
Positioning and Perception in Cooperative ITS Application Simulator

Ye Tao, Manabu Tsukada, Hiroshi Esaki
Graduate School of Information Science and Technology, The University of Tokyo

Email: {tydus, tsukada}@hongo.wide.ad.jp, hiroshi@wide.ad.jp

Abstract—Intelligent Transportation System (ITS) is an intelligent
system which can make the road traffic safer, more efficient,
and more comfortable. The prerequisites of ITS are positioning,
perception and networking. Different ITS infrastructures and ap-
plications are built by a large society from academia and industry.
Nevertheless, the state-of-the-art network application simulators
lack the capabilities to access the position and perception related
information. In this paper, we proposed one extension to NS-
3 network simulator and two to DCE application simulator, to
bring the positioning and perception sensors to the simulated
application. Both positioning and perception were designed fully
experimental reproducible, and the simulated perception sensor
can be adjusted to accommodate different types of devices. With
the proposed work, much more scenarios of ITS applications
can be tested, including Position Based Routing, Cooperative
Awareness, etc.

Keywords–Intelligent Transportation System; Vehicular Ad-hoc
Network; Network Simulator; Network Application Simulator; Per-
ception Aware Simulator

I. INTRODUCTION

Intelligent Transportation Systems (ITS) aim at optimiza-
tion of the road traffic by realizing safe, efficient and com-
fortable transportation. Cooperative ITS is a branch of ITS
features sharing the information between nodes to realize their
common objects. Application of Cooperative ITS includes
driver assistance in the near future, however the vehicular
communication also remains essential in autonomous driving
in order to support wider perception of the other vehicles
around a vehicle that cannot be detected by the sensors
equipped in the vehicle.

In order to connect among vehicles and roadside units,
GeoNetworking [1] is employed as one of the network pro-
tocols in the ITS station architecture [2], because the ge-
olocation based routing features the strength in the network
with dynamic topology compared with topology based rout-
ing. GeoNetworking employs position-based routing VANET
(PBR-VANET) to adapt to high-speed movement requirements.
PBR-VANET is a type of VANET routing protocol that uses
the position information of nodes to direct routing. It does
not maintain routing tables or exchange link state information.
Such a routing protocol shows better performance in a highly
dynamic topology, where link states change frequently. How-
ever, the vehicle movement scenarios in the simulations are
“hand-crafted” and not realistic enough nor scalable enough.
We need a network simulator which can provide GPS function,
to make the experiments scalable and realistic.

Cooperative Awareness (CA) Service is a service defined
in the ITS station architecture [3]. It enables ITS vehicles to
report their position through the GeoNetworking, making the
automated driving software on the other ITS station be aware
of the vehicle. Nevertheless, in the deployment period of ITS,

we could not assume every vehicle to be ready for the CA
service. Thus, some transition techniques will be required.

Contributions to CA service can be evaluated in the field
operational tests (FOT). However, the FOTs can take very
expensive devices and human power, which could render the
experiments unscalable. If we come to a realistic perception-
aware simulator, experiments in large fields and large scale
network will become possible.

From the examples above, we know that conducting real
field experiments are costly and not scalable. This is why
a position and perception enabled simulator is essential for
evaluating the ITS researches.

In the different fields, the researchers have invented differ-
ent sorts of simulators, including:

Network Simulators models and simulates different kinds
of network with differnt layers, from wireless radio to
application protocols.

Program / Application Simulators provides reproducible
and scalable simulations of real programs for programmer
to debug.

Transportation Simulators understands real maps. It could
simulate vehicle behaviors on the roads simultaneously
and output their positions for the other simulators.

Different kinds of the simulators are not aware of the other
parts. Network simulators do not know the road and vehicle
information which came from the transportation simulators;
vehicles in the transportation simulators cannot reflect the
feedback from ITS application; application simulators are not
capable of realizing the feedback from the vehicle simulator.
This issue may be caused by the separation of different
research fields: perception simulators are developed by the
robotic researchers; transportation simulators are developed by
vehicle researchers, etc. On the other hand, ITS applications
may have all the portions above involved. Thus, it requires
connections among the different simulators, to make an inte-
grated simulated environment of the ITS application.

