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Abstract—In this paper, we propose a new model to describe
vehicle dynamics in full braking situations with collision avoiding
motions. By combining the equations of the classic Ackermann-
Model with conditions that ensure a stable vehicle movement
during simultaneous heavy braking and turning motions, we
derive a model that describes the set of controllable trajectories.
We describe these trajectories by compound motion equations in
the x, y plane that are directly computable. We discuss our model
regarding uncertainties and their effect on reachability analysis of
vehicles in admissible scenarios, to show the feasibility of our so-
lution. We compare our model to the well known Constant-Turn-
Rate-And-Acceleration-Model which is computationally more
expensive and less precise. By considering uncertainties of the
parameters used in our model, we show a way to estimate the
reachable area of a hard braking vehicle.

Keywords–Reachability; Trajectory; Dynamic Vehicle Model;
Safety; Collision Avoidance; Braking.

I. INTRODUCTION

A. Motivation
Many functions in Highly Automated Driving (HAD) and

Advanced Driving Assistance Systems (ADAS) are discussed
regarding their safety towards events caused by other traffic
participants, whose behavior is not well predictable. In case
of an unforeseen event, vehicles need to avoid a collision by
a suitable trajectory. In literature, these trajectories are often
referred to as Fail-Safe-Trajectories. These trajectories can
either be evasive and try to find a solution around an obstacle
or bring the vehicle to an emergency stop. The vehicle is then
forced to find a trajectory till full stop within an area in front
of the vehicle, which is defined by its physical properties and
speed vector. In this paper, we call this area the braking area,
which is important to know in many different applications. For
example, when defining the set up of on-board sensors, it can
be useful to have a good knowledge of the braking area. Also
when searching for fail-safe trajectories, the knowledge of the
reachable set of vehicle states can significantly accelerate the
computation, as it reduces the search space and can therefore
save valuable time in emergency situations.

B. Literature overview
Computing the braking area of a vehicle is related to

finding fail-safe trajectories. Methods for avoiding obstacles
are numerous, see for example Werling et al. [1], where the
authors address dynamic street scenarios by an optimal control
approach. The method generates trajectories that are optimal
in terms of jerk minimization and following a previously
computed trajectory. Another approach is explained by Ziegler
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Figure 1. A critical traffic situation. Left, two vehicles approach a T-crossing
without seeing each other. Right, vehicle v1 is suddenly confronted with the
long vehicle v2 which blocks the road. To remain safe, v1 should always
know its reachable area in case of emergency braking.

et al. [2]. They use a cost function to plan obstacle avoiding
paths in unstructured environments, but not on the description
of fail-safe trajectories. Several approaches towards finding fail
safe trajectories for road vehicles exist. Pek and Althoff [3]
describe a method to generate fail-safe trajectories for dynamic
traffic scenarios in a computationally efficient manner. Their
solution approximates the set of reachable states of the ego
vehicle and other traffic participants and can therefore guar-
antee collision free trajectories. A motion planner for fail-safe
trajectories is shown by Magdici and Althoff [4]. A related
application is presented in [5], where a safety framework is
demonstrated that can test a planned trajectory for possible
future collisions.

Mitchell et al. [6] discuss different approaches of reacha-
bility analysis of dynamic systems for the safety assessment of
trajectories. Asarin et al. [7] present an approach for reacha-
bility approximation of partially linearized systems in general.
An often applied technique to approximate the state space
efficiently is by zonotopes, see, e.g., the paper of Girad [8].
Koschi et al. [9] introduce an open source software solution
which predicts road occupancy by traffic participants within a
given time horizon. By overestimating the occupancy by the
union of several object models, the authors ensure to find all
possible traffic configurations. Potential braking and turning is
overestimated by a circle of lateral and longitudinal maximum
and minimum accelerations. The physical interaction between
velocity and admissible lateral accelerations are therefore over-
estimated. Althoff [10] describes many underlying concepts of
reachability analysis for road vehicles. In contrast to formal
verification, ByeoungDo et al. [11] propose a Recurrent Neural
Net for predicting traffic participants. Explicit braking and
turning motions and their interrelation are not in the focus.
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Our model provides a more detailed and accurate description
of this interaction in order to reduce the overestimation towards
a more realistic model.

