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Abstract— The Deep Learning techniques are a powerful tool 

to support the development of all sorts of information 

classification or processing techniques within the area of 

intelligent vehicles, since they are able to emulate the 

performance of the human brain when learning from 

experience. Specifically, the technique of Convolutional Neural 

Networks (CNN) has been successfully used in applications for 

classification and localization of pedestrians and obstacles on 

the road. However, CNN allow not only classification and 

pattern learning, but can be used for regression or modeling, 

like other kind of classical neural networks. The fundamental 

difference of both applications is that, while in classification 

the values of the network output are usually discrete, in 

regression or modeling applications the network can generate a 

continuous output with real numbers, allowing it to emulate 

the output of any type of system that is presented in the 

training set, with all its associated advantages, such as 

generalization and correct characterization of situations that 

have not learned explicitly. This paper presents an application 

of CNN for modeling in Intelligent Vehicles field, whose 

objective is to calculate the navigation parameters of a vehicle 

from the information supplied by a 3D LiDAR mounted on a 

vehicle that circulates in urban areas. Specifically, the 

developed CNN is able to calculate the speed and heading of a 

vehicle circulating in real time from the distance data supplied 

by the LiDAR sensor. The results show that the network is able 

to learn to calculate the speed and the yaw rate from the 

identification of the characteristic points of the environment, 

providing data that can be used to support the navigation of 

the vehicles. 

Keywords - deep learning; autonomous vehicle; odometry; 

LiDAR. 

I.  INTRODUCTION 

Intelligent vehicles are characterized by equipping a large 
number of sensors and computer and communication 
systems, capable of providing all the information required 
for some advanced driving assistance systems, such as 
cooperative systems, specifically on the field of autonomous 
vehicles navigation. This large number of sensors allows 
monitoring the driving environment with high precision, 
even beyond the visual horizon due to the communications 
systems and, at the same time, supporting a safe navigation. 
However, this instrumentation has two fundamental 
problems. On the one hand, the high number of sensors 
(Computer vision, 3D LiDAR, Ultrasounds, Radar, Gyro, 
Compass, GPS, etc.) requires a large investment in these 
vehicles, increasing production costs. On the other hand, 

many of these sensors provide redundant information, which 
may or may not be used by the system, which in many cases 
underuse this data. 

In this way, one of the most widely used sensors in the 
environment recognition of intelligent vehicles is the Laser 
Scanner 3D or LiDAR. This type of sensors usually provide 
an array of points with the distances from the sensor to the 
different elements of the environment in a range of 360º. 
Generally, this accurate information of the driving 
environment is used for the detection of pedestrians, vehicles 
or other obstacles on the road. However, since this precise 
information about the environment is available, it is possible 
to use it for other applications, such as navigation support [1] 
or visual odometry. 

 Visual odometry has been one of the last research fields 
to take part into the autonomous navigation applications. In 
general terms, visual odometry techniques tackle the SLAM 
(Simultaneous Localization And Mapping) problem, 
estimating the vehicle ego-motion and locating it in an 
unknown environment by using perception sensors as main 
source of information. Both estimating an accurate motion 
and tracking the vehicle route are two of the most difficult 
tasks in robotic and therefore in autonomous vehicle 
development. Solving the SLAM problem allows to perform 
critical tasks, such as the autonomous navigation where GPS 
signal can be lost or driving through complex areas, among 
others. In recent years, different visual odometry techniques 
have been developed using computer vision, stereo vision 
[2], LiDAR [3] or a sensory fusion between them [4][5]. 
Each of these algorithms, extract specific features of the 
environment such as flat surfaces, vertical corners, sharp 
angles, etc., from the data supplied by the sensor in each case 
and followed by a matching process between frames. 
Furthermore, in some cases it is necessary to make use of 
external motion sensors (e.g., IMUs, GPS/INS) in order to 
decrease the error. Another solution employed is the “loop 
closure” method when the incremental errors over time 
produce some drift. This implies that it does not work in real-
time. 

On the other hand, one of the most promising techniques 
for application, in multiple domains in general and in 
intelligent vehicles in particular, is Deep Learning. Deep 
Learning comprises a set of intelligent and bioinspired 
techniques based on neural networks with multiple hidden 
layers (usually more than 3). Convolutional Networks, 
autocorrelators, deep belief networks and Long Short-Term 
Memory (LSTM) are the four basic neural network 
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Figure 1.  Convolutional network architecture proposed. 

 

techniques that establish the Deep Learning framework. 
Convolutional layers in a network are specialized in image 
processing and are those that learn the convolutions to 
perform on the input data (image pixels) to filter it or obtain 
relevant features. Specifically, the convolution processes an 
input image to obtain its relevant features. Adding several 
Full Connected traditional layers to the convolutional layers, 
the resulting network is able to identify patterns in the 
images, classifying them as belonging or not to a particular 
class or standard (e.g., pedestrian or car), and are widely 
used as classifiers for camera-based systems in the field of 
intelligent vehicles. 