For our small step towards the integrated simulated en-
vironment, we propose a framework of realizing positioning
and perception functionalities with the network and application
simulators in this paper. It will enable the simulated appli-
cations to get the position of the vehicles they are deployed
into, which is essential for PBR-VANET. Also, the application
simulator will be equipped with virtual perception sensors,
which made it capable of simulating the Cooperative Aware-
ness applications.

The remainder of the paper is organized as follows.
Section II describes some related works includes Intelligent
Transportation Systems, network and application simulators
and an novel work of obstacle radio propagation extension
for the Network Simulator 3 (NS-3). Section III analyzes the
functionalities should be fulfilled by the VANET application

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications

simulator and additional requirements to the improvements.
Section IV gives an overview of the new framework with three
parts, to provide the capabilities mentioned above. Section V
and VI details the design and implementation of positioning
and perception respectively. Section VII shows two use cases
with the extensions, one per function. Finally, Section VIII
summarizes our contributions and briefly explores directions
for future work.

II. RELATED WORK

This section presents various related work in two parts:
Intelligent Transportation System and Network Simulators.

A. Intelligent Transportation System
The road network is inter-connected among countries and

there are few barriers and using the network, the vehicles
easily cross country border. For the interoperability among the
countries, cooperative ITS needs to be developed based on the
same architecture, protocols and technologies. Europe has huge
necessity of standardization of Cooperative ITS and European
Commission (EC) published the action plan [4] followed by
ITS standardization mandate [5], to promote the deployment of
these systems in Europe. In US, the Institute of Electrical and
Electronics Engineers (IEEE) is standardizing Wireless Access
in Vehicular Environments (WAVE) architecture in IEEE 1609
family of standards [6] as well as IEEE802.11 variant for
vehicular communication as IEEE802.11p [7]. Cooperative
ITS and vehicular communications became essential for the
cooperation of multiple entities in the road traffic (i.e., vehicles,
roadside infrastructure, traffic control centers) in order to
achieve shared objectives (safety, efficiency, and comfort).

GeoNetworking [1] has been standardized by ETSI as
a network layer protocol. It integrates several Position-
Based Routing (PBR) strategies, including Greedy Forwarding
(GF) [8] (also known as GPSR), which chooses a directly
reachable node that is closest to the destination according to
the GPS location obtained by the Location Service(LS) request
action, to route packets more effectively in vehicular networks.

In the literature, the evaluation of GeoNetworking can be
performed in flexible and large-scale simulated the network
with low cost. However, mere simulations cannot provide
realistic evaluation results for a specific implementation of
GeoNetworking. In contrast, the experimental evaluation using
the implementation in a field operational testbed gives real
results in the deployment phase of GeoNetworking. Though in
practice, it requires a heavy cost to conduct the experiments
regarding time, manpower, space, and expense. To take the
benefits of real field test and simulation, a realistic network
simulator with geo-positioning features is necessary.

In Vehicle-to-Vehicle (V2V) architectures, the “I-am-here”
messages are widely employed to notify the surrounding about
the position of the vehicles. In the ITS station architecture, this
type of message is named as Cooperative Awareness Message
(CAM) [3].

CAMs are messages exchanged in the ITS network be-
tween stations to create and maintain awareness of each other
and to support the cooperative performance of vehicles using
the road network. A CAM contains status and attributes infor-
mation of the originating ITS-S, e.g., time, position, motion
state, activated systems. On reception of a CAM, the receiving

ITS-S becomes aware of the presence, type, and status of the
originating ITS-S.

Due to realistic reasons, such as market penetration ra-
tio, CAM could not be required to be deployed on every
vehicle. This may cause a serious problem because the ITS
stations cannot be aware of vehicles do not equip with ITS
infrastructures. To solve this problem, [9] have proposed an
infrastructure-bases Proxy CAM under some environments. It
employs roadside units (RSUs) to detect non-ITS objects and
generate and broadcast CAMs in the behavior of them.

In the proposal, RSUs are assumed to be equipped with
sensors in charge of object detection. On the contrary, in the
experiment setup, there is only one stereo camera, because of
the limitation of cost and manpower. In other words, the work
needs to be evaluated in large scenarios. The only promising
way to achieve this is the simulation.