The interrelation of braking and turning is, e.g., discussed
by Giovannini et al. [12] where the authors describe the last
point in time when a collision can be avoided by swerving. The
authors explicitly focus their work on two-wheeled vehicles.
Ackermann et al.[13] present control strategies for braking
and swerving motions. Choi et al. [14] propose an additional
strategy based on model predictive control.

C. Contribution
In this work, we present an accurate model for estimating

not only a set of feasible trajectories of a vehicle while braking
and turning till full stop. We also discuss the model regarding
parameter uncertainties, to describe their effect on the overall
braking area. Thereby, we aim to overestimate the occupancy
where necessary, while reducing it where it is possible in order
to provide both safety and accuracy.

In Section II, we define a model that directly calculates
vehicle trajectories towards a full stop while simultaneously
braking and steering. Braking and steering always needs to be
done in a balanced way, as both influence the controllability
of the vehicle on the road. We therefore introduce a parameter
that describes the ratio of this compromise. Furthermore, the
friction between different road surfaces and tires is considered,
as well as the vehicles’ dynamic limits and initial state.
In Section III, we discuss how uncertainties of the model
parameters influence the braking area. We thereby provide an
estimation of the braking area in admissible situations.

II. MODEL DEFINITION

Physical model values are denoted as regular latin letters,
while angles are denoted as greek letters. Symbols used in this
paper are summarized in the following Table I:

TABLE I. SYMBOLS USED IN THIS PAPER.

Symbol Description Unit
Xi Model state at time i –
p Position ∈ R2 m

Xstop Stop state, v = 0 –
ψ Yaw Angle rad
b Braking Factor –
â Maximum admissible acceleration m/s2

rturn Minimum turning radius m
I• Interval of admissible values for • –

•min, •max Extreme values of I• –
f(t), f(t) Lower/Upper part of function f(t) –

A. Assumptions
Our model builds upon assumptions that describe braking

and turning in the following order of priority:

1) The vehicle needs to stop as quickly as possible.
2) By steering, the vehicle must try to avoid obstacles

if ever possible, or minimize an unavoidable impact.

These assumptions hold in many situations where a collision
can only be prevented by a full stop of the vehicle, as sketched
out in Figure 1. Due to the high speed of v2, the other
vehicle v1 can only react to the depicted incident by quickly
stopping. The purpose of the following model is to predict the
set of possible trajectories in space and time during braking
maneuvers in such situations.

B. Model derivation
Our model builds on the so called friction circle, e.g.

described by Pacejka [15]. As the modeled vehicle is braking
in order to come to a full stop quickly, it will always be
located near the boundary of this circle, either due to braking
only, or by braking and turning in combination. Staying at the
boundary of the friction circle means that the vehicle remains
controllable in such an extreme maneuver. The basic concept
of the friction circle is shown in Figure 2. The combined accel-
eration ares is the vectorial sum of the centripetal acceleration
acen = vψ̇ and the longitudinal acceleration alon. An ares > â
can not be achieved, because the tires would loose their grip.

alon

acen
a
res

r = â

Figure 2. Friction circle in the ax, ay-plane. Radius r is equal to the
maximally applicable acceleration â between vehicle and road surface.

Note, that the friction circle as shown in Figure 2 is an
idealized and simplified model of tire forces. A more accurate
model like the friction ellipse [15] will be implicitly considered
in the reachability estimation in Section III, by introducing
a high uncertainty in â. The circle leads to the following
equation:

ares =
√
a2

cen + a2
lon =

√
(vψ̇)2 + a2

lon (1)

For a braking and turning maneuver in an emergency
situation, we want to keep the vehicle controllable but also
apply the strongest acceleration possible in order to react
effectively. This constraints the vehicle to operate on the
boundary of the friction circle, as described by (2).