 Due to all these characteristics, CNN is starting to be 
used in autonomous vehicles applications. As mentioned, 
this type of networks is mainly used in classification and 
pattern learning when the number of outputs is discrete. 
Because of this, several works have implemented CNN 
based system to identify obstacles in autonomous navigation 
[6]. On the other hand, CNN are not only being used for 
classification, but also for estimating the vehicle ego-motion. 
In this way, according to [7], using stereo vision and 
extracting features, is possible to estimate vehicle velocity 
and direction, even though it calculates only discretized 
values. In turn, in [8] LiDAR information is used to estimate 
odometry using regression, which entails, continuous values 
as output. However, in that work, voxel grids are used to 
extract generic features.  

In this paper, a novel application of convolutional neural 
networks within the field of intelligent vehicles is presented. 
Thus, a CNN based system is proposed that is able to 
calculate the speed and yaw rate of a vehicle that circulates 
in urban areas at speeds up to 50 km/h. Specifically, it is 
proposed to use this type of networks using as input the 
information of the point cloud provided by a 3D LiDARIn 
addition, using this type of Deep Learning technique, allows 
a better understanding of the potential that CNNs have. 
Furthermore, this special application for autonomous 
vehicles is crucial, due to the high computational cost of the 
system when using a great number of data and classic 
programming methods. In this way, the CNN used is able to 
supply a precise output of the navigation parameters of the 
ego-vehicle and reduce drastically the computational cost 
once the network model is trained. Pre-training or 
environment features extraction is not previously made. This 

system has been implemented, trained and tested in the 
facilities and with the vehicles of the University Institute of 
Automobile Research (INSIA) of the Technical University of 
Madrid, obtaining results comparable to the data supplied by 
high performance speedometer, GPS and gyroscope. 

The paper is structured as follows, in Section II, the 
architecture of the CNN used is described as well as how the 
training process has been tackled. In Section III, the 
procedure for transforming the raw data to the image-data for 
the network input is adressed. The results of speed and yaw 
rate  obteined in the test dataset are shown in Section IV. 
Finally, in Section V, the conclusion and further works are 
dicussed. 

II. CONVOLUTIONAL NETWORK ARCHITECTURE, 

PARAMETERS AND TRAINING FRAMEWORK 

A. Architecture description 
 

A Convolutional Neural Network is a feed forward 
neural network mainly composed of convolutional layers. 
Those layers are the matrices shown in (1) 

H W C   

Where H and W are spatial dimensions and C the number 
of channels (or channel dimension). 

The architecture presented here is the result of a number 
of trial-and-error steps with different network sizes (both 
number of layers and convolutional networks dimensions), 
learning methods and parameters. The final architecture is 
summarized in Figure 1. The network is made up of six 
layers – four convolutional layers and two fully connected. 

The input to the network is presented as 8×300×2 
images, where the two channels corresponds to the image 
created from the points data captured by the LiDAR at “t” 
and “t-1”. Then, features are extracted through the 
convolutional layers, adjusting the resulting features to the 
final two values (speed and yaw rate) using two fully 
connected layers. 

Each convolutional layer is composed of three or four 
operations or sub-layers: 

• The convolution operation itself, where, given an 
image with the pattern defined in (1), a set of filters 

( N M C   matrices where N≤H and M≤W) 
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traverse the image with a step of 1 extracting 1 value 
for each sub-image. 

• A Rectified Linear Units (ReLUs) [9] network, with 
neurons whose activation function is: 

( ) max(0, )f x x  

Its purpose is to introduce non-linearity to the net. 
Other functions like (3) and (4) can also be used but 
they are much slower in terms of training time than 
ReLUs [9].  

( ) tanh( )f x x  

1
( )

1 x
f x

e



 

• Local response normalization operation [10], whose 
aim is to increase the differences (i.e., improve the 
contrast) between adjacent pixels. 

• Maxpool operation, is a non-linear subsampling 
method where a filter and a step are defined (usually 
a N×N filter with a step of N), replacing each subset 
of that window size by its maximum value. 

The first and second convolution layers have a dimension 
of 3×15×32. The maxpool operator is applied at the end of 
the second layer with a 2×2 dimension with a step of 2, so 
the output is an image of dimensions 4×150×32, that is, 32 
features. Third and fourth convolution layers have a 
dimension of 2×5×64. As with the second layer, a maxpool 
operator of same dimensions and step size is applied at the 
end of the fourth layer so the output for this layer has the 
dimensions 2×75×64, then 64 features. 

