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Abstract—The paper presents a statistical process control method
for monitoring health-recovery processes described by short non-
stationary time series. The Shewhart control chart for residuals,
based on model averaging approach, is built for differences
between values of consecutive observations. The practical ap-
plicability of this new approach has been demonstrated using a
real-life example of a recovery from a mild hypertension episode.
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I. INTRODUCTION

Stability is an important feature of many processes. A
process is considered stable, or under control, when its un-
controlled variation is purely random (e.g., due to random
measurement errors). In 1924 W. Shewhart introduced a simple
tool for monitoring stable processes - a control chart. In its
initial stage, which is assumed to be in-control, monitored
process characteristics are measured, and their mean value
and standard deviation are recorded. These recorded values are
used for the design of a control chart, known as the Shewhart
control chart, which consists of control lines: central, and
two (or one, when only deviation of a process level in one
direction is interesting) control. The central line represents the
mean value of the process level (or a certain target value for
this process), and control lines are located at three standard
deviations from a central line. The process is considered stable
when its future observations are located inside control lines
(limits). When an observation falls outside the control lines,
an alarm signal is generated, and the process is considered as
being possibly out of control (unstable). When a monitored
process goes out of control, it is recommended to look for the
reason of this, and take appropriate actions with the aim to
revert it to the in-control state.

Basic control charts, used in over 90% practical applica-
tions, are designed under two main assumptions: statistical
independence of consecutive observations, and the normal
distribution of measured characteristics. However, in many
practical cases, especially when individual process observa-
tions are monitored, these assumptions are not fulfilled. Thus,
in the recent 40 years, many inspection procedures that do
not rely on these assumptions have been proposed. They are
usually described in scientific journal papers or in a few
textbooks on statistical quality control, such as a famous book
of Montgomery [1]. Some of these procedures have been
applied in health-related services, and similar applications.
A comprehensive review of different applications of control
charts in health-care and public-health surveillance can be
found in the paper by Woodall [2]. Since the time of the
publication of this paper, many other papers on this topic

have been published, mainly in journals related to medicine.
For example, some recent applications of control charts in the
analysis of health-related data can be found in [3].

Despite real popularity of control charts in many areas,
such as industry, finance and business, the number of their
applications in health care is relatively small. Probably the
main reason of this situation is incompatibility of basic as-
sumptions used for their construction, and the reality of health
care. For example, consecutive observations of health-related
characteristics are seldom independent. Moreover, they are
often described by non-stationary random processes, and the
runs of interesting observations are short. Therefore, control
charts described in popular textbooks, and in the great majority
of scientific papers, are not appropriate for monitoring such
processes. Some new, more appropriate, approaches have been
investigated quite recently. For example, the properties of
control charts used for short runs for autocorrelated, but
stationary, data have been discussed in [4].

In this paper, we are interested in a special kind of medical
data, namely describing health-recovery processes. For many
years, physicians have been prescribing certain treatments, and
advances in the health recovery of a treated patient have been
monitored during visits, e.g., in health care units. Therefore,
possible failures of applied treatments were usually disclosed
with delay. In many cases, such delays have had detrimental
effects on patient’s health. However, with the development
of e-health systems based on telemedicine this situation has
been dramatically changed. Nowadays, it is possible to monitor
the state of patient’s health even continuously. However, the
main problem now is not related to measurements and trans-
mission of data, but to processing of available information.
When human’s life is endangered, very expensive systems,
e.g., in intensive care hospital units, are used. However, in
many cases, the usage of all those sophisticated Information
Technology (IT) systems is not necessary. It is quite sufficient
to process data off-line, and to signal only these cases when
consultancy or intervention of a physician is really needed.
What is important in this context, it is the stability of health-
recovery processes, understood as non-existence of abnormal
and unpredictable changes of the monitored process. It has to
be noted here, that an unstable process may be still inside some
“normal limits”, pre-established by physicians, but its revealed
instability suggests the possibility of going beyond such limits.
Monitoring of such stability can be achieved by the usage of
appropriately designed control charts. The proposal of such
monitoring processes, based on a control chart for so called
residuals, is the main purpose of this paper.

