
A Functional Requirement Traceability Management Methodology for Model-based
Testing Framework of Automotive Embedded System

Kabsu Han, Jiae Youn, Jeonghun Cho
School of Electronics

Kyungpook National University
Daegu, Republic of Korea

{kabus, jiae0620}@knu.ac.kr, jcho@ee.knu.ac.kr

Abstract— We present an automated functional requirement
traceability generation and management methodology for model-
based testing framework. Traceability of software was recognized
in 1960s and international standard was established in 1980s. In
automotive industry, lots of researches for the requirement
traceability are performed but not practical for testing. This paper
presents traceability fundamental and practical case study for
model based testing of automotive embedded system that includes
generation of the functional requirement traceability.

Keywords - Model-based testing; Rrequirement management;
Test automation; Traceability; Functional requirement ;

I. INTRODUCTION

The traceability was pointed as an issue of interest in
software engineering and recognized to discuss the problem
of software engineering in 1968 [1]. In 1980s, traceability
was founded as a requirement in lots of national and
international standards for software and system development.
In automotive industry, automotive embedded systems
increase steadily as the requirements and functionalities
increase. Furthermore lots of companies, such as OEM,
suppliers, are involved in developing the automotive
embedded system. Although model-based development and
testing are widely used [5][6], the requirements and
traceability of automotive embedded system cannot be
managed easily. This paper introduces the concept of
required traceability for model-based testing and proposes
practical framework that include bidirectional traceability
among requirements, models and test cases. Also, practical
requirements tracing with commercial tools are described.

Section 2 describes entire model-based testing process.
Section 3 and Section 4 describe background knowledge
about requirement engineering and traceability with standard
and COTS tools. Section 5 shows case study for model-
based testing of automotive embedded system. Finally,
Section 6 describes conclusion.

II. MODEL-BASED TESTING

In model-based testing (MBT), the test developer simply
describes a functional model of the system under test (SUT).
A test sequence generation algorithm that can be selected by
hand in the test case generator creates test cases to verify

and validate the functional model of the SUT. A test case
generator creates test cases that can run on the SUT from the
functional test cases. After that, a test automation tool
executes the test cases on the SUT automatically. Reports
that compare each output from the SUT and the expected
results are generated automatically. Test coverage and
reliability of the test depend on the model of the SUT and
the test sequence generation algorithm; even test cases can
be generated manually and automatically. Figure 1 shows
the entire process of MBT [2].

Figure 1 Model-based testing process

The MBT method requires more steps and tools than the

manual testing method, such as modeling, test case
generation, and test case execution. Making a model of the
SUT is describing a functional model of the system that
needs to be tested. The modeling has to focus on the
functional requirements of the system that the test developer
wants to test. The model of the SUT may omit a lot of the
details of the SUT that are not related to the testing. After
describing the model, it has to be verified and validated for
MBT. Most modeling tools provide automated verification

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

and validation tools. Also, a graphical verifier is very useful
to easily check the model.

The next step is generation of functional test cases from
the model. The test developer has to decide the test selection
criteria in order to generate efficient test cases. Because
infinite numbers of test case are available, a plan to test all
cases is impractical. Through selection criteria, coverage of
the test cases is decided, and functional test cases that are
test sequences of the model are generated. Figure 2 shows a
transition based test coverage of black-box testing. The
functional test cases are a kind of simple view of the SUT,
so they do not contain detailed information to execute test
cases directly on the SUT.

Figure 2 Transition based test coverage

The generation of an executable test case, called a test

script, is required to execute the generated test cases on the
SUT. The adaptation and transformation approach can
execute test cases on the SUT. The test case generation tools
have to fill in detailed information of a low-level SUT that
are not described in the functional model.

One of the benefits of MBT is independence between
test cases and test environment. By regeneration of
executable test cases, the same set of test cases that includes
the models can be reused in different test environments.

III. REQUIREMENT ENGINEERING

The requirement engineering phase is the first step of
model-based testing. The requirement engineering process
can be divided into 6 processes like below [1][3][5].

- Requirement elicitation
- Requirement analysis
- Requirement specification
- System modeling
- Requirement validation
- Requirement management

During early phase of the requirement engineering, user

requirements are elicited and analyzed. The requirement
elicitation is about the understanding the problems to solve.
Because user requirements can be conflicting among them,
requirment engineer have to make decisions to elicit and
analyze the requirements that have to be specified. After the
problems to solve are understood and analyzed, they have to
be described for the requirement specification. The
requirement specification has to describe the product to be

developed not the process. In automotive industry, some
certification standards, such as IEC 61508 and ISO26262
for the product, are proposed. To specify requirements, lots
of techniques can be used, such as informal and formal
description. In model-based testing, system modeling will
be described with appropriate modeling language, such as
FSM, MSC and UML, according to the requirement
specification. After that, the requirement specification can
be verified and validated through the system modeling.
Depending on the modeling language, lots of verfication and
validation method can be used, such as simulation and
formal verification. Also, the requirement specification has
to be managed during the entire project. These requirements
consist of functional things that have to be provided and
non-functional thing such as performance, reliability, cost.
Throughout in this paper, the functional requirements are
considered and the requirement management tool is used to
manage the requirements.