â =
√

(vψ̇)2 + a2
lon (2)

1) Interrelation between braking, steering and yaw rate:
The yaw rate ψ̇ describes the change in yaw angle ψ of
a vehicle over time. As the acceleration ares results from a
combination of braking and steering, the ratio alon/̂a causes
different trajectories. We define this ratio by the factor b, as
declared in (3), further on called Braking Factor. We call b
Braking Factor, as it describes the percentage of â that is
applied for braking rather than turning. A b value of −0.5
means that 50% of the applicable acceleration is applied for
braking. Note, that â is positive, but when braking alon is
negative, hence we choose b ∈ [−1, 0].

b :=
alon

â
(3)

Solving (2) for ψ̇ yields a description of ψ̇(t), see (4).

ψ̇(t) =
â
√

1− b2
v(t)

(4)
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Equation (4) describes the yaw rate ψ̇(t) of a vehicle that
stays at the boundary of the friction circle with radius â. This
describes the interrelation between braking, steering, and yaw
rate.

2) Vehicle yaw angle as function of time: The vehicle’s
yaw angle ψ determines its travel direction, so a description
of ψ(t) is required for the model, as shown in (5).

ψ(t) =

∫
ψ̇(t)dt = Z(ln (v(t))− ln (v0)) + ψ0 (5)

v(t) = alont+ v0 (6)

Z = b−1
√

1− b2 (7)

where v(t) is the linear speed equation (6) and Z is a constant
described by (7).

The angle ψ(t) rises in its absolute as the speed v falls.
Figure 3 depicts this relation for an exemplary vehicle. The
major flaw of this description is that the yaw rate tends
towards ∞. This is not possible for any real vehicle, as the
limit for a real vehicle is reached when the steering wheel
reaches its maximum position and the minimum turning angle
is performed. This effect is depicted in Figure 3 in the dashed
line. As the speed approaches zero, ψ(t) approaches ∞. A
realistic model must therefore respect the smallest turning
radius rturn. As ψ̇ of a moving object is also defined as

ψ̇(t) =
v(t)

r

where r is the radius of the object’s circular path, the maximal
ψ̇(t) can be described by (8).

ψ̇(t) =
v(t)

rturn
(8)

By solving
â
√

1− b2
alont+ v0

=
v(t)

rturn

for t we know the time tcrit at which the yaw rate will reach
its mechanical maximum, as shown in (9).

tcrit =

√
rturnâ

√
1− b2 − v0

alon
(9)

At times above tcrit we therefore describe the yaw angle by
ψ =

∫
ψ̇(t)dt, as shown in (10), in order to derive a realistic

model.

ψ(t) =

∫
v(t)

rturn
dt =

1
2alont

2 + v0t+ constψ
rturn

(10)

where constψ must be defined in a way that the condition

ψ(tcrit) = ψ(tcrit) (11)

holds. The condition means that the angle at tcrit must be
equal for both (5) and (10). It yields constψ as:

constψ = rturnψ(tcrit)−
1

2
alont

2 − v0t (12)

The sectionally defined yaw angle ψ, consisting of ψ and ψ,
is plotted in Figure 3 (solid line). Note, how ψ now drops with

falling speed, which directly follows from (8). The dashed
line plots ψ(t), which approaches ∞ as the speed approaches
zero. This follows from its property to be at the boundary of
the friction circle. At low speeds, this can only be achieved
by high yaw rates.
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t[s]

0
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6

Ψ
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Ψ(t)

Ψ(t)

Figure 3. The yaw angle ψ over time t during braking and steering. Dashed
line plots ψ(t). Solid line plots the combined stepwise definition ψ(t) which
considers the turning radius rturn for t > tcrit.

The final description of ψ(t) is defined stepwise in (13).

ψ(t) =

{
ψ(t), 0 ≤ t ≤ tcrit

ψ(t), tcrit < t ≤ tstop
(13)

Note, that due to the equality condition of yaw angles
in (11) and the definition of tcrit in (9) the final yaw angle
ψ(t) is differentiable. Also note, that then t > tcrit, the vehicle
in our model is no longer at the boundary of the friction circle.