The proposed approach is general, and may be applied in
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various contexts. For example, it is suitable to monitor the
stability of the blood pressure measurements for patients suf-
fering from hypotension, and to generate early warnings of the
Acute Hypotensive Episode (AHE), in which patient’s arterial
blood pressure decreases to an abnormally low level, that may
lead to severe complications or even death. Accurate long-
term prediction in this case would allow doctors for timely and
effective intervention. The 10th Annual PhysioNet/Computers
in Cardiology Challenge 2009 was devoted to predicting the
AHE. The results of this competition have been described
in [5]. Its participants provided various complex solutions,
including: neural networks [6], a rule-based approach [7],
decision trees [8] or support vector machines [9]. A short
review of other recent approaches for the AHE prediction can
be found in [10]. The main aim of all those solution is to
predict accidents of AHE for patient in intensive care hospital
units. Thus, complex algorithms requiring large computational
power could be implemented for this purpose. However, none
of them focuses on the monitoring of stability of the processes,
and generation of early warnings. The control-chart-based
approach, proposed in this paper, yields such early warnings
that the stability of the monitored process is disturbed, and
that an abnormal episode may occur. Moreover, the proposed
method can be easily implemented using limited computational
resources.

The paper is organized as follows. In Section II, we
describe a mathematical model of a stochastic process (a time
series) that may be useful for the description of health-recovery
data. Then, in Section III, we propose a control chart based
procedure that may be used for monitoring non-stationary
health-recovery processes. The problem of the monitoring of
short time series using the sXWAM chart, proposed by us in
[11], is considered in Section IV. The paper is concluded in
its last section.

II. MATHEMATICAL MODEL OF A MONITORED PROCESS

Consider a real-life example of blood pressure measure-
ments of a patient who is under treatment against mild blood
hypertension. In Figure 1, we present results of one-a-day
measurements for a period of 480 days.

Figure 1. Measurements of blood pressure.

A specialist in time series analysis will find immediately
that these measurements, because of a visible trend, may be
described by a non-stationary time series (most frequently
used methods of the statistical analysis of time series can
be found, e.g., in the book by Brockwell and Davis [12]).
An important model of such time series is the Autoregressive
Integrated Moving Average (ARIMA) model, introduced in the
seminal book by Box and Jenkins [13]. For an ARIMA non-
stationary process of first order, differences between consecu-
tive observations are described by a stationary Autoregressive

Moving Average (ARMA) process, well described in many
statistical textbooks. Now, let us look at Figure 2, where such
differences are displayed. The process displayed in Figure

Figure 2. Differences between consecutive measurements.

2 is definitely stationary. We have found that it may be
described by an autoregression process of the fourth order
AR(−0.862,−0.713,−0.358,−0.207). Therefore, this real-
life example has motivated us to consider in this papers time
series described by models of a similar type.

Let X1, X2, . . . , Xn be a series of measurements obtained
during a period of time when a monitored process may be
considered (e.g., according to a physician who supervises the
treatment) as stable. The process of first differences is now
defined as follows: Di = Xi+1 − Xi, i = 1, . . . , n − 1. We
assume the ith difference is related to the previous observations
according to the equation

Di = a1 ∗di−1 +a2 ∗di−2 + · · ·+ap ∗di−p +εi, i = p+1, . . . ,
(1)

where εi, i = p + 1, . . . are normally distributed independent
random variables with the expected value equal to zero, and
the same finite standard deviation.

Estimation of the model AR(p), given by (1), is relatively
simple when we know the order of the model p. In order to
find estimators â1, . . . , âp, we have to calculate first p sample
autocorrelations r1, r2, . . . , rp, defined as

ri =
n
∑n−i

t=1 (dt − µ̂)(dt+i − µ̂)

(n− i)
∑n

t=1(dt − µ̂)2
, i = 1, . . . , p, (2)

where n is the number of observations in the sample (usually,
it is assumed that n ≥ 4p), and µ̂ is the sample average. Then,
the parameters a1, . . . , ap of the AR(p) model are calculated
by solving the Yule-Walker equations (see, [12])

r1 = a1 + a2r1 + . . .+ aprp−1

r2 = a1r1 + a2 + . . .+ aprp−2

. . .
rp = a1rp−1 + a2rp−2 + . . .+ ap

(3)

The estimators obtained by solving the Yule-Walker equations
are, unfortunately, not numerically stable, especially for small
sample sizes. A better method was proposed by Burg. A
good description of Burg’s algorithm can be found in [14].
Burg’s algorithm is used to solve the following optimization
problem: for the set of observations x1, . . . , xN find the values
a∗1, . . . , a

∗
k that minimize Fk defined as

Fk =

N∑
n=k

(xn − (−
k∑

i=1

aixn−i))
2 (4)
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The estimators of the AR(p) model given by (1) are obtained
by setting k = p,N = n, xi = di, i = 1, . . . , n − 1, and
âi = −a∗i , i = 1, . . . , p.