B. NS-3 Direct Code Execution
NS-3 is a discrete-event network simulator, which is widely

used in networking researches. NS-3 Direct Code Execution
(NS3-DCE)[10] is an application simulator based on NS3. It
mainly features reproducible experiments and easy debugging.

In the paper, the authors emphasized experiments repro-
ducibility which was defined by [11]: experimentation realism,
topology flexibility, easy and low-cost replication.

NS3-DCE takes a Library Operating System (LibOS) ap-
proach to making a slightly modified Linux kernel network
stack running in the simulated environment. It implements a
standard-compatible POSIX layer for user applications to be
built onto, with no or minor modification. It makes developing
and testing new protocols easier and more predictable. Also,
it achieved a very good performance compared to the other
works such as Mininet.

NS3-DCE have a modified Linux kernel layer and its own
implementation of POSIX layer. Subsequential researchers are
made easy to extend it to realize new functions or improve the
performance.

C. Obstacle and Radio Fading Model in NS-3
Carpenter et al. [12] proposed an obstacle model imple-

mentation for the NS-3, in order to simulate radio shadowing
in the NS-3 environment.

The radio shadowing model is separated into three layers.
First, it uses a polygon to hold the outline of an obstacle (e.g.,
outer walls of a building). Then, it defines the Topology to
handle the set of the polygons, which including the handling
the data imported from OpenStreetMap. Finally, it uses the
Computational Geometric Algorithms Library (CGAL) to cal-
culate the radio shadowing according to the Topology.

In the implementation, it extended the ns-3 in two parts:
the core part and the radio propagation part. Three
main classes are defined as follows:

Obstacle implements the polygon related data structures.
This class is an extension of the core layer.

Topology operates on the set of Obstacles, which includs
handling of the data imported from the OpenStreetMap.
This class is also an extension of the core layer.

ObstacleShadowingPropagationLossModel
extends the standard interface

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications

PropagationLossModel, which calculate the
path propagation loss by the obstacle information.
It could be plugged into any user program with the
PropagationLossModel compatible interface.

The paper presented a concrete and promising implemen-
tation of the radio shadowing model. However, work only
provides the model for radio shadowing. Thus, we need a
different model for perception calculation. Fortunately, we may
re-use the infrastructures including polygons and topology to
get rid of re-inventing the wheel.

III. PROBLEM STATEMENT AND REQUIREMENTS

In the last section, we have detailed the missing func-
tionalities for network and application simulators and shown
some related works about obstacles. In this section, we will
analyze the issues we’ve found in the last section and detail
the desired functionalities of the system, then define some
additional requirements to our proposal.

A. Position-awareness in application
Obviously, every ITS applications requires knowing the

position of the vehicle, either directly or indirectly.
In order to bring the positioning to the applications, we

need to fill the gap between Network simulator and ITS appli-
cations, by extending the application simulator. Two additional
requirements should be fulfilled.

Keep standardized protocol
Standardized protocols are important because user appli-
cations usually builds according to the standard. If we can
stick with the standard protocols, user applications can
be simulated directly without any changes. This benefits
our user (researcher) on both programming simplicity and
does not require extra testing / debugging regarding the
protocol changes.
In our case, Global Navigation Satellite System (GNSS)
could be selected. Among the GNSSes, the most widely
known and used system is the Global Positioning System
(GPS). Most of the GPS devices follows the “NMEA
0183” standard. NMEA 0183 is an ASCII character and
sentence based protocol running on the serial RS-232
port. It also allows simultaneous listens to a same device,
a.k.a broadcasting. These features made it relatively easy
to be implemented.

Experimental reproducibility
As we described above, experimental reproducibility is
essential to application simulator. Experimental repro-
ducibility requires the simulation to the positioning device
fully determinative. The output of the device should
be completely same between different simulations (and
unrelated simulation configurations). This requirement
may bring extra challenges to the design of the simulated
device.