In many cases, requirements are elicited as documents
format, such as MS word and excel. But these cannot be
used for requirement specification and requirement
management tool directly. Also, the requirement
specification in requirement management tools cannot be
exchanged easily. To solve this problem, automotive
industry proposed requirement exchange format, called Rule
Interchange Format (RIF) [7]. The new name Requirement
Interchange Format (ReqIF) was introduced by OMG in
2011 [8]. RIF/ReqIF is an XML file format that can
exchange the requirements between requirement
management tools from different vendors. Also, the
requirement exchange format defines a process to transform
the requirements between partners. EAST-ADL2, a kind of
European architecture description language, proposed a RIF
importer/exporter extension already. IBM DOORS, the
requirement management tool, supports RIF/ReqIF importer
and exporter and MS documents importer/exporter. Also,
the Requirement Modeling Framework (RMF), open-
source-framework with requirements, supports ReqIF
standard [9].

IV. TRACEABILITY

In a software and system engineering area, the trace can
be defined like below [1].

- A specified triplet of element comprising: a source,

a target and a trace link which connecting a
source and a target. When more than a source and
a target are associated by a trace link, such as a
sub-pair of a source and a target, the sub-pair are
treated as a single source or a target.

- The action of following a trace link from a source
to target.

The trace can either be atomic or chained. The

traceability is the potential ability for traces. To assure the
traceability, each of the sources, targets and trace links have
to be acquired and stored. After that, software and system

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

engineering activities and task can be traced as shown in
Figure 3. The traces exist within specific development and
maintenance life cycles. Also, the trace can be reused in
different life cycles. The requirement traceability is the
ability to describe and follow the requirement lifecycle in
forwards and backwards direction. The tracing is the
activity of either establishing or using traces. The tracing
can be divided into 3 types, manual, automated and semi-
automated.

- Manual tracing – traceability is established by

human tracer. Traceability creation and
maintenance with drag and drop user interfaces
are used in requiremnt management tools
commonly.

- Automated tracing – traceability is established via
automated tools and methods. Typically,
traceability creation and trace link maintenance
are automated.

- Semi-automated tracing – traceability is
established via combination of automated tools
and human activities. For example, automated
tools sugguest candidate trace links and human
tracer verify them.

Figure 3 Traceability Model

In model-based testing, lots of traceability links are

required like below [3].

- traceability between requirements
- traceability between requirements and system

model
- traceability between requirements and test cases
- traceability between requirements and test reports

The traceability between requirements can be supported

by the requirement document tools and the requirement
management tools. In case of MS documents, MS office
XML format are XML-based document formats and XML
schema introduced in Office 2007. MS word and MS excel
documents can import from and export to XML format.
IBM DOORS can import from MS document and export to
MS document. If importer and exporter between tools are
not supported directly, RIF/ReqIF can be used to exchange
the requirements, such as Papyrus MDT and plug-in. Figure
4 shows exporter of MS word and IBM DOORS.

Figure 4 Requirement importer and exporter between MS word and IBM
DOORS

The traceability between requirements and system model

also can be supported the requirement management tools
and modeling tools. Mathwork MATLAB/SIMULINK with
verification and validation toolbox supports traceability link
to MS word, MS excel and IBM DOORS. This toolbox can
generate multiple traceability links with MS word bookmark,
MS excel cell and DOORS object semi-automatically.
When traceability links are generated, MS documents and
DOORS objects are indicated with MATLAB/SIMULINK
icon. Figure 5 shows traceability links on Stateflow model
and Figure 6 shows Traceability links on MS documents
and DOORS objects.

Figure 5 Traceability links on Stateflow model

In case of automotive embedded system, to execute the

test cases that are generated from the functional
requirements with System under test (SUT), I/O ports and
in-vehicle network (IVN) interfaces are required [4].
Appropriate commercial-off-the-shell (COTS) tools as a de-
facto in the automotive industry, such as Vector CANoe and
dSPACE microautoboxII, can be used to execute test cases.
Vector Test Automation Editor can generate executable test
cases with XML format and supports traceability between
requirements and test cases/test reports. The generated test
cases can be executed on Vector CANoe through IVN.
Depending on the DOORS objects, test groups and test
cases are generated automatically in XML test module. The

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

title of test groups and test cases are object id of DOORS.
The test descriptions are imported from DOORS and
external reference to DOORS are generated automatically.

Figure 6 Traceability links on MS documents and DOORS objects

Test reports can be exported to DOORS through test

report data mapping and import test report data. Also, test
reports contain external reference to DOORS for traceability
between requirements and test reports. Figure 7 shows
traceability between DOORS and TAE as traceability
between requirements and test cases. Figure 8 shows
generated test groups and test cases include description and
external references.

Figure 7 Traceability between requirements and test cases

Figure 8 Generated test groups and test cases

V. CASE STUDY

To create and manage functional requirement traceability
of model-based testing framework, intelligent headlamp
system that includes adaptive front lighting system (