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Abstract— Face detection is very useful and important for 

many different disciplines. Even for our future work, where 

the face detection will be used, we wanted to determine, 

whether it is advantageous to use the technology CUDA for 

detection faces. First, we implemented the Viola and Jones 

algorithm in the basic one-thread CPU version. Then the basic 

application is widened to the multi-thread CPU version. 

Finally, the face detection algorithm is also implemented for 

the GPU using CUDA technology. At the end, final programs 

are compared and the results are presented in this paper. For 

our future plans, the speed-up of face detection is very 

important. By supporting CUDA technology, the process of the 

face detection showed considerable speed-up. 

Keywords-CUDA; GPU; Face Detection; Viola and  Jones 

algorithm 

I.  INTRODUCTION 

Face detection in images is quite complicated and a time-

consuming problem, which found use in different 

disciplines, e.g., security, robotics, or advertising. By 

computer performance, disciplines of image processing, 

such as face detection, have significantly improved and 

progressed. 

Even on current hardware, face detection is very time 

consuming, especially at the moment when large images are 

used. It is the same problem when we recognize faces in real 

time, for example from a camcorder. This is why the 

detection process must be accelerated. 

In the last few years, graphic cards are increasing in 

performance; actually, the graphics processing unit (GPU) 

has greater performance than a classic central processing 

unit (CPU). Today, a graphic card can be used not only for 

rendering 2D or 3D graphics, but it can also be used for 

varied, especially parallel computations, which are not 

connected with the original task of graphic cards-rendering. 

Compute Unified Device Architecture (CUDA) [1] 

technology is used to speed up the process of face detection, 

therefore we moved the main computation to the graphic 

card. Then, the final implementation was compared with a 

similar one-thread CPU and multi-thread CPU programs. 

The main targets of this work are 

 To implement the Viola and Jones algorithm [2] 

for the multi-thread CPU application, 

 To implement the Viola and Jones algorithm for 

the GPU, 

 To compare the speed of detection of individual 

programs, especially depending on the input 

image size, and 

 To summarize and discuss results. 

 

II. RELATED WORK 

There is much work which describes methods of face 

detection. There are methods which are based on template 

matching, skin detection and other techniques.  

The algorithm of skin detection looks for areas covered 

by the skin color. Then, these areas could be marked as a 

face after fulfillment of other conditions (shape). Y. Chen 

and Y. Lin [3] widened this method. They added hair 

detection. If area of the face and area of hair are connected, 

the face is detected. 

Template matching is a method for finding small parts of 

an image which match a template image containing face. 

Skin detection and template matching also can be combined 

into one method [4]. 

Next group of methods is based on the machine learning 

algorithms. The Viola Jones algorithm belongs to this group 

and it was chosen as the algorithm for acceleration in this 

work. The main reason why this face detection algorithm 

was chosen is the system of how this algorithm works. 

Thanks to using detection windows and Haar features, it 

offers a few of ways, of how to parallelize the detection 

process. The next reason is that there are many algorithms 

for face detection based on Viola and Jones. 

A few works are also written about acceleration object 

classification with some good results. For example, in the 

work by C. Gao and S.L. Lu reached for image size 256 x 

192 pixels 37 frames/sec for 1 classifier and 98 frames/sec 

for 16 classifiers [5].   

 

III. VIOLA AND JONES ALGORITHM 
The Viola and Jones algorithm was used for the face 

detection, which was divided into two parts. The first part is 
for training a set of classifiers. For this process, MIT CBCL 
Face Database [6] was used. This database contains 2429 
images with face and 4549 no-face images. Based on these 
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samples weak classifiers are created. The second part it is the 
detection itself, when faces are detected in the input image. 

 

A. Features 

Haar features are used for computing feature values 

during training and detection. A weak classifier is always 

described by a Haar feature that was chosen during the 

training process. 

 

 
 

Figure 1. Using Haar features in the input image [2] 

 

Every classifier consists of a black part (marked as B) 

and a white part (marked as W), and these parts cover some 

area of the image. Pixels are joined with one of these two 

parts of features and the final feature value for the current 

area of the image is calculated as: 

 

  (1)   

 

That means: 

(2) 

 

 Data represents the original image, II is the integral 

image and (x,y) is the current position in the image. 

