicatively was addressed by evaluating both vasgant ‘_‘U|S_|er interface e\:alqattion: {‘}OW_ C?ﬁnitive m()_ﬁe'S Pj:l\f/l‘e'pv"
The at:!dlt|ve variant provided a better model fit. A sendifivi gaw‘gﬁ}fagd‘fOr&%%&m\;:;;f2'801,6 ;;V\Ilgné—izgl- .
analysis for the free parameter revealed that the agents
behavior is stable within a reasonable parameter region. It[4] C. D. Wickens, J. Helleberg, J. Goh, X. Xu, and W. J. Horrey,
was analyzed how fast the agent is able to recognize the “Pilot task management: Testing an attentional expected value
distribution of events. The hypothesized speed functiofi model of visual scanning,” University of lllinois, Aviation
was successfully fitted against the observed simulatioa. dat $e§%?/gcr2bl‘e?b2'0%?voy’ IL, Tech. Rep. ARL-01-14/NASA-01-
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and extends it in some ways. However, it is more an [5] J. W. Senders, “Visual scanning processes,” Ph.D. disser-
alternative for the SEEV model than a replacement. The  tation, University of Tilburg, Netherlands, 1983, lawrence
SEEV model provides a simple and fast way to estimate the ~ E'loaum Assoc., Hillsdale, NJ,1984.
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investigation. This is provided by the AIE model, as it is in Digital Human Modeling ser. Lecture Notes in Computer
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representativeness of the study. Senders did not margpulafl0] B. F. Gore, B. L. Hooey, C. D. Wickens, and S. Scott-Nash,

the information value for the gauges. Thus changes in the ~ “A computational implementation of a human attention guid-

value coefficients are not addressed. However the expactanc 'Sne% Ti%?ﬁrgsmoltg sMilnDﬁ:%r\rqghtnggﬂnﬂgm\?n GMogﬁllc'f';g Ed
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