
Temporal Exception in Web Service Composition

Bey Fella, Bouyakoub Samia, Belkhir Abdelkader
 Institute of Electronics & Computer Sciences

USTHB University

Algiers, Algeria

Bey-Fella@hotmail.com

belkhir@lsi-usthb.dz

bouyakoub.s@gmail.com

Abstract— Web service composition is studied by many works

and constitutes the heart of a great research activity. However,

the majority of this work does not take into account temporal

exception handling. Consequently, the results do not answer

the needs and the temporal preferences of customers and

suppliers. Incorporating temporal constraints in Web service

composition results in a more complex model and addresses

the crucial need for exception handling. In this paper, we

present H-Service-Net model for Web service composition and

policies of handling exceptions. We validated our proposed

approach in an implementation called H-Service-Editor tool.

Keywords-Composition of Web services; Petri network;

temporal constraints; handling of exception.

I. INTRODUCTION

Due to its capability for dynamic composition and easy
reuse, Service Oriented Architecture (SOA) has become a
popular framework for software development in many
application domains. An important process in SOA is
service composition [9].

A major part of the interest created by so-called Web
services is their possibility to distribute processing
capabilities across a number of loosely coupled functional
entities communicating over standardized messages [6].
Companies such as Google, Amazon or PayPal have been
making an increasing part of their revenue by exposing and
selling their functionalities as instances of services, reusable
as background components by third-party application
developers [6].

A composite Web service invokes one or more other
Web services and combines their functionality. In contrast, a
Web service that does not invoke other Web services is
called a basic Web service. The process of developing a
composite Web service is referred to as a Web service
composition [10].

The objective of Web services composition is to
determine a combination of services according to the
customer's request. This composition will seem to the
customer as a single service because it is transparent to him.
In composition, Web services collaborate by exchanging
messages. In addition to this exchange, other factors affect
this composition. We are interested in the time factor which
is crucial and at the same time very complex.

Due to failures that can occur using Web services and
their composition, several solutions of exception handling

have been proposed in order to recover from these
exceptions.

Exceptions are critical in Web services. Therefore, it is
essential to take into account the handling of exceptions,
especially if their execution relates to the continuation of the
composed service. The rest of this paper is organized as
follows. Section II defines some related work. Section III
presents our model called H-Service-Net. Section IV
addresses the policies of handling exception with a
demonstrative example. Section V presents the H-service-
editor tool, its architecture and usage. Conclusions close the
article.

II. RELATED WORK

In the literature, several theories have been proposed to
explain exception handling, which is a critical case in Web
services, therefore, to have a consistent execution, it is
essential to take into account exceptions. In service
composition it is important to define the mechanism of
handling exceptions in order to have a coherent and
consistent composition even in the presence of exception.

A number of approaches have been proposed to deal with
exception handling in Web service composition. First,
Caoqing et al. [1] describe the integration model which
contains the normal process and exception handling logic
based on Petri net integration technologies. The result shows
that this model can realize formal modeling of exception
handling in Business Process Execution Language (BPEL),
and further provides support for analysis and verification of
properties relating to exception handling. A novel
architecture for exception handling has been proposed by
Thirumaran et al. [2] for focusing upon and verifying the
manageability of a web service. But this solution does not
provide methods of handling exceptions, it only detects if an
exception is manageable or not. The approach proposed by
Wang et al. [3] describes the policy-based exception
handling approach for BPEL processes, which is a new
framework designed for exception handling in BPEL
processes to provide a flexible language mechanism. The
approach of Erradi et al. [5] proposes a set of extensible
recovery policies to declaratively specify how to handle and
recover from exception in Web services composition. The
identified constructs were incorporated into a lightweight
service management middleware named Manageable and
Adaptive Service Composition (MASC) to transparently
enact the fault management policies and facilitate the

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

monitoring. Hamadi et al. [4] propose Self-Adapting
Recovery Net (SARN), an extended Petri net model, for
specifying exceptional behavior in business processes.
SARN adapts the structure of the underlying Petri net at run
time to handle exceptions. The approach of Christos et al. [7]
introduces the Service Relevance and Replacement
Framework (SRRF) whose main concept is resolving
exceptions by finding relevant Web tasks, exploiting
qualitative and functional metadata semantics. Finally, Lau
et al. [8] propose an approach to server-side exception
handling by composite Web services that capture
Unavailability and Time-out exceptions and provide Retry as
recovery action, or Throw to propagate exceptions.