B. Integral image 

The integral image is an (m+1) x (n+1) multidimensional 
array created from an input image with m x n dimensions, 
where every value is counted as a sum of pixels in the 
interval (0...I - 1) x (0...I - 1). So: 

 

  (3) 

 

 

 
 

Figure 2. On the left, original image data; on the right, integral 

image 

 

Now, the sum of pixels for a selected area can be easily 

quantified with constant speed: 

 

 
 

Figure 3. Sum of pixels in integral image 

 

The value in point 1 is made of the sum of pixels in area 

A, the value in point 2 is A+B. For point 3, the value can be 

determined as the sum of areas A + C and in point 4 it is 

equal to the sum of all four areas A+B+C+D. By knowing 

the area of D, the corner point values could be used to 

determine the sum of pixels in this area: 4+1-(2+3). 

Integral image computation is continual scanning of the 

full input image. Nevertheless, this operation could be 

parallelized, especially in case that large data is prepared for 

the input. 

The principle of counting is in divided into two parts. 

Because results of pixel summation in rows do not influence 

themselves (and it is same for columns), it is possible to 

count pixel sums in rows and pixel sums in columns from 

the new data. During computing more rows or columns will 

be processed then. 

At first, parallel processing of all rows is completed: 

 

 
 

Figure 4. Parallel computing of rows 

 

Then, the final integral image array is gained by the 

parallel computing of columns: 

 

 
 

Figure 5. Parallel computing of columns 

C. Detection 

The detection process has a few steps. At first, the file 

with trained classifiers is loaded and the input image is also 

it is loaded, where the application will detect faces. This 

image is transformed to grayscale and creates the integral 

image and square integral image. These images are used for 

computing a standard deviation. 
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Figure 6. Detection steps 

 

It then runs the main process of detection. During this 

operation, the parts of the image-detection window are 

counted. The minimal size of the detection window is the 

size of the images, which were used during the training. 

The detection window is moved through the whole image 

and tries to determine if the current window could be a face. 

At the moment, when the window is in the last position in 

the image, the size of this detection window is enlarged by 

some rescale coefficient. Then, again, the full image is 

processed by the transformed detection window from the 

start position. 

 

 
 

Figure 7. Detection window process 

 

The situation is dependent on the feature value of the 

detection window, if the window is marked as a face or not. 

A standard deviation must be computer for every window, 

which is used for the feature value. Thanks to the integral 

image, we can count this operation with a constant time and 

it does not depend on the size of the window. 

From the idea of the detection window, we can say that 

the computation time is affected by the count of trained 

classifiers, but especially by the image size.  

It is obvious that the image size will increase the time 

calculation, because it must test more detection windows. 

Thanks to a greater image size, there are also more frequent 

transmissions of information between the device and host 

application.  

The next table shows how the count of detection 

windows depends on the input image size (144 x 192 pixels) 

with the scale coefficient of 1.2. 
 

 

TABLE I. COUNT OF DETECTION WINDOWS DEPEND ON SCALE 

Scale Detection windows 

1,2 20449 

1,44 4897 

1,72 4480 

2,07 4081 

2,48 1617 

2,98 748 

3,58 589 

4,29 286 

5,16 128 

6,19 44 

Result 37319 

 

D. Cascade algorithm 

The cascade algorithm created by Viola and Jones 

brought some improvements in detection speed. Decreasing 

the time which is need for detection is based on the 

condition that there are more areas that do not contain faces. 

That is why it is not necessary to test all classifiers. 

 

 
 

Figure 8. Cascade algorithm 

 
The same MIT CBCL Face Database was used for the 

training cascade classifiers. The final count of strong 
classifiers is 15.  

Each one of these strong classifiers contains a group of 
weak classifiers. The total sum of weak classifier is 529. It is 
significantly more than using one strong classifier. But for 
most detection windows, the algorithm expects that all weak 
classifiers will not be tested.  