B. Object-detection functionality in NS-3 and application
In robotics, perception (or machine perception) means the

ability a computer receives the real world data and interpret
them similar humans beings. In the ITS, perception is also
a fundamental requirement, since the autonomous vehicles
should always aware of what happens the around them. In the
most basic period, we narrow the term “machine perception”

into “machine vision”, which itself is based on object-detection
functionality.

Nevertheless, the object-detection function is missing on
both NS-3 and DCE. Thus, we need to implement it from
scratch in NS-3, then provide a simulated sensor interface to
the user program through DCE. Two requirements are defined
in the design, as well as the most basic one: experimental
reproducibility.

Scalable to large-scale scenario
Performance and scalability should be an important con-
sideration. If we come to a factorial complexity (O(n!))
approach, even fastest computers cannot make the simu-
lator scale into hundreds of vehicles. In order to conduct
large-scale experiments, we should optimize the compu-
tational complexity by workaround the time-consuming
part, and make sure it is well scalable.

Able to accommodate different types of sensors
In the market, various types of perception sensors based
on different technologies are developed, including vision-
based, lazer-based, IR-based, doppler-based, etc. Different
types of sensors greatly differ on functionalities and per-
formances. The simulator should be able to accommodate
these types of sensors, to fulfill the requirements of
experimented applications.

IV. OVERVIEW OF POSITION AND PERCEPTION
SIMULATION

In this section, we will discuss how to realize the position
and perception in NS3-DCE and give out our proposals.

Hereby, we define full-simulation and para-simulation
which are similar to the widely-used term full-virtualization
and para-virtualization [13]:

Full simulation
Fully reflect the behavior of the simulatee, which means
the interface to the device and the protocol are completely
identical as the real device. In our case, a full-simulated
device does not require any modification to the user
program.

Para-simulation
A technique to provide an interface to the device, but not
identical to the real underlying hardware. This approach
may boost the performance by bypassing unnecessary
work from the protocol and data representation. In our
case, a para-simulated device requires a user-mode dae-
mon or plugin to the user program to cooperate with.

Figure 1 is a simplified module graph of the NS-3 and
DCE, with the extended modules. Three new modules are
required: GPS and Perception Sensors in the DCE, and
Object Detection in the NS-3.

V. DESIGN AND IMPLEMENTATION OF POSITIONING

In the last section, we proposed a architecture considering
the extension to NS-3 and DCE. This section details the design
and implementation of the positioning module.

A. Position augmentation, stablize and coordinate conversion
In order to generate GPS signal, we need to convert the

cartesian coordinate in the NS3 to the GPS coordinate (i.e.,
latitude and longitude). Several parameters are defined to make
the simulation scalable to different GPS devices.

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications

Network
StackScheduler GPS

Timing Positioning

...

Simulated Program

NS-3

DCE
Perception

Sensors

Object Detection

Static
Obstacles

Networking
Models

Figure 1. NS3-DCE architecture and extended modules

center The center coordinate of the experiment, in (latitude,
longitude).

accuracy The accuracy of the simulated GPS device, in m.

To make the node position more realistic, we did some
data augmentation to add randomness to it. For the exper-
imental reproducibility, the randomization approach should
be fully deterministic. NS-3 provides deterministic Ran-
dom Number Generators (RNGs) including different distri-
butions. In the case, we use a NormalRandomVariable
with σ = accuracy ÷ 3 for the radius and a
UniformRandomVariable with range [−π, π) for the an-
gle.

Then we did a sensor fusion to stabilize the randomized
position using the Kalman Filter Algorithm. The internal
variable of the filter is stored with the state of RNGs in the
DceNodeContext, which is used for keeping the per-node
information, in order to keep the experimental reproducibility
among different experimental setups. Finally, the NS-3 coor-
dinate is converted into GPS coordinate.

B. NMEA full-simulation
We take the fully-simulation approach because of the

requirement of keeping on standard format, i.e., the NMEA
format.

The data flow is shown in Figure 2. A unix character
device /dev/ttyGPS is exposed to the user program.
The device driver is defined in the POSIX layer and
named UnixGPSttyFd. When the device is read by
a program, DCENodeContext::GPSttyRead()
is called. Then the function call another function
DCENodeContext::GetGPSPosition() to get the
“GPS position” from the mobility model in NS-3.