Exception handling is generally tedious and error prone.
The issue of exception handling has not been carefully
considered in existing service composition works [9].

Although several studies have indicated that exception
handling is critical, little attention has been given to time out
exception.

III. H-SERVICE-NET: A TEMPORAL MODEL FOR WEB

SERVICE COMPOSITION

The H-Service-Net model (an acronym for Hierarchical

Service Net) is a time Petri net-based model. It allows the
modeling of time-critical aspects in the field of Web
Services. It allows incremental composition of services, as
well as consistency checking after each modification. It
introduces a new type of places named composite places. A
composite place is an abstract place represented by a sub-
network, allowing a degree of independence between the
parts of the H-Service-Net. Indeed, a composite or single
place in H-Service -Net depends only on the subnet to which
it belongs. In other words, the modification of a component
can affect its subnet or the subnets of the same hierarchy.
This representation allows for incremental modeling of the
H-Service-Net. This will allow for easy correction of
errors, an exact location of conflicts between the subnet
elements and support rapid changes. Thus, the H-Service-Net
model is well suited for modeling the synchronization
constraints in a temporal scenario. As a result, it was chosen
to model the composition of Web services. We present in
what follows the different elements of the H-Service-Net
model:

A. Places in H-Service-Net

There are two main types of places of H-Service-Net:

simple and composite." Then, Table I shows places in H-

SERVICE-NET, simple place are modeled by circle shape

and composite place are modeled by triangle shape.

TABLE I. PLACES IN H-SERVICE-NET

Place Modeling Description

Ordinary Place

It models a basic element (Web

service) and its execution time.

Virtual Place

It models a temporal constraint.

Silent Place

It models a place without any

specific task, which is used to

handle exceptions.

Parallel

Place

It models a set of elements of the

same group that operate

simultaneously, which is used to

model concurrent Web service.

Sequential

Place

It models a sequence of elements of

the same group that run in sequence.

It is used to model sequential Web

services.

Root Place

It represents the root of the global

Petri net and behaves like a

sequential composite place.

Loop Place

It is an element that runs in a loop

and is used to model a recursive

Web service.

An H-Service-Net can be seen as a tree where the parallel

and sequential composite places represent intermediate

nodes, and atomic places associated with Web services are

the leaves.

B. Transitions in H-Service-Net

An operation performed by a Web service is modeled by

a transition. Table II shows transition in H-SERVICE-NET

that define the different termination semantics :

TABLE II. TRANSITIONS IN H-SERVICE-NET

C. Tokens and arcs in H-Service-Net

H-Service-Net defines state tokens and exception tokens

and there are two types of arcs in the model, then Table III

shows tokens and arcs in H-Service-Net:

Transition Modeling Description

Simple

transition

 It is fired when all its input places are

active and have available tokens.

Master

transition

It is fired as soon as the place associated

with the Master arc is active and has an

available token.

First

transition

It is fired when one of its input places is

active and has a free token.

P

S

R

L

M

F

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

TABLE III. TOKENS AND ARCS IN H-SERVICE-NET

Arc \ token Modeling Description

State Token It defines the state of the Web

service associated with the place

Exception Token ▲ It is used to handle exceptions

Simple arc Control the firing of a simple

transition

Master arc Control the firing of a Master

transition.

The modeling of Web services in H-Service-Net is given

as follows:
— A simple or atomic Web service is represented by

an ordinary simple place.
— A composite Web service is represented by a

sequential, parallel or loop composite place.

D. Example of the TimeOut policy:

Let us consider the following scenario:

A person wants to go on holiday, and wants to make a

campsite for two days in a forest at the end of the holidays.