The fully connected layers are traditional feed-forward 
neural networks where all the outputs of one layer are 
connected to all the inputs of the next one. In this case, the 
first fully connected layer transforms the 2×75×64 outputs of 
the last convolutional layer to a vector of 512 values. This 
outputs are then transformed into the last 2 values by second 
fully connected network. 

Finally, a learning-with-dropout scheme has been used, 
with a dropout rate of 0.9 (10% of the neurons are removed 
each iteration). The dropout technique [11] is a way to avoid 
overfitting by randomly removing some of the neurons in the 
network each iteration. This way of learning makes the 
neurons not to learn by memory, but sharing knowledge 
among several instead. 

B. Learning operation 

The proposed model was trained using a stochastic 
gradient-based optimization algorithm called Adam [12] 
with a learning rate of 1e10⁻⁵ throughout 3,000 iterations. It 
has been tested with different learning rates: 1e10-3, 1e10-4 
and 1e10-5. With a learning rate of 1e10-3 and 1e10-4, the 
convergence behavior obtained suggested that it was too 
high for the topology of the particular problem. Therefore, it 
has been chosen to use this value of learning rate. 

The network was developed in the Python programming 
language with the help of the TensorFlow library [13] for the 
modelling and parallel training setups. 

For the selected training dataset, this convolutional 
network configuration took 55 hours on a computer with 
GNU/Linux, a Xeon E3-1200 (family) v3/4th Gen Core 
Processor and a NVIDIA GTX 980Ti with 6GB and 2816 
CUDA cores. As mentioned above, the execution time once 
the network is trained, allows the performance in real time. 

III. DATASET AND TESTS 

The architecture of the described network uses raw data 
obtained by the 3D LiDAR as input. This makes possible 
that the implementation of the trained network in the on-
board computer be simpler and not dependent on extra 
sensors. As outputs, this network estimates the vehicle speed 
and its yaw rate. 

In order to create the dataset of the network, a pre-
treatment of the LiDAR data was performed. As ground 
truth, it has been used the speed data available from a 
speedometer and the yaw angle acquired by a high accurate 
Gyro, placed on the vehicle. 

For a neural network training, it is necessary that the 
number of inputs and outputs is the same for all the dataset. 
Furthermore, when using convolution networks, a type of 
images has been developed from where the features are 
extracted. 

The creation of these data-images requires several 
processing steps of the raw data of the laser scanner for each 
frame: 

 

• First, the laser field of view (FOV) range is defined. 
Vertically, the range of vision is set between 3º and  
-11º, dividing the laser points in 8 rows. The 
horizontal FOV comprises two 150° areas located on 
both sides of the vehicle and placed centrally on its 
transverse axis (Figure 2). This range of vision was 
chosen given that it contains the area in which the 
environment perception generates the better amount 
of information for the estimation of odometry. 

 

Figure 2.  Horizontal FOV and its discretization. 
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• The LiDAR sensor used does not guarantee the 
generation of the same number of point in each 
revolution. Thus, in order to obtain the same amount 
of the data in each frame, the horizontal FOV is 
discretized with an amplitude of 1º (Figure 2). The 
distance of the LiDAR-points is acquired and these 
points are classified according to its horizontal angle 
and the channel through they were obtained. For this 
reason, 300 values are acquired in each of the 8 
channel defined previously. This will be the data 
image resolution. In the case that more than one 
point exists for the same “pixel”, the one presenting 
the lowest distance value remains. 

• The disadvantage of LiDAR versus computer vision 
technology concerns the data dispersion when the 
distance is greater. Due to this, obtaining data that 
does not satisfy the conditions of the “pixel” is a 
possibility. Therefore, when a “pixel” with a null 
value is acquired in the image, a linear interpolation 
between the near valid values is done. In addition, as 
mentioned in other works [14], points density per 
length unit is inversely proportional to the distance 
to the sensor. Thus, in order to compensate the 
values distribution, a logarithmic filtering is applied 
in each pixel-value, followed by a normalization 
between 0 and 1, according to the distance. As a 
result, the histogram after this calculation is widely 
distributed throughout the normalized distance range 
(Figure 3). 

 

Figure 3.  Data with and without logarithm applied. 

As a result, in Figure 3 the original normalized data 
is shown in red. This value distribution is 
concentrated in a narrow range (between 0.8 and 1). 
In contrast, the data distribution after apply the 
logarithm to widen along the entire range is 
represented in blue.  

• Finally, two data images are created, one for each 
channel of the network (parameter C in (1)) (Figure 
4). The first corresponds to time “t” and the second 
is the image defined for time “t-1”. The data 
acquisition is at 10 Hz, so the time transition is 0.1 s. 

As outputs, the average speed and the yaw rate 
during the transition time are included. 