 

TABLE II. COUNT OF WEAK CLASSIFIERS FOR EVERY STRONG CLASSIFIER IN 

THE CASCADE 

Stage 
Number of 
classifiers 

Stage 
Number of 
classifiers 

1 2 9 35 

2 9 10 40 

3 16 11 52 

4 21 12 54 

5 23 13 57 

6 27 14 62 

7 27 15 71 

8 33 Total 529 

 

Table 2. shows the sums of weak classifiers for every 

strong classifier in the cascade. 

IV. PARALELL PROCESS 

Basically, there are three possibilities how to parallel 

detection process: 
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A. Detection windows 

Because the final results of feature values do not depend 
on the other detection window final results, it is easy to 
parallelize the detection windows. In the same moment we 
can test more detection windows. This could be realized on a 
CPU with more threads, but we can also use the GPU.  

 

 
 

Figure 9. Parallel windows detection process 

 
The problem occurs at the moment, when the detection 

window is in the last position of the current scale and it is 
necessary to rescale it. With the rescaling, we also create a 
different set of features, which must also be rescaled. The 
problem is when the other threads do not finish their 
detection and they are still in the old scale. At the moment, 
when features are rescaling, other threads will use a bad set 
of features and it could make bad detections. 

One of the solutions could be that every thread will have 
its own copy of the features. However, from the memory 
view, this solution is not good enough. That is why we 
implemented a different solution. It uses only one set of 
features and it is shared by all the threads. To prevent 
problems, these threads are synchronized in the moment, 
when they got through the full image. Then the detection 
window and features are rescaled and threads are executed 
again with a changed set of features. 

This is the method from these three that was chosen for 
implementation and testing. 

 

B. Weak Classifier 

The second way is in the parallel processing of Haar 

features. It signifies that only one detection window in the 

same moment is tested by more features.  

If only one strong classifier is used, then the application 

runs parallel through a full set of weak classifiers. In case, 

when it used set of strong classifiers, only weak classifiers 

in one stage will be parallel processed. After a positive 

result of the current strong classifier is achieved, a new set 

of weak classifiers is loaded. 

 

C. Scale detection window 

If detection windows are in the last image position, 

windows change size for the next process. But there is no 

dependence between the scaling of different detection 

windows.  

For example, if a smaller detection window detects a face 

in some position that does not mean that a larger window 

will detect the face in the same position. So, it is possible to 

have in one set of detection windows in one thread. This is 

not a very good solution for very large images, because for 

the small sizes, it could create many windows, therefore, 

making memory demanding for common hardware.   

V. IMPLEMENTATION 

CUDA is technology developed by the NVidia 

Company, which can be used for diverse demanding 

computations on the GPU.  

CUDA uses kernels that are executed n times in every 

thread and the thread is identified by the specific number. 

 

 
 

Figure 10. Compare Intel CPU with nVidia GPU [7] 

 

The architecture of CUDA consists of grids, which are 

divided into smaller units - blocks. The hardware has a 

group of multiprocessors and it assigns each block to a 

multiprocessor. And finally, blocks consist of threads. These 

smallest units can be synchronize in one block.  

 

 
 

Figure 11. CUDA architecture [7] 

 

In general, the CUDA program starts with memory 

allocation in the device, while data on the host are prepared. 

Then, the data are copied from the host to the device. 

Because the copying from host to device and from the 
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device to host is a time-consuming process, it is necessary 

to limit sending data.  

 

 
 

Figure 12. Typicall CUDA program 

 

After the data are ready on the device, it is possible to 

launch kernels. When the computation is finished, results 

are copied back to the host.  

Finally results can be displayed and the allocated memory 

is released.  

The scheme of the program is the same as Figure 12 

shows.  

The GPU implementation is similar to CPU multi-thread 

application. The idea is the same. I copy only what is 

needed to the device - integral images, trained classifiers 

and detection windows.  

For every detection window’s scale, a CUDA kernel is 

executed. The first version of the program computes 

positions of detection windows in the client application. A 

set of windows with the same size is computed. Then it is 

sent to the device and the detection process for the current 

windows can start. Of course, the detection window has 

same size, but the position depends on the index of thread. 