Inclusive vacations are offered by a travel agency that can

offer a composition of the following Web services for this

request:

Ws1, Ws6: two Web services of payment by credit card.

Ws2: Visa Service.

Ws3: Sales service ticket travel agency.

Ws4, Ws5: two Services of booking rooms in two different

hotels.

 Figure 1 shows the time constraints (date) in the

network H-Service-Net of the example.

Figure 1. Temporal Constraints in H-Service-Net for the example.

For the modeling of these Web Services in a single H-
Service-Net, we add the following composite places:

• The visa services ws2 and the sales service ticket
travel agency ws4 can run in parallel, so we represent them
in H-Service-Net by a parallel composite place P1.

• The Web Services of booking rooms ws4 and ws5
can run in parallel, so they are modeled in H-Service-Net by
a parallel composite place P2.

• The composite services P2 and Web Payment
service banking ws6 are modeled with the sequential
composite place S1.

• The Composite services P1 and S1, and the Web
Service Payment by credit card ws1 run in sequence, so we
have modeled this set by the root place R.

IV. SOLUTION TO TEMPORAL VIOLATIONS BY A

HANDLING OF EXCEPTION

Exception handling is critical in Web services
composition. It is essential to consider exception handling
for the robustness of the composition,
especially if the exception relates to the continuation of the
composition.

In this section, we present the policies of exception
handling in H-Service-Net. For each exception, a set of
methods is executed to handle the exception. We were
inspired by Rachid et al. [4] to define the methods of
exception handling. Table IV shows all used methods:

TABLE IV. BASIC OPERATIONS FOR EXCEPTION HANDLING

Method Description
CreatePlace(namews , type-

place, type-transitionIn, type-

transitionOut)

Allows creating a simple or

composed place with an input

transition and output transition.

CreateSilentPlace(nameSilentPla

ce , type-transitionIn, type-

transitionOut)

Allows creating a silent place

without any task between two types

of transition.

AddExceptionToken (place)
Allows adding an exception token

to a silent place.

DisableWS(ws)
Allows canceling the running Web

service.

AddTo(P, ws)
Allows to add the place ws to the

composed place P

AddBefor (ws, ws’)
Allows adding the place ws' before

the place ws.

AddAfter(ws, ws’)
Allows adding the place ws' after

the place ws.

ReplacePlace(ws ,ws’)
An existing place ws is replaced by

another place ws'.

RemoveToken(ws)
A token of state is removed from

the Web service ws.

A. The TimeOut policy:

In a Web service composition, both the client and the

service provider may have temporal constraints in their

interaction. For example, the service provider may cancel the

service if it does not receive a response after a time T_max

and similarly for the service requester.

To handle the time out exception, each Web service is

associated with a time limit T_max. If the execution of a

Web service exceeds this time limit, a time-out exception is

triggered.

A policy of handling TimeOut (WebServiceWsTO, time

T) exception is defined in Figure 2:

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

PSEUDO CODE 1. The TimeOut policy

1. DisableWs(WsTO). //Cancels the Web service which

reached the timeout.

2. Compensate (WsTO) or RollBack (WsTO). //Optional

3. RepeatAfter(WsTO). //Repeat the Web service which

has reached the timeout (defined in the next section).

4. Compensate (WsTO) or Rollback (WsTO). // Optional.

5. RepeatAfter(WsTO, 2*T).// If another exception of time

out is raised, Repeat the Web service till the doubling

timeout expired.

6. Compensate(WsTO) or Rollback (WsTO). // Optional

7. OtherWS(TimeOut, WsTO, OtherWsTO). //If another

exception of time out is raised, search another alternative

service (defined in the next section).

Figure 2. Pseudocode of the TimeOut policy.

In order to handle the time out exception, the Web

service which has reached a timeout is cancelled. Then, the

Web service is repeated using the RepeatAfter policy and if

another timeout exception is captured Repeat the Web

service until the doubling timeout expired and expect that the

service will not miss this deadline with T = 2* T (by

doubling the time out). If this strategy does not work, the

exception can be handled by calling another equivalent and

compatible Web service.