After the DCENodeContext::GetGPSPosition()
got the node’s real position according to the mo-
bility model, it calculates the GPS position as de-
fined in Section V-A. Then the function returns to the
DCENodeContext::GPSttyRead(). Here, the function

DCE

Posix Layer

Node 0 Node NNode 1
...

DCENodeContext::

GPSttyRead()

UnixGPSttyFd

DCENodeContext::

GetGPSPosition()

NS-3

MobilityModel::GetPosition()

MobilityModel::

m_position

Read()

/dev/ttyGPSGPGGA,...

GPGGA,...

(lat, long)

(x, y)

Figure 2. GPS device data flow

generate the necessary GPS flavor NMEA clauses (specifically
GPGGA and GPRMC) and finally return to the caller program.

VI. DESIGN AND IMPLEMENTATION OF PERCEPTION

This section describes an on-going work towards the per-
ception functionality of NS-3 and DCE. According to the
architecture defined in Figure 1, vehicle perception sensor
simulation on the DCE is based on the object detection
function on NS-3.

A. Architecture overview
In NS-3, polygons and some of its operations are sup-

ported through the CGAL by the obstacle extension module
contributed by [12]. Additionally, the module comes with
an approach to import obstacle information from the Open-
StreetMap (OSM). These functions can be reused as a common
infrastructure in NS-3 to represent and handle obstacles, with
several new functions.

On the other side, the vehicles themselves are also poly-
gons. We can define the outline of each type of vehicles as 2D
polygons, and then they can be awared in the calculation. Other
types of objects (e.g., non-its vehicles, non-motor vehicles,

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications

pedestrians) can be defined as “stub nodes”, i.e., nodes do not
run any protocol stacks or programs on it.

Based on the static obstacle and vehicle outline representa-
tion, the object detection simulation could be realized. When
an object-detection is requested on a sensor, it counts all the
vehicles (including stub ones) which are within or intersects
with its sensing range. Then a line-of-sight check is performed
to check each vehicle in the range is visible, or fully blocked
by either static obstacles or another vehicle at the moment.
Finally, for each visible vehicle, an ID is assigned to it, for
both NS-3 representation and simulated sensor representation.

B. Modeling the sensors
Currently, different types of perception sensors are avail-

able on the market. According to [14], vehicle perception
sensors can be classified into different types, including vision-
based, lazer-based, IR-based, radar, doppler, ultrasonic, induc-
tion loop, magnet field, etc. To accommodate different types
of perception sensors, several sensor parameters are defined:

position Coordinate of the sensors, in (x, y). Follows the
position of the node, if not specified.

range Shape of the sensible region of the device, in one of
the Circle_2, Circular_arc_2, Polygon_2.

min_size Minimum object size (in solid angle) which could
be detected.

accuracy Accuracy of the simulated sensor, in m.
capability Mask of capabilities the sensor has (identify vehi-

cles, classify vehicles, or just count)

For instance, several sensor products could be modeled
with parameters in Table I.

C. The Para-simulation
Different from the position part, we decided to follow the

para-simulation approach for the perception. The reasons are
as follows:

Firstly, the vehicle perception sensors do not have a widely-
used standard protocol: different products require user appli-
cations to communicate in different protocols, and also they
need different routines to achieve the object-detection from
the device data. In this case, extra developing will always be
required for a new type of device, including our simulated
ones.

Secondly, object-detection from the images or point-clouds
are very time-consuming, as well as image generation, if we
use a full-simulation approach. To simplify and speed-up the
simulation, we bypass the Object → Image → Object Detec-
tion routine and directly offer the result of object detection to
the user program. We model different types of the perception
sensors and define several arguments to imitate the behavior
and performance of each sensor.

Node 1

sensord

DCE

Posix Layer

...

NS-3

Read()

/dev/ttySensor0(Encoded data)

(Encoded data)

[(id, lat, long, type), ...]

[(id, x, y, type), ...]

Node 0

sensord

Node N

sensord

UnixSensorttyFd

DCENodeContext::

SensorttyRead()

DCENodeContext::

GetDetectedObjects()

ObjectDetectionModel::

GetDetectedObjects()

Figure 3. Perception sensor device data flow

The data flow is shown in Figure 3. Unlike the GPS
approach described above, we inject a program sensord to
the user environment, which is in charge of communication and
object-detection. Sensord comes with an SDK with libraries
to access the data, like other real sensor hardware does.