After that last detection window in the kernel is tested, the 

results are sent back to the host and the information about 

new detection windows is prepared on the host. This process 

is repeated until the scale reaches the final value. 

The transmission between client and device is time-

consuming, what shows a small adjustment.  

For the next version, on the client side a count of 

detection windows and size is computed. This information 

is sent to the device. Now, it is possible to compute the 

position of a current detection window based on the 

received data from the client and index of thread. This 

adjustment caused an acceleration of detection an average of 

15 times. 

In the final implementation, a GPU computation of 

integral images is also used, which is also described in this 

paper. 

VI. RESULTS 

At first, during testing I progressively compare a program 

with one-strong classifier with a multi-strong classifiers 

program. For both these implementations, a one-thread and 

multi-thread variation was created. Then these programs are 

compared with a GPU program.  

A. Integral image  

Because the integral image is also computed by parallel 

threads, the following graph presents the results. It shows 

how the time needed for the computation depends on the 

image size.  

 

 
Figure 13. Integral image comparing 

 
From the results we can see, that time computation is 

lowest for the GPU implementation, while the CPU 
program is significantly slower. 

Nonetheless, the integral image computation is not as 
time-demanding as detection.  

B. One strong classifier detection 

We then tested a one-strong classifier face detector. The 
following graph shows how long the process of detection 
takes for different image sizes. For one-strong classifier, 
200 weak classifiers were trained from more than 5000 
input samples.  

It is not a cascade variation and that is why it is 
necessary for every detection window to test every weak 
classifier from the trained set. 

For testing, three different image sizes were chose: 
716x684, 1280x1024 and 2250x2250 pixels.  

 

 
Figure 14. One-strong classifier detection 

 

The results of one-strong classifier detection are 18.44 s 

for one-Thread for the 716x684 image size, 51.048 s for 

1280x1024 pixels and 203.752 s for 2250x2250 pixels. 
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Eight threads were used for multi-threading testing and 

the results are 3.128 s, 8.694 s and 33.791 s. For the GPU 

program it is only 3.495 s, 7.808 s and 24.255 s. 

C. Cascade detection 

The final comparison is with regards to the cascade 

variant of the Viola and Jones algorithm. The input file with 

classifiers contains 15 strong classifiers. Each one of these 

has a group of weak classifiers.  

 
Figure 15. Cascade detection 

 
The result shows that if it is not need test all classifiers 

set for current detection window, the computation is 
certainly faster than one strong classifier variation. 

In the last graph we can see that one CPU thread is again 
the slowest from all the implementation modes, but this was 
obvious from the algorithm principle. 
For one CPU thread program it takes only 1.827 s, 5.008 s 
and 18.644 s. The next testing is with the multi-threading 
algorithm and results are 0.263 s, 0.989 s and 2.423 s. 
Finally, the GPU implementation takes only 0.117 s, 0.256 
ms and 0.530 s. The final result is the same like the program 
with one strong classifier, so the GPU detection is the 
quickest from the presented forms of implementation. 

VII. CONCLUSION AND FUTURE WORKS 

The possibility of multi-thread and implementation of 
the Viola and Jones face detection algorithm were presented 
here. It is not only about CPU thread applications, but 
especially about GPU.  

All programs were tested and it shows that thanks to 
using threads the face recognition process can be 
accelerated against the basic one CPU version.  

From the graphs, we can see that the detection time 
depends on the image size; this is the main factor. For the 
computation of the integral image, GPU implementation is 
the fastest.  

In the next tests, the result is that the one thread CPU 
variant is obviously slower than the multi-thread CPU and 
GPU implementation. 

From the test results, it is convincing that the GPU 
detection is usable with reasonable time-consuming results 
against the CPU variants. It is possible to see that the GPU 
detection is an average of 35 times faster than one thread 
CPU detection. In comparison to the multi-thread CPU 
variant, the results are closer, but the GPU is still quicker. 

For the future, it is planned to widen the face detection 
capabilities for the possibility of recognizing faces with 
faces stored in a database. The input images will be gained 
from a camcorder. The real-time detection is the reason why 
the speed of face detection is very important. The output 
from the detection will be sent for the comparison with 
saved faces. 
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