In practice, however, we do not know the order of the
autoregression process, so we need to estimate p from data.
In order to do this, we define a transformed random variable,
called the residual. In the case of autoregression processes,
considered in this paper, the residual is defined as

Zi = Di − (a1di−1 + . . .+ apdi−p), i = p+ 1, . . . , n. (5)

When we know exactly the autoregression model, the proba-
bility distribution of residuals is the same as the distribution
of random variables εi, i = 1, . . . in (1), and its variance
can be used as a measure of the accuracy of predictions of
future values of the process. For given sample data of size
n, the variance of residuals is decreasing with the increasing
values of p. However, the estimates of p model’s parameters
a1, . . . , ap become less precise, and thus the overall precision
of prediction with future data deteriorates. As the remedy
to this effect, several optimization criteria with a penalty
factor, which discourages the fitting of models with too many
parameters, have been proposed. In this research we have used
the criterion proposed by Akaike [15], and defined as

BIC = (n− p) ln[nσ̂2/(n− p)] + n(1 + ln
√

2π)+
p ln[(

∑n
t=1 d

2
t − nσ̂2)/p],

(6)

where dt are our transformed process observations centered in
such a way that their expected values are equal to zero, and
σ̂2 is the observed variance of residuals. The fitted model, i.e.,
the estimated order p and parameters of the model â1, . . . , âp
minimizes the value of BIC calculated according to (6). We
will use this model in the construction of a control chart for
monitoring health-recovery processes.

III. CONTROL CHART FOR PROCESS MONITORING WITH
AUTOCORRELATED DATA

A. Design of a chart
The design of a simple Shewhart control chart, in the

case of a sufficiently large number of individual and mutually
independent observations, is extremely simple. One has to
collect data (a sample) from a period when the monitored
process is stable, calculate average value x̄ and standard
deviation σx, and set the control limits, upper (CUP) and lower
(CLO), to

CUP = x̄+ 3σx
CLO = x̄− 3σx.

(7)

When process deterioration is related only to increase (de-
crease) of a process level, one can use one-sided control charts
with respective upper (lower) control limits. Usually, it is as-
sumed that the monitored characteristic is normally distributed,
and in this case the probability of observing the observation
outside one control limit when the monitored process is stable
(i.e., observing a false alarm) is very low, and equals 0.00135.
It means, that the expected number of observations between
consecutive false alarms is equal approximately to 740 (for a
one-sided chart), or to 370 (for a two-sided chart).

When consecutive observations of a monitored process
are statistically dependent, the situation becomes much more
complicated. For example, when sample data are autocor-
related, the properties of a control chart designed using a

simple algorithm described above may be completely different
from those observed for independent data. To cope with this
problem, statisticians have proposed two general approaches.
In the first one, we chart the original data, but control limits are
adjusted using the knowledge about the type of dependence. In
the second general approach, originally introduced by Alwan
and Roberts [16], a control chart is used for monitoring
residuals. Their methodology is applicable for any class of
processes, so it is also applicable for the autoregression process
of differences Di considered in this paper. According to
the methodology proposed by Alwan and Roberts [16], the
deterministic part of (1) is estimated from sample data of n
elements, and used for the calculation of residuals according
to (5). Then, these residuals are used for the construction of
our control chart according to the algorithm described above.

It is worth noticing that the Shewhart control chart for
individual observations, also known as the X chart, is not the
only control chart used for monitoring stability of monitored
processes. However, it is the simplest one. Moreover, it is easy
to interpret by non-specialists. This second feature seems to
us very important if we have to use it in a simple health-care
monitoring procedure.