 

Figure 4.  Example of data-images in a specific observation. 

Figure 4 represents one of the images create for the CNN. 
The horizontal range of vision discretization results in 300 
divisions, while the data is adquised by 8 channels 
corresponding to the vertical range of vision, defined 
between -11º and 3º. Therefore, the image size is 8×300 
pixels. Each of those pixels is the distance data of the LiDAR 
points after the logarithm has been applied and normalized.  

Neural network training requires a large amount of 
observations. This is why create a dataset for Deep Learning 
applications take a considerable amount of time. As a 
solution for this problem, a "mirror function" was 
implemented. This function doubles the number of 
observations used for training, obtaining twice the number of 
valid samples and taking into consideration new situations in 
the environment. This is possible because the "mirror 
function" calculates the inverse of data-images and their 
outputs, simulating a data acquision performed in a non-real 
scenario whose trajectory is the inverse of the real-scenario. 

IV. RESULTS AND DISCUSSION 

Several data collections were performed and the correct 
behavior for the network training was proven.  

In this case, a route at Campus Sur - UPM has been 
selected, which corresponds to a one-way street with 2 lanes 
and cars parked on both sides of the road (Figure 5). 

 

 
 

 

63Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications



 

 

Figure 5.  Urban area selected for the CNN training set. 

Specifically, a data collection for the training set during 
one hour was made, the equivalent to 25.6 km in an urban 
environment. During this data collection, the urban scenario 
had dynamic traffic, tight bends, diaphanous areas, buildings, 
etc. In addition, the driving mode was different throughout 
the entire test, with varying speeds, changing lanes and 
making stops. The training data collection consists of 34,530 
observations, which gives rise to a total of 69,060 samples 
when applying the “mirror function” mentioned above. 

Regarding the dataset test for the network, a different 
route was chosen, where one part corresponded to the same 
zone as the training set and the other part was an unknow 
area. This dataset test comprises 2.85 km or 4,756 
observations. 

Once the network training was finished, the CNN model 
was applied to the dataset test. The results obtained are 
depicted in Figure 6 and Figure 7 for the vehicle speed and 
its yaw rate, respectively. 

Figure 6.  Speed estimation in test dataset. 

 

Figure 7.  Yaw rate estimation in test dataset. 

It can be considered that the estimation of the speed is 
accurate, mainly focusing on the accelerations and 
decelerations, where the value estimated by the network and 
the real value have the same outline, obtaining a Root Mean 
Square (RMS) error after 3,000 epoch of 3.61 km/h. 

Concerning the yaw rate, the estimation is quite precise, 
being better adjusted to the actual data when there are 
concatenated path changes. An RMS of 2.8 º/s is obtained of 
the whole test after 3,000 epoch. 

Both Figure 6 and Figure 7, illustrate that between the 
time instants 150 s and 250 s the estimation of the values and 
the real data differs somewhat more. This is largely due to 
the fact that it corresponds to the unknown area in which it 
had not previously circulated and which did not correspond 
of the training dataset, as previously described. On the other 
hand, the network was able to generalize unknown 
surroundings and the performance in this specific situation is 
reasonably successful. 

It must be mentioned that the RMS obtained are in the 
dataset test and that it is different from the learning RMS, 
which has been 0.92 km/h and 0.94 º/s for the whole training 
set. 

It can be assumed that the network, with a short training 
set, is capable of learning and generalizing. However, the 
CNN should be taught with training sets that include other 
road types to be able to operate in all cases. Not a great 
number of areas, but situations that serve as models. 

V. CONCLUSION 

In this paper, an application of Deep Learning techniques 
to estimate the visual odometry of an autonomous vehicle 
has been presented. Specifically, the information provided by 
a 3D LiDAR has been used as input of a Convolutional 
Neural Network with a novel architecture that is able to 
estimate the values of speed and yaw angle. This system has 
been implemented, trained and tested in the facilities of the 

 

 

64Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications



University Institute for Automobile Research, using its 
Campus as testbed area. The results of the implementation 
and commissioning of this system is that the CNN is able to 
successfully estimate the output values, generalizing 
correctly when in situations that have not been previously 
learnt by the network. Two conclusions have been achieved 
of the work presented in this paper: on one hand, a novel 
application of CNN for regression in visual odometry has 
been developed. On the other hand, the results of this system 
show that the network need typical road areas to learn how to 
estimate the navigation parameters and, from these data, is 
able to generalize the navigation of different areas not learnt. 

In future works, the main aim will be improving the 
output precision, collecting data of specific environments 
and traffic situations. Also, changes in the network 
architecture here described, are providing useful information 
about the contribution of each layer. For that reason, adding 
additional convolutional layers may improve the overall 
performance. 
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