3) Vehicle position as function of time: A description of
vehicle position p(t) = [x, y] is described as the compound
equations for x and y, which follow from the integrals:

x(t) =

∫
v(t) cos (ψ(t))dt

y(t) =

∫
v(t) sin (ψ(t))dt

Solving the integrals yields:

x(t) =
v(t)2 (Z sin(ψ(t)) + 2 cos(ψ(t)))

alon (Z2 + 4)
+ Cx (14)

x(t) = rturn sin(ψ(t)) + Cx (15)

These equations describe position over time x(t) and y(t).
See stepwise (16) for x(t).

x(t) =

{
x(t), 0 ≤ t ≤ tcrit

x(t), tcrit < t ≤ tstop
(16)

The constant Cx is bound by the conditions x(0) = x0,
which means the vehicle must be at the starting position at
time t0. The constant for x, Cx is bound to hold the condition
x(tcrit) = x(tcrit), which means that x must seamlessly – e.g.
in value and gradient – be continued by x at tcrit. The result
for both constants is described by (17) and (18).

Cx = x0 −
v2

0 (Z sin(ψ0) + 2 cos(ψ0))

alon(Z2 + 4)
(17)

Cx = x(tcrit)− rturn sin(ψ(tcrit)) (18)
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The general description for y(t) is shown below in (21),
and can be derived analogously to x(t).

y(t) = −v(t)2 (Z cos(ψ(t))− 2 sin(ψ(t)))

alon (Z2 + 4)
+ Cy (19)

y(t) = −rturn cos(ψ(t)) + Cy (20)

y(t) =

{
y(t), 0 ≤ t ≤ tcrit

y(t), tcrit < t ≤ tstop
(21)

Cy = y0 −
v2

0 (Z cos(ψ0)− 2 sin(ψ0))

alon(Z2 + 4)

Cy = y(tcrit) + rturn cos(ψ(tcrit))

The trajectory of a braking and turning vehicle is described
as p(t), by the compound x- and y-position in Cartesian
coordinates over time. How the more realistic yaw angle
description influences the resulting position can be seen in a
direct comparison in Figure 4. The vehicle performs a spiral
shape until the maximum turning angle is reached, which is
clearly visible in Figure 4b. In a real situation, this trajectory
with such a low b value will most likely not be considered
feasible for braking, it rather demonstrated the spiral nature
of our model. Note, that all other b ∈ ]−1, 0[ also describe
spirals, only less clearly visible as in Figure 4a.
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(a) Calculated position p(t) with
b=− 0.5.
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(b) Calculated position with
b=− 0.085.

Figure 4. Vehicle position p(t) in x, y plane with different values for b.
Dashed line, the model result without considering rturn. Solid line, the model
considering rturn, using the final model equations.

In the next step, we compare our trajectories to simulative
results of another model.

4) Comparison of our model against CTRA model: To
evaluate our model’s performance with respect to calcula-
tion time and to show its correctness, we compare it to
a CTRA-model [16] Constant Turn Rate and Acceleration
in a simulation. The CTRA simulation iteratively moves a
vehicle, such that our condition in (2) is fulfilled, and the
assumptions introduced in Section II hold. The simulation
therefore calculates effectively the same maneuvers as our
model, but in a very different way. We choose the CTRA-
model, as it is well known, allows the vehicle to follow a
spiral shape and has the same state space representation as
our model. The turn rate and acceleration is assumed to be
constant within one of many consecutive time steps ∆t.

0 10 20
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−10
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y
[m

]

Our model

(a) Our braking model.

0 10 20

x[m]

−10

0

10

y
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CTRA

(b) CTRA model, ∆t = 0.0075s.

Figure 5. Comparison of our model to the CTRA model for 40 vehicle
trajectories with linearly sampled b values. The starting conditions for both
tests are v0 = 16.67m/s, â = 10m/s2, rturn = 12.5m,ψ0 = 0 rad.

The result in Figure 5 shows that our model matches the
shape of the CTRA-model well, without introducing lineariza-
tion errors as the CTRA model does.

Both results from Figure 5 show a very similar structure.
Note that the CTRA model (Figure 5b) has slightly longer
trajectories, especially in the outer arms of the structure. This
is caused by the CTRA-model’s assumption of a constant turn
rate ψ̇, which is not correct in this kind of non-linear maneuver.
In our model (Figure 5a), the only assumption is that of a
constant acceleration, as introduced in Section II.