The sensord program communicates with the POSIX
layer with the character device /dev/ttySensor0. The
posix layer processes in a similar way as the GPS device, and
finally the request comes to the NS-3 Object detection model.

The model returned the raw data which is presented as
a list of id, x, y, type, and is subject to extend. Then the
DCENodeContext::GetDetectedObjects() function
converts the (x,y) coordinate into the GPS coordinate, with
the help of the utility from GPS model. The function
DCENodeContext::SensorttyRead() encode the data
in json (to keep flexibility to extensions) and return to the
user space daemon sensord. Sensord decodes the data
and return to its subscriber (i.e., the user programs in the same
node).

VII. USE CASES

Here, we show some example that our extensions could be
employed. Both positioning and perception sensing are most
common tasks in ITS. Our work will be useful for various
kinds of scenarios and not limited to the following ones.

A. Position Based Routing
The Position-based routing algorithms are not perfect

enough and needs improvements on different issues. GeoNet-
working is not an exception. We presented a proposal named
“Duplicated Unicast Packet Encapsulation” [15] to improve
the reliability of the GeoNetworking protocol for important
multi-hop messages by employing overlay networking and

TABLE I. PARAMETERS FOR DIFFERENT TYPES OF SENSORS

Sensor Type ZMP RoboVision II Velodyne LiDAR Diamond Phoenix II

Type Stereo camera Laser Radar Induction Loop
Position In-vehicle / Fixed In-vehicle / Fixed Fixed
Range Sector, 80m Circle, 100m Circle / Rectangle, 1m
Min Size 50cm, 10cm ... 10cm, 10cm
Accuracy 30cm
Capability Identify Identify Classify

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications

multipath routing. It presents an implementation based on
an open-source ITS network stack, and several (real and
simulated) experiments were conducted on the “Combined
Realistic Evaluation Workflow” [16]. However, the vehicle
movement scenarios in the simulations are “hand-crafted” and
not realistic enough nor scalable enough. With the proposed
work, we can conduct experiments with real street maps, to
make the experiments scalable and realistic.

B. Cooperative Awareness Messages
In order to keep compatibilities with the plain old manual-

driving vehicles, some transition techniques of Cooperative
Awareness Service is required. Kitazato et al. [9] proposed
a preliminary work call “Proxy CAM”. By using perception
techniques provided by sensors, road-side units (RSUs) could
aware of the non-CA-ready vehicles and send CA messages
(CAMs) on their behalf. In the paper, they conducted several
simple and small-scale experiments using three to four nodes.
Apparently, those are far not enough to evaluate the proposal
in a large scenario.

A realistic simulator with sensors enabled could greatly
help the evaluation. We can build flexible scenarios based
on real maps of different cities, and deploy various types of
position sensors on various type of objects, e.g., LiDARs and
stereo visions on the ITS enabled vehicles, dopplers on traffic
lights, induction detection loops under the road.

VIII. CONCLUSION

In this paper, we proposed methods to realize positioning
and perception devices in the application simulator NS3-
DCE. Both work we proposed satisfy the “experimental repro-
ducibility” request, i.e., producing deterministic result among
different simulation runs. Additionally, we attempted to model
different types of perception sensor techniques and bringing
adjustable parameters for flexibility to the users of the simu-
lator.

The design and implementation of perception are not
finished yet. In the near future, we will finish the following
targets:

Update Location Module
We have built a prototype location module with basic
function (i.e., NMEA simulation). The data augmentation
is not implemented yet. We will rewrite the location
module with the data augmentation and other features.

Implement 2D Perception
Currently, 2D perception is in the design period. In the
future, design and implementation challenges may occur.
The challenges should be overcome or workaround.

Evaluation
After the location module is updated and 2D perception
module is implemented, we are able to conduct exper-
iments on it. With the help of the modules, large-scale
experiments using the real world map become possible.
We will evaluate using different applications, maps of
different cities, and different types of the perception
sensors.