Compensate(WsTO) : undoes the effect of task execution

result of the Web service (WsTO).

In compensation, information must be added in the

SOAP header in order to define that the Web service can be

compensated or not, <nsto :compensate enable= ―True‖ /> or

<nsto :compensate enable= ―False‖ /> .

 Rollback functionality RollBack (WsTO) is executed in

the reverse order of their forward execution and rolled back

to (WsTO) original state.

 The difference between compensate and rollback is that

compensate is a Forward Recovery and rollback is a

Backward Recovery, compensation or rollback are not

require in read-only Web service.

Compensation is run on the service provider's side by a

call to service. In our solution, compensation is considered as

a service call cancellation

If the temporal constraint assigned to the Web service is

higher than the execution time of the timeout policy

(RepeatAfter (Ws, T) + RepeatAfter (Ws, 2*T)) then all the

timeout policy is executed. Otherwise if the temporal

constraint is higher than the execution time of the

RepeatAfter (Ws, T) policy then only the stage one, two,

three, four and seven are executed in order to satisfy the

temporal constraint. In default only the stage one, two and

seven are executed to handle the critical Web service.

B. The RepeatAfter policy:

When an exception event is captured, the policy of

handling RepeatAfter allows to repeat the execution of a

Web service after its execution. A policy of handling

exception RepeatAfter (Exception e, WebServiceRepeatWs),

when a corresponding event of exception e is captured is

defined in Figure 3:

PSEUDO CODE 2. The RepeatAfter policy

1. CreateSilentPlace (S, simpleTransition,

simpleTransition). // Create a silent place S between two

simple transitions

2. CreatePlace (Sra, Seq, simpleTransition,

simpleTransition) // Create a new sequential composed

place Sra between two simple transitions.

3. ReplacePlace (RepeatWs, Sra). // Replace the composed

place RepeatWs by the place Sra.

4. RemoveToken (RepeatWs). // A token of state is

removed from the place RepeatWs .

5. AddExceptionToken (S). // Add an exception token to a

silent place S.

6. AddBefor (RepeatWs, S). // Add the place S before the

repeated place RepeatWs and run the new H-service-net

in order to handle the exception.

Figure 3. Pseudocode of the repeatAfter policy.

C. The OtherWs policy

The failure of a Web service Ws requires a search for

another Web service OtherWs offering, at least, the same

functionalities. The policy of handling OtherWs allows

running another alternative Web service in case the Web

service fails.

A policy of handling of exception OtherWs (Exception e,

WebServiceWs, WebServiceotherWs) when a corresponding

event of exception e is captured is defined as in Figure 4:

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

PSEUDO CODE 3. The OtherWs policy

1. DisableWs (Ws). // Cancel the fail Web service Ws.

2. CreatePlace (otherWs, simple, simpleTransition,

simpleTransition). // Create a new place OtherWs

between two simple transitions.

3. RemoveToken (Ws). //Remove the token of state in the

place Ws

4. AddExceptionToken (otherWs). // Add a token of

exception to the place otherWs.

5. CreatePlace (So, seq, simpleTransition,

simpleTransition) // Create a new composite place So

between two sequential simple transitions

6. ReplacePlace (Ws, So). // Replace the place Ws by the

composite place So.

7. AddTo (So, Ws). //Ajouter the service Web to be

cancelled in the made up place So.

8. AddAfter (Ws, otherWs) // Add after the place Ws the

place otherWs and run the new H-service-net in order

to handle the exception.

Figure 4. Pseudocode of the OtherWs policy.

During the execution of the network in Figure 1, an

exception of time out is raised from the flight ticket

reservation service Ws3. In order to handle the TimeOut

exception first, the Web service Ws3 is cancelled, and then a

repetition of the same service is performed using the

RepeatAfter policy and the network H-Service-Net will

become like Figure 5.

Figure 5. H-Service-Net before the execution of RepeatAfter policy.

