
Face Detection CUDA Accelerating

Jaromír Krpec

Department of Computer Science

VŠB – Technical University Ostrava

Ostrava, Czech Republic

krpec.jaromir@seznam.cz

Martin Němec

Department of Computer Science

VŠB – Technical University Ostrava

Ostrava, Czech Republic

martin.nemec@vsb.cz

Abstract— Face detection is very useful and important for

many different disciplines. Even for our future work, where

the face detection will be used, we wanted to determine,

whether it is advantageous to use the technology CUDA for

detection faces. First, we implemented the Viola and Jones

algorithm in the basic one-thread CPU version. Then the basic

application is widened to the multi-thread CPU version.

Finally, the face detection algorithm is also implemented for

the GPU using CUDA technology. At the end, final programs

are compared and the results are presented in this paper. For

our future plans, the speed-up of face detection is very

important. By supporting CUDA technology, the process of the

face detection showed considerable speed-up.

Keywords-CUDA; GPU; Face Detection; Viola and Jones

algorithm

I. INTRODUCTION

Face detection in images is quite complicated and a time-

consuming problem, which found use in different

disciplines, e.g., security, robotics, or advertising. By

computer performance, disciplines of image processing,

such as face detection, have significantly improved and

progressed.

Even on current hardware, face detection is very time

consuming, especially at the moment when large images are

used. It is the same problem when we recognize faces in real

time, for example from a camcorder. This is why the

detection process must be accelerated.

In the last few years, graphic cards are increasing in

performance; actually, the graphics processing unit (GPU)

has greater performance than a classic central processing

unit (CPU). Today, a graphic card can be used not only for

rendering 2D or 3D graphics, but it can also be used for

varied, especially parallel computations, which are not

connected with the original task of graphic cards-rendering.

Compute Unified Device Architecture (CUDA) [1]

technology is used to speed up the process of face detection,

therefore we moved the main computation to the graphic

card. Then, the final implementation was compared with a

similar one-thread CPU and multi-thread CPU programs.

The main targets of this work are

 To implement the Viola and Jones algorithm [2]

for the multi-thread CPU application,

 To implement the Viola and Jones algorithm for

the GPU,

 To compare the speed of detection of individual

programs, especially depending on the input

image size, and

 To summarize and discuss results.

II. RELATED WORK

There is much work which describes methods of face

detection. There are methods which are based on template

matching, skin detection and other techniques.

The algorithm of skin detection looks for areas covered

by the skin color. Then, these areas could be marked as a

face after fulfillment of other conditions (shape). Y. Chen

and Y. Lin [3] widened this method. They added hair

detection. If area of the face and area of hair are connected,

the face is detected.

Template matching is a method for finding small parts of

an image which match a template image containing face.

Skin detection and template matching also can be combined

into one method [4].

Next group of methods is based on the machine learning

algorithms. The Viola Jones algorithm belongs to this group

and it was chosen as the algorithm for acceleration in this

work. The main reason why this face detection algorithm

was chosen is the system of how this algorithm works.

Thanks to using detection windows and Haar features, it

offers a few of ways, of how to parallelize the detection

process. The next reason is that there are many algorithms

for face detection based on Viola and Jones.

A few works are also written about acceleration object

classification with some good results. For example, in the

work by C. Gao and S.L. Lu reached for image size 256 x

192 pixels 37 frames/sec for 1 classifier and 98 frames/sec

for 16 classifiers [5].

III. VIOLA AND JONES ALGORITHM
The Viola and Jones algorithm was used for the face

detection, which was divided into two parts. The first part is
for training a set of classifiers. For this process, MIT CBCL
Face Database [6] was used. This database contains 2429
images with face and 4549 no-face images. Based on these

155Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

mailto:krpec.jaromir@seznam.cz
mailto:martin.nemec@vsb.cz

samples weak classifiers are created. The second part it is the
detection itself, when faces are detected in the input image.

A. Features

Haar features are used for computing feature values

during training and detection. A weak classifier is always

described by a Haar feature that was chosen during the

training process.

Figure 1. Using Haar features in the input image [2]

Every classifier consists of a black part (marked as B)

and a white part (marked as W), and these parts cover some

area of the image. Pixels are joined with one of these two

parts of features and the final feature value for the current

area of the image is calculated as:

 (1)

That means:

(2)

 Data represents the original image, II is the integral

image and (x,y) is the current position in the image.

B. Integral image

The integral image is an (m+1) x (n+1) multidimensional
array created from an input image with m x n dimensions,
where every value is counted as a sum of pixels in the
interval (0...I - 1) x (0...I - 1). So:

 (3)

Figure 2. On the left, original image data; on the right, integral

image

Now, the sum of pixels for a selected area can be easily

quantified with constant speed:

Figure 3. Sum of pixels in integral image

The value in point 1 is made of the sum of pixels in area

A, the value in point 2 is A+B. For point 3, the value can be

determined as the sum of areas A + C and in point 4 it is

equal to the sum of all four areas A+B+C+D. By knowing

the area of D, the corner point values could be used to

determine the sum of pixels in this area: 4+1-(2+3).

Integral image computation is continual scanning of the

full input image. Nevertheless, this operation could be

parallelized, especially in case that large data is prepared for

the input.

The principle of counting is in divided into two parts.

Because results of pixel summation in rows do not influence

themselves (and it is same for columns), it is possible to

count pixel sums in rows and pixel sums in columns from

the new data. During computing more rows or columns will

be processed then.

At first, parallel processing of all rows is completed:

Figure 4. Parallel computing of rows

Then, the final integral image array is gained by the

parallel computing of columns:

Figure 5. Parallel computing of columns

C. Detection

The detection process has a few steps. At first, the file

with trained classifiers is loaded and the input image is also

it is loaded, where the application will detect faces. This

image is transformed to grayscale and creates the integral

image and square integral image. These images are used for

computing a standard deviation.

156Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

Figure 6. Detection steps

It then runs the main process of detection. During this

operation, the parts of the image-detection window are

counted. The minimal size of the detection window is the

size of the images, which were used during the training.

The detection window is moved through the whole image

and tries to determine if the current window could be a face.

At the moment, when the window is in the last position in

the image, the size of this detection window is enlarged by

some rescale coefficient. Then, again, the full image is

processed by the transformed detection window from the

start position.

Figure 7. Detection window process

The situation is dependent on the feature value of the

detection window, if the window is marked as a face or not.

A standard deviation must be computer for every window,

which is used for the feature value. Thanks to the integral

image, we can count this operation with a constant time and

it does not depend on the size of the window.

From the idea of the detection window, we can say that

the computation time is affected by the count of trained

classifiers, but especially by the image size.

It is obvious that the image size will increase the time

calculation, because it must test more detection windows.

Thanks to a greater image size, there are also more frequent

transmissions of information between the device and host

application.

The next table shows how the count of detection

windows depends on the input image size (144 x 192 pixels)

with the scale coefficient of 1.2.

TABLE I. COUNT OF DETECTION WINDOWS DEPEND ON SCALE

Scale Detection windows

1,2 20449

1,44 4897

1,72 4480

2,07 4081

2,48 1617

2,98 748

3,58 589

4,29 286

5,16 128

6,19 44

Result 37319

D. Cascade algorithm

The cascade algorithm created by Viola and Jones

brought some improvements in detection speed. Decreasing

the time which is need for detection is based on the

condition that there are more areas that do not contain faces.

That is why it is not necessary to test all classifiers.

Figure 8. Cascade algorithm

The same MIT CBCL Face Database was used for the

training cascade classifiers. The final count of strong
classifiers is 15.

Each one of these strong classifiers contains a group of
weak classifiers. The total sum of weak classifier is 529. It is
significantly more than using one strong classifier. But for
most detection windows, the algorithm expects that all weak
classifiers will not be tested.

TABLE II. COUNT OF WEAK CLASSIFIERS FOR EVERY STRONG CLASSIFIER IN

THE CASCADE

Stage
Number of
classifiers

Stage
Number of
classifiers

1 2 9 35

2 9 10 40

3 16 11 52

4 21 12 54

5 23 13 57

6 27 14 62

7 27 15 71

8 33 Total 529

Table 2. shows the sums of weak classifiers for every

strong classifier in the cascade.

IV. PARALELL PROCESS

Basically, there are three possibilities how to parallel

detection process:

157Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

A. Detection windows

Because the final results of feature values do not depend
on the other detection window final results, it is easy to
parallelize the detection windows. In the same moment we
can test more detection windows. This could be realized on a
CPU with more threads, but we can also use the GPU.

Figure 9. Parallel windows detection process

The problem occurs at the moment, when the detection

window is in the last position of the current scale and it is
necessary to rescale it. With the rescaling, we also create a
different set of features, which must also be rescaled. The
problem is when the other threads do not finish their
detection and they are still in the old scale. At the moment,
when features are rescaling, other threads will use a bad set
of features and it could make bad detections.

One of the solutions could be that every thread will have
its own copy of the features. However, from the memory
view, this solution is not good enough. That is why we
implemented a different solution. It uses only one set of
features and it is shared by all the threads. To prevent
problems, these threads are synchronized in the moment,
when they got through the full image. Then the detection
window and features are rescaled and threads are executed
again with a changed set of features.

This is the method from these three that was chosen for
implementation and testing.

B. Weak Classifier

The second way is in the parallel processing of Haar

features. It signifies that only one detection window in the

same moment is tested by more features.

If only one strong classifier is used, then the application

runs parallel through a full set of weak classifiers. In case,

when it used set of strong classifiers, only weak classifiers

in one stage will be parallel processed. After a positive

result of the current strong classifier is achieved, a new set

of weak classifiers is loaded.

C. Scale detection window

If detection windows are in the last image position,

windows change size for the next process. But there is no

dependence between the scaling of different detection

windows.

For example, if a smaller detection window detects a face

in some position that does not mean that a larger window

will detect the face in the same position. So, it is possible to

have in one set of detection windows in one thread. This is

not a very good solution for very large images, because for

the small sizes, it could create many windows, therefore,

making memory demanding for common hardware.

V. IMPLEMENTATION

CUDA is technology developed by the NVidia

Company, which can be used for diverse demanding

computations on the GPU.

CUDA uses kernels that are executed n times in every

thread and the thread is identified by the specific number.

Figure 10. Compare Intel CPU with nVidia GPU [7]

The architecture of CUDA consists of grids, which are

divided into smaller units - blocks. The hardware has a

group of multiprocessors and it assigns each block to a

multiprocessor. And finally, blocks consist of threads. These

smallest units can be synchronize in one block.

Figure 11. CUDA architecture [7]

In general, the CUDA program starts with memory

allocation in the device, while data on the host are prepared.

Then, the data are copied from the host to the device.

Because the copying from host to device and from the

158Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

device to host is a time-consuming process, it is necessary

to limit sending data.

Figure 12. Typicall CUDA program

After the data are ready on the device, it is possible to

launch kernels. When the computation is finished, results

are copied back to the host.

Finally results can be displayed and the allocated memory

is released.

The scheme of the program is the same as Figure 12

shows.

The GPU implementation is similar to CPU multi-thread

application. The idea is the same. I copy only what is

needed to the device - integral images, trained classifiers

and detection windows.

For every detection window’s scale, a CUDA kernel is

executed. The first version of the program computes

positions of detection windows in the client application. A

set of windows with the same size is computed. Then it is

sent to the device and the detection process for the current

windows can start. Of course, the detection window has

same size, but the position depends on the index of thread.

After that last detection window in the kernel is tested, the

results are sent back to the host and the information about

new detection windows is prepared on the host. This process

is repeated until the scale reaches the final value.

The transmission between client and device is time-

consuming, what shows a small adjustment.

For the next version, on the client side a count of

detection windows and size is computed. This information

is sent to the device. Now, it is possible to compute the

position of a current detection window based on the

received data from the client and index of thread. This

adjustment caused an acceleration of detection an average of

15 times.

In the final implementation, a GPU computation of

integral images is also used, which is also described in this

paper.

VI. RESULTS

At first, during testing I progressively compare a program

with one-strong classifier with a multi-strong classifiers

program. For both these implementations, a one-thread and

multi-thread variation was created. Then these programs are

compared with a GPU program.

A. Integral image

Because the integral image is also computed by parallel

threads, the following graph presents the results. It shows

how the time needed for the computation depends on the

image size.

Figure 13. Integral image comparing

From the results we can see, that time computation is

lowest for the GPU implementation, while the CPU
program is significantly slower.

Nonetheless, the integral image computation is not as
time-demanding as detection.

B. One strong classifier detection

We then tested a one-strong classifier face detector. The
following graph shows how long the process of detection
takes for different image sizes. For one-strong classifier,
200 weak classifiers were trained from more than 5000
input samples.

It is not a cascade variation and that is why it is
necessary for every detection window to test every weak
classifier from the trained set.

For testing, three different image sizes were chose:
716x684, 1280x1024 and 2250x2250 pixels.

Figure 14. One-strong classifier detection

The results of one-strong classifier detection are 18.44 s

for one-Thread for the 716x684 image size, 51.048 s for

1280x1024 pixels and 203.752 s for 2250x2250 pixels.

159Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

Eight threads were used for multi-threading testing and

the results are 3.128 s, 8.694 s and 33.791 s. For the GPU

program it is only 3.495 s, 7.808 s and 24.255 s.

C. Cascade detection

The final comparison is with regards to the cascade

variant of the Viola and Jones algorithm. The input file with

classifiers contains 15 strong classifiers. Each one of these

has a group of weak classifiers.

Figure 15. Cascade detection

The result shows that if it is not need test all classifiers

set for current detection window, the computation is
certainly faster than one strong classifier variation.

In the last graph we can see that one CPU thread is again
the slowest from all the implementation modes, but this was
obvious from the algorithm principle.
For one CPU thread program it takes only 1.827 s, 5.008 s
and 18.644 s. The next testing is with the multi-threading
algorithm and results are 0.263 s, 0.989 s and 2.423 s.
Finally, the GPU implementation takes only 0.117 s, 0.256
ms and 0.530 s. The final result is the same like the program
with one strong classifier, so the GPU detection is the
quickest from the presented forms of implementation.

VII. CONCLUSION AND FUTURE WORKS

The possibility of multi-thread and implementation of
the Viola and Jones face detection algorithm were presented
here. It is not only about CPU thread applications, but
especially about GPU.

All programs were tested and it shows that thanks to
using threads the face recognition process can be
accelerated against the basic one CPU version.

From the graphs, we can see that the detection time
depends on the image size; this is the main factor. For the
computation of the integral image, GPU implementation is
the fastest.

In the next tests, the result is that the one thread CPU
variant is obviously slower than the multi-thread CPU and
GPU implementation.

From the test results, it is convincing that the GPU
detection is usable with reasonable time-consuming results
against the CPU variants. It is possible to see that the GPU
detection is an average of 35 times faster than one thread
CPU detection. In comparison to the multi-thread CPU
variant, the results are closer, but the GPU is still quicker.

For the future, it is planned to widen the face detection
capabilities for the possibility of recognizing faces with
faces stored in a database. The input images will be gained
from a camcorder. The real-time detection is the reason why
the speed of face detection is very important. The output
from the detection will be sent for the comparison with
saved faces.

REFERENCES
[1] http://developer.nvidia.com/category/zone/cuda-zone

<retrieved: January, 2012>

[2] M. Jones and P. Viola, Robust Real-time Object Detection,
International Journal of Computer Vision, vol. 57, no. 2, 2004, pp.
137-154,

[3] Y. Chen and Y. Lin, Simple Face-detection Algorithm Based on
Minimum Facial Features, 33rd Annual Conference of the IEEE
Industrial Electronic Society(IECON), Taipei, Taiwan, November
2007, pp 455-460

[4] S. Tripathi, V. Sharma, and S. Sharma, Face Detection using
Combined Skin Color Detector and Template Matching
Method, International Journal of Computer Applications, vol.
26, no. 7, 2011, pp. 5-8,

[5] C. Gao and S. L. Lu, Novel FPGA based haar classifier face
detection algorithm acceleration, In Proceedings of
International Conference on Field Programmable Logic and
Applications, 2008, pp 373-378

[6] http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html <retrieved:
January, 2012>

[7] http://www.behardware.com/art/imprimer/659/ <retrieved: January,
2012>

160Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

http://developer.nvidia.com/category/zone/cuda-zone
http://courses.engr.illinois.edu/ece498/al
http://cbcl.mit.edu/cbcl/software-datasets/FaceData.html
http://www.behardware.com/art/imprimer/659/