ACKNOWLEDGMENT

We would like to thank Xin Li of our lab, for his ground-
breaking ideas of the prototype GPS mocking implementation,

e.g., intercepting device handler for the GPS device. We also
thank Masahiro Kitazawa, for his knowledges and ideas on the
characteristics of various types of perception sensors.

This work was supported by JSPS KAKENHI Grant Num-
ber JP17H04678 and JP26730045.

REFERENCES
[1] Intelligent Transport Systems (ITS); Vehicular Communications;

GeoNetworking; Part 4; Sub-part 1, Std., Jul. 2014. [Online]. Avail-
able: http://www.etsi.org/deliver/etsi_en/302600_302699/3026360401/
01.02.01_60/en_3026360401v010201p.pdf

[2] ISO 21217:2010 Intelligent transport systems – Communications access
for land mobiles (CALM) – Architecture, ISO CALM TC204 Std., April
2010.

[3] Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Part 2, Std., Sep. 2014. [Online]. Avail-
able: http://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.
03.01_30/en_30263702v010301v.pdf

[4] Action plan for the deployment of Intelligent Transport Systems in
Europe, European Commission Std., December 2008, cOM(2008) 886
final.

[5] Standardisation mandate addressed to CEN, CENELEC and ETSI in
the field of information and communication technologies to support the
interoperability of co-operative systems for intelligent transport in the
european community, EUROPEAN COMMISSION Std., October 2009.

[6] IEEE 1609.0 Draft Standard for Wireless Access in Vehicular Environ-
ments (WAVE) - Architecture, IEEE Std., April 2010.

[7] IEEE Standard for Information technology - Telecommunications and
information exchange between systems - Local and metropolitan area
networks - Specific requirement, Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Computer Society Std., July 2010, iEEE Std 802.11p-2010.

[8] B. Karp and H. T. Kung, “Gpsr: Greedy perimeter stateless routing
for wireless networks,” in 6th Annual International Conference on
Mobile Computing and Networking, MobiCom 2000, August 6.-11.,
2000, Boston, Massachusetts, USA. ACM / IEEE, August 2000, pp.
243–254.

[9] T. Kitazato, M. Tsukada, H. Ochiai, and H. Esaki, “Proxy coopera-
tive awareness message: an infrastructure-assisted v2v messaging,” in
Mobile Computing and Ubiquitous Networking (ICMU), 2016 Ninth
International Conference on. IEEE, 2016, pp. 1–6.

[10] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,
and W. Dabbous, “Direct code execution: Revisiting library os ar-
chitecture for reproducible network experiments,” in Proceedings of
the ninth ACM conference on Emerging networking experiments and
technologies. ACM, 2013, pp. 217–228.

[11] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging net-
working experiments and technologies. ACM, 2012, pp. 253–264.

[12] S. E. Carpenter and M. L. Sichitiu, “An obstacle model implementation
for evaluating radio shadowing with ns-3,” in Proceedings of the 2015
Workshop on ns-3. ACM, 2015, pp. 17–24.

[13] A. Whitaker, M. Shaw, S. D. Gribble et al., “Denali: Lightweight virtual
machines for distributed and networked applications,” Technical Report
02-02-01, University of Washington, Tech. Rep., 2002.

[14] T. V. Mathew, “Automated traffic measurement,” Trac Engineering
And Management, IIT Bombay April, 2012. [Online]. Available:
https://www.civil.iitb.ac.in/tvm/1111_nptel/524_AutoMer/plain.pdf

[15] Y. Tao, X. Li, M. Tsukada, and H. Esaki, “Dupe: Duplicated unicast
packet encapsulation in position-based routing vanet,” in 2016 9th IFIP
Wireless and Mobile Networking Conference (WMNC), July 2016, pp.
123–130.

[16] Y. Tao, M. Tsukada, X. Li, M. Kakiuchi, and H. Esaki, “Reproducing
and extending real testbed evaluation of geonetworking implementation
in simulated networks,” in The 10th International Conference on Future
Internet. ACM, 2015, pp. 27–34.

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-573-9

VEHICULAR 2017 : The Sixth International Conference on Advances in Vehicular Systems, Technologies and Applications