After the execution of the RepeatAfter policy if another

exception of time out is raised, the TimeOut policy calls

another Web service using the OtherWS policy and the H-

Service-Net network will become as Figure 6. We note that

during the execution of the exception, the token of

exception has become a token of state.

Figure 6. H-Service-Net before the execution of OtherWS

V. IMPLEMENTATION

We developed H-Service-Editor to illustrate the viability

of the proposed composition and exception handling

techniques presented above. H-Service-Editor is a Web

service composition modeling tool with simulation

capability; it supports the creation of policies for handling

exceptions through the System of handling exception as

depicted in Figure 7.

Figure 7. Depicts a screen shot of H-Service-Editor

The authoring environment offers different views that

allow the composition of Web services and handling of

exception. The different views are:

— The graphical view: it displays the handling of

exception for all the policies introduced in this article in the

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

form of H-Service-Net model. The user can view the

different sequences and temporal relations between simple or

composite Web services before and after the manipulation.

— XML View: it displays the composition file of the

handling of exception in the Extensible Markup Language

(XML) standard format document

— The hierarchical view: It allows the representation

of services composition in the form of a tree structure. The

different services are represented in this area by hierarchical

structures similar to the H-Service-Net.

— Error message view: if any temporal conflict is

found, the tool displays an error message in order to offer

earliest error detection within the editing process of handling

exception.

VI. CONCLUSION AND PERSPECTIVE

In order to complete the H-Service-Net model, we have

proposed to apply to the H-Service-Net model a

manipulation of exception in a hierarchical way. This allows

an easy management of time out exception while

maintaining the fundamental design of Petri net simple and

easy.

Finally, an application (H-Service-Editor tool) of the

proposed approach is presented for the modeling of all the

policies of handling exception based on our model.

Until now the policies of handling exception are executed

manually. The next stage of our research will be to automate

the execution of the policies. Further research is needed to

consolidate this approach.

REFERENCES

[1] J. Caoqing, Y. Shi, H. Shanming, X. Hui and Q. Yueming ―A Formal
Model for Exception Handling in BPEL Process‖, 2nd International
Conference on Computer Science and Network Technology, 2012.

[2] M. Thirumaran, P.Dhavachelvan, K.Seenuvasan and G.Aranganayagi,
―A Novel Approach for Run Time Web Service Exception Handling‖,
Third International Conference on Advanced Computing, 2011.

[3] Q. Wang, S. Ying, J. Wen, and G. Lv ,―Policy-based exception
handling for BPEL processes‖, IEEE International Conference on
Information Science and Technology Wuhan, Hubei, China, 2012

[4] H. Rachid, B. Boualem and M. Brahim,―Self-adapting recovery nets
for policy-driven exception handling in business processes‖ Journal
Distributed and Parallel Databases vol. 23 Issue 1, pp. 1 – 44, 2008.

[5] A. Erradi, P. Maheshwari, and V. Tosic. ―Recovery policies for
enhancing Web services reliability.‖ In IEEE International
Conference on Web Services (ICWS’06), 2006.

[6] S. Hall ―Model-Based Simulation of SOAP Web Services From
Temporal Logic Specifications Sylvain‖, 16th IEEE International
Conference on Engineering of Complex Computer Systems, 2011.

[7] K. Christos, V. Costas, G and Panayiotis1, ―Towards Dynamic,
Relevance-Driven Exception Resolution in Composite Web Services‖
University of Athens ,University of Peloponnese, 2006

[8] K. Lau and C. Tran ,―Server-side Exception Handling by Composite
Web Services‖, School of Computer Science, the University of
Manchester 2008

[9] J. Huang, W. Zhu and J. Fu ―Automated Exception Handling in
Service Composition Using Holistic Planning‖, IEEE 15th

International Conference on Computational Science and Engineering,
2012.

[10] R. Prakash, R. Raja ―Evaluating Web Service Composition Methods
with the Help of a Business Application‖, International Journal of
Engineering Science and Technology Vol. 2(7), pp. 2931-2935, 2010.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-407-7

WEB 2015 : The Third International Conference on Building and Exploring Web Based Environments