B. Operating procedure
Operating procedure of the proposed control chart for resid-

uals, applied for differences between consecutive observations
of the monitored process, is the same as in the case of a
classical Shewhart control chart. Using the estimated process
model, we calculate the predicted value of the difference be-
tween the next two observations of the monitored process. An
alarm signal is generated when an observed residual (difference
between an observed and predicted values) falls beyond control
lines. In Figure 3, we present a one-sided (with an upper
control limit) control chart for residuals calculated for the
process of differences between consecutive measurements of
blood pressure displayed in Figure 1. The model of the process
of differences Di was estimated using first 20 observations of
the monitored process of blood pressure measurements. Using
Burg’s algorithm we found that it is the autoregression pro-
cess of the fourth order AR(−0.987,−0.805,−0.217,−0.133)
(Note, that this model is different from the model estimated
from larger amount of data presented in Figure 2). Then,
residuals calculated for differences D5, . . . , D19 have been
used for the design of a control chart with the upper control
limit equal to 20.29. The estimated model has been used for
the calculation of residuals related to the next 80 observations.
These residuals are displayed on the control chart. We can see

Figure 3. Control chart for residuals of differences of the first order related
to measurements of blood pressure.

that the monitored process seems to be under control, as all
calculated residuals are located below the upper control limit.
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In comparison to a classical control chart for original ob-
servations, a control chart for residuals of differences has one
important disadvantage: self-adaptation to a changed pattern
of data. In order to explain this feature, let us transform our
exemplary data by adding 20 to each observation starting from
the 10th. The control chart in this case is presented in Figure
4. From Figure 4, we can see that starting from the 10th point

Figure 4. Control chart for residuals of differences of the first order related
to measurements of blood pressure with a shifted process level.

until the 12th point on the chart the value of displayed residuals
sharply increased, but does not exceed the control limit. Later
on, it has returned to the previous level. It means that our
chart is able to detect shifts of the monitored process only
immediately after the jump. This is in sharp contrast to the
classical Shewhart control chart (if it can be applied), where
all data points observed after the shift indicate the deterioration
of the monitored process. Thus, if the alarm is not generated
immediately it will be generated in the future quite randomly,
despite the obvious deterioration of the monitored process.
Therefore, we have to add an additional mechanism that will
increase the probability of detection just after the shift.

One of possible solutions of the problem mentioned above
is to use an additional control chart. It can be a control chart
for residuals calculated for second order differences defined
as D2i = Xi+2 − Xi. The methodology for the design of
this chart is exactly the same as that already described in this
paper. Additional advantage of this approach is due to a fact
that differences of the second order decrease or even cancel the
impact of short cycles in the observed time series. A “weak”
alarm signal is generated if it is generated on only one of
these two charts. A “strong” alarm signal, that detects possible
persistent deterioration, is generated when two consecutive
points on the second chart are located beyond its control limits.

In our numerical example of shifted data, the model of the
time series of differences of the second order, estimated from
the sample of 20 observations, is the autoregression process of
the second order AR(−0.444,−0.555). Using this model, we
can calculate residuals and design a respective control chart,
presented in Figure 5. We can see that in the case of this
control chart, deterioration of the process has been revealed
with a delay of one measurement. Thus, if we have used both
charts, we would detect the change of the process.

Another possible solution which is simpler for implementa-
tion, but theoretically less justified, is to calculate an additional
residual as the difference between the observed difference of
the second order and the predicted difference of the first order,
but calculated for the previous observation, and to plot the
maximum of these two residuals on the chart designed for
the case of differences of the first order. A “weak” alarm is
generated when a point on the chart is located beyond the

Figure 5. Control chart for residuals of differences of the second order
related to measurements of blood pressure with a shifted process level.

control limits. For a “strong” alarm it is necessary to observe
at least two consecutive points on the chart situated beyond
the control limits.

It has to be stressed here, that the proposed procedures
are based on rather heuristic reasoning, based on observations
of a particular series of measurements. Unfortunately, closed
mathematical formulae that describe statistical properties of
a control chart when observed values of measurements are
statistically dependent, as for now, do not exist (except for
the simplest cases). Therefore, the properties of the proposed
procedures have to be investigated in the future using complex
simulation experiments.

IV. USING THE SXWAM CONTROL CHART FOR SHORT
PROCESS RUNS

One of the most important characteristics of a control chart
is its rate of false alarms. An alarm is considered false if it
is generated in a period of time when a monitored process
is stable. False alarm rate is usually accompanied with good
abilities to detect process disorders, so if this falsity does not
lead to serious consequences, higher false alarm rates may
be considered acceptable. However, when an alarm cannot be
neglected because of its serious consequences, the false alarm
rate should very low. For example, in certain pharmaceutical
production processes an alarm should trigger a stop of a
process, and this may be very costly if the triggering alarm
is false. In the case of a stable process, described by the
model AR(−0.987,−0.805,−0.217.− 0.133) estimated from
a sample of n = 20 observations, a chart presented in Figure
6 exhibits two false alarms.