The main advantage of our model is the fact that we
can directly compute certain vehicle positions straight from
the formulas derived in Section II such that time intensive
calculations are not necessary. A comparison of computation
times tcalc in seconds, and their deviation σtcalc over 10 runs is
shown in Table II. In the first test, only the stop states where
computed of 1000 different b values. In the second test, a whole
pearl chain of positions from start to stop was computed, with
250 points per b value.

TABLE II. COMPARISON TO THE CTRA MODEL.

Calculate 1000 possible stop states, ∆t = 0.01112s
v0 5 m/s 10 m/s 20 m/s

Mean
tcalc[s] σtcalc

Mean
tcalc

σtcalc
Mean
tcalc

σtcalc

CTRA 1.0715 0.0137 2.1975 0.0052 4.9310 0.1073
Our model 0.2059 0.0053 0.2078 0.0017 0.2144 0.0075
Calculate 1000 trajectories, 250 samples per trajectory, ∆t = 0.01112s
v0 5 m/s 10 m/s 20 m/s

Mean
tcalc

σtcalc
Mean
tcalc

σtcalc
Mean
tcalc

σtcalc

CTRA 1.0870 0.0207 2.2335 0.0096 4.9761 0.0814
Our model 0.2310 0.0017 0.2326 0.0021 0.2320 0.0011

The table shows that our model is up to 20 times faster in
terms of computing time than the CTRA model, especially for
high initial velocities v0. This is caused by the fact that CTRA
must iteratively compute time steps until the stop position is
found, whereas our model can directly compute the stop state.

III. DISCUSSION OF MODEL UNCERTAINTIES

In this section, we discuss the effect of individual uncer-
tainties in the model parameters rturn, â and the initial vehicle
state X0 = [x0, y0, v0, ψ0]

T . We model the uncertainties as
intervals IΘ,IX0

that contain all possible values.
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A. Highest possible deceleration â
The highest possible deceleration heavily depends on the

road and tire conditions, which are often uncertain. The
interval Iâ therefore covers the most slippery and most rough
road condition possible. Calculating different stop states Xstop
with different values for â reveals an almost linear behavior
within expectable values of â ∈ Iâ.

The resulting shape of 50 different â ∈ Iâ can be seen in
Figure 6a, where lower values of â lead to a farther vehicle
trajectory with an almost linear behavior.

0 20 40

x[m]

−20

0

20

y
[m

]

(a) Resulting trajectories at interval
Iâ = [4, 12]m/s2.

0 25 50

x[m]

−20

0

20

y
[m

]

(b) Resulting trajectories at intervals
Iâ = [4, 12]m/s2,
Iv0 = [15.3, 18.1]m/s

Figure 6. Two sets of trajectories with a b value of −0.6. Left, only
considering Iâ. Right, considering Iâ and Iv0 . A line segment shows the
extending effect of the parameter uncertainties on the top half.

B. Smallest possible turning radius rturn

The smallest possible turning radius rturn is a vehicle
inherent parameter which influences the trajectory after tcrit
and also defines the value of tcrit itself. Although there are
certain legal requirements for rturn depending on vehicle class,
the exact value is uncertain, especially when considering other
traffic participants.

Any rturn ∈ Irturn causes a different stopping position.
Unfortunately, the lowest or highest rmin not always leads
to the outmost stopping position. By observing the stopping
positions depending on rturn, one can see that the shape of all
stopping positions with different rturn ∈ Irturn forms a spiral
with a rising radius. Let A be the stopping position of the
lowest rturn, A = Xstop|rturn,min , and B = Xstop|rturn,max . The
circle with radius r = dist(A,B) at center A then includes
all points of the spiral, which means all stopping positions can
be overestimated by such a circle. By describing this distance
as function d = f(â, v0), it can be shown that the maximum
distance is at dmax = f(âmin, v0,max). Figure 7 shows an
example of such a circle.

In order to show the spiral effect in Figure 7, we assumed
Irturn = [1e−7, 13]m and v0 = 10m/s, which results in a circle
radius of ≈ 2.4m. For a more realistic scenario of Irturn =
[7, 13]m and v0 = 10m/s, the radius of the circle is ≈ 1.3m.

C. Initial velocity v0

The uncertainty in the initial velocity Iv0 determines the
stopping distance similarly to Iâ, as it stretches the possibly
reachable positions farther from the start. This means the clos-
est reachable position is defined by v0,min and âmax, which
stands for a very rough road-to-tire surface. In contrast, the

5 6 7 8

x[m]

2.5

3.0

3.5

4.0

y
[m

]

rturn,min
rturn,max

Figure 7. Effect of Irturn onXstop. The figure shows how a circle can surround
all stopping positions caused by different rturn ∈ Irturn =[1e−7, 13]m.

farthest reachable stopping position is defined by the highest
velocity v0,max on the most slippery road âmin possible. An
example of the resulting shape is shown in Figure 6b.

D. Initial position
The initial position of the vehicle will always be uncertain,

as no perfect localization is possible. The effect of an uncertain
starting position (x0, y0) is however not complex, as a different
starting position of ∆x,∆y simply causes a translation of the
complete reachable area of ∆x,∆y.

E. Initial yaw angle
The initial yaw angle rotates the complete reachable area

around the starting position of the vehicle. Figure 8a shows an
example of this effect, where Iψ0

= [−π/32, π/32].

F. Combination of all uncertainties
So far, we discussed the uncertainty of parameters sepa-

rately. To describe and overestimate all system states that can
potentially be reached under all uncertainties is not in the scope
of this paper. In order to do so, a formal reachability analysis
must be performed, compare for example [5][6][10][17].

0 10

x[m]

−10

−5

0

5

10

y
[m

]

(a) Trajectories at interval
Iψ0

=[−π/32, π/32].
Other parameters, b= − 0.6,
â=4m/s2, v0=15.3m/s,
rturn =12.5m.

(b) Trajectories at interval
Iâ=[7, 11]m/s2, Irturn =[7, 13]m,
Iv0 =[15.3, 18.1]m/s,
Iψ0

=[−π/32, π/32]rad,
Ix0 =Iy0 =[−1, 1]m.

Figure 8. The effect of uncertain parameters. Left, only Iψ0
is considered.

Right, all parameters are assumed uncertain.

By sampling all parameters from I and calculating all
combinations, we can estimate the reachable area non formally
by the union of the resulting shapes. In Figure 8b we show
such a result, where Iâ = [7, 11], Irturn = [7, 13], Iv0 =
[15.3, 18.1], Iψ0

= [−π/32, π/32], Ix0
= Iy0 = [−1, 1]. We

sample 3 parameters of each interval.
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IV. CONCLUSION

In this paper, we present a model for hard braking and
collision avoiding vehicle trajectories. We take into account
the maximally applicable acceleration/deceleration between
tires and road surface, the minimal turning radius, the vehicle
velocity, as well as starting position and heading. We explain
our approach in detail and compare our model equations
with an iterative CTRA-model simulation, which finds very
similar solutions. However, in tests we could show that our
solution computes stopping positions and trajectories up to 20
times faster than CTRA. By solving the compound differential
equations for position in x, y-plane, we describe the complete
vehicle motion till full stop, while also turning and still
respecting the friction circle. With the derived equations, we
can directly compute possible positions that a vehicle will
reach in a braking and collision avoiding scenario. This might
be used to generate braking and collision avoiding trajectories,
by sampling our model for different feasible motion primitives,
which can be computed in very short time.

We contribute a model that can aid in solving reachability
problems for hard braking vehicles in an accurate and yet
overapproximative way, considering all uncertainties in model
parameters and start state of the vehicle.

As next steps, the proposed model for vehicle motion
can be compared to the trajectories of real vehicles under
the same assumptions given. Another next step might be the
usage of our model for fast generation of braking trajectories
by sampling motion primitives and compare the solution to
other state of the art methods. As we can directly compute
motion primitives for the highly non linear motions in braking
and collision avoidance the proposed model can significantly
reduce valuable trajectory generation time. Another aspect that
can be tested is to apply our model in a formal reachability
analysis for risk assessment in hard braking traffic scenarios
and compare the solution to other contributions in the field of
reachability analysis.
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