Figure 6. Control chart for residuals with two false alarms.

It has been observed by many authors (see [4], for more
information) that control charts for autocorrelated data, es-
pecially those designed using small samples of observations,
have elevated false alarm rates. Hryniewicz and Kaczmarek-
Majer [4] have noted that this rather unfavorable property
is somewhat related to the problem of bad predictability in
short time series. Inspired by the very good properties of their
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prediction algorithm for short time series [17], they proposed
in [4] a new control chart for residuals, named the XWAM
control chart, based on the concept of model averaging.

Let us denote by M0 the model of a monitored process
estimated from a (usually) small sample, and describe its
parameters by a vector (a1,0, . . . .ap0,0). We assign to this
estimated model a certain weight w0 ∈ [0, 1]. We also consider
k alternative models Mj , j = 1, . . . , k, each described by a
vector of parameters (a01,j , . . . , a

0
pj ,j

). In general, any model
with known parameters can be used as an alternative one,
but in this paper we restrict ourselves to the models chosen
according to an extended version of the algorithm described
in [11]. Let w

′

1, . . . , w
′

k denote the weights assigned to models
M1, . . . ,Mk by this algorithm when only alternative models
are considered. Because the total weight of the chosen alter-
native models is 1 − w0, to the estimated model we assign
the weight w0, and to each chosen alternative model we will
assign a weight wj = (1− w0)w

′

j , j = 1, . . . , k.
When we model our process using k+ 1 models (one esti-

mated from data, and k alternatives) each process observation
generates k+1 residuals. In the case of differences of the first
order considered in this paper, they are calculated using the
following formula

zi,j = di−(a1,jdi−1+. . .+apj ,jdi−pj ), j = 0, . . . , k; i = pj+1, . . . .
(8)

In (8), we have assumed that for a model with pj , j = 0, . . . , k
parameters we need exactly pj previous consecutive observa-
tions in order to calculate the first residual. Therefore, we need
imin = max(p0, . . . , pk) + 1 observations for the calculation
of all residuals in the sample. For the calculation of the
parameters of the XWAM control chart we use n− imin + 1
weighted residuals calculated from the formula

z?i =

k∑
j=0

wjzi,j , i = imin, . . . , n. (9)

The central line of the chart is calculated as the mean of
z?i , and the control limits are equal to the mean plus/minus
three standard deviations of z?i , respectively. The operation
of the XWAM control chart is a classical one. First decision
is made after imin observations. The weighted residual for
the considered observation is calculated according to (9), and
compared to the control limits. An alarm is generated when
the weighted residual falls beyond the control limits.

The method for the construction of the XWAM chart was
firstly proposed by Hryniewicz and Kaczmarek in [4] where
they proposed an algorithm for the calculation of the weights of
alternative models. This algorithm is based on the methods of
computational intelligence, namely the DTW (Dynamic Time
Warping) algorithm for comparison of time series. Unfortu-
nately, this algorithm is computationally demanding, so in
[11] they proposed its simplification, coined as the sXWAM
(simplified XWAM). In this approach, Hryniewicz and Kacz-
marek proposed not to compare original time series (observed
and alternative), but their summarizations in terms of the
autocorrelation functions of the pth order. Let r1, r2, . . . , rp be
the consecutive p values of the sample autocorrelation function,
calculated using (2). Similarly, let r1,i, r(2, i), . . . , rp,i, i =
1, . . . , J be the consecutive p values of the autocorrelation
function of an alternative model. For given parameters of the

alternative autoregression process a1,i, . . . , ap,i, i = 1, . . . , J
the values of r1,i, r(2, i), . . . , rp,i, i = 1, . . . , J can be found
by solving the Yule - Walker equations (3). In general, the
consecutive values of rp can be computed using the following
recursion equation

rp = a1rp−1 + a2rp−2 + · · ·+ ap (10)

Just like in [11], in this paper we consider only processes
of the maximum fourth order. In such a case, explicit formulae
for the first three autoregression coefficients are the following
[11]:

r1 = A1, (11)

r2 = a1A1 + a2, (12)

r3 =
a1B1 + a3 + (a2 + a4)(A1 +A2B1)

1− a1B2 − (a2 + a4)(A2B2 +A3)
, (13)

where
A1 =

a1
1− a2

, (14)

A2 =
a3

1− a2
, (15)

A3 =
a4

1− a2
, (16)

B1 =
A1(a1 + a3) + a2

1− (a1 + a3)A2 − a4
, (17)

B2 =
A3(a1 + a3)

1− (a1 + a3)A2 − a4
. (18)

Hence, the consecutive values of r4, r5, . . . can be directly
computed from (10).

As the measure of distance between the estimated au-
tocorrelations r1, r2, . . . , rp and the correlations calculated
for the ith alternative model r1,i, r2,i, . . . , rp,i, i = 1, . . . , J
Hryniewicz and Kaczmarek-Majer [11] used a simple sum
of absolute differences (called the Manhattan distance in the
community of data mining)

disti,MH =

p∑
k=1

|rk − rk,i|, i = 1, . . . , J. (19)

In this paper, we consider a slightly more general version of
the sXWAM chart. As our alternative models, we consider
those autoregression models with k lowest values of disti,MH .
Their weights, after some standardization, are inversely pro-
portional to the distances of the closest models. The design
of the sXWAM chart for residuals is thus much simpler than
the original XWAM chart. The values of the autoregression
functions for different alternative models can be computed in
advance, and stored in an external file. This file can be read
by a computer program, and used for choosing the model that
fits to the observed sample (and its estimated autoregression
function).

The example of the sXWAM chart is presented in Figure
7 for the same original data that have been used for the
construction of the control chart presented in Figure 6. For
the design of this chart it was assumed that the weight for
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sample data is w0 = 0.7. Five alternative process mod-
els have been found using the algorithm described above:
AR(−0.9, 0.5, 0.4,−0.3) with relative weight w

′

1 = 0.201,
AR(0.8, 0.7,−0.5,−0.3) with relative weight w

′

2 = 0.201,
AR(−0.9, 0.5, 0.4,−0.3) with relative weight w

′

3 = 0.200,
and AR(−0.8, 0.7, 0.5,−0.3) with relative weight w

′

4 =
0.199, and AR(0.8, 0.5,−0.3, 0.4) with relative weight w

′

5 =
0.199. We can see that in this case we have observed only one

Figure 7. Control chart for weighted residuals with one false alarm.

alarm generated at the same time point as one of the alarms
generated on the control chart with non-weighted residuals.
Experiments with artificially shifted process levels have shown
that the detection ability of the proposed sXWAM chart are
similar to that observed for the chart with non-weighted
residuals.

V. CONCLUSIONS

In this paper, we have considered monitoring stability of
short and non-stationary processes using a simple tool such as
a Shewhart control chart. Such processes are typical for health-
recovery processes, where natural randomness of measured
health-related characteristics is accompanied by random or
deterministic trends. Statistical analysis of non-stationary pro-
cesses is usually very difficult and costly for implementation,
as it requires large amount of available data and sophisticated
specialized software. It can be used at intensive-care hospital
units or in cases when patient’s life is endangered. However,
in many cases, it is completely sufficient to monitor the state
of health using personal measuring devices, and to alarm a
patient (or his/hers physician) only in the case of unexpected
events. We are of the opinion that this can be done using simple
tools, like control charts, by simple software implemented in
personal measurement equipments. For this reason we have
decided to propose such a chart in this paper.

In our research, we assume that at its initial stage the
monitored process is supervised (e.g., by a physician), and
considered as stable. Data from this stable period, considered
as our sample data, are used for the identification of the
monitored process and construction of a control chart. Because
simple methods for monitoring non-stationary processes do
not exist, we propose to monitor differences of the first order
(i.e,, differences between values of consecutive measurements).
This approach is effective for linear or approximately linear
trends. When we consider, as in this paper, short series of
observations, this assumption seems to be rather realistic.
However, it is possible to apply the proposed methodology
for differences of a higher order. For example, in this paper,
we also consider differences of the second order which can be
used in the case of processes with alternating (e.g., morning
and evening) process levels. In our investigations we have

assumed that our series of observations are rather short, and
the monitored process has to be identified using a small sample
of measurements. This assumption reflects reality when health-
recovery processes is evaluated by a physician for only short
time, and the period in which the process has to be stable
is also short (e.g., until a next treatment is applied). For this
reason, we have proposed a novel statistical tool, sXWAM
chart, developed recently by us.

The performance of the proposed method has been verified
using real-life data. Unfortunately, the amount data, considered
in this research, is rather limited, so the presented results
should be viewed as a kind of proof of the concept. Further
investigations using real and simulated data are needed for
more precise evaluation of the statistical properties of the
proposed monitoring procedure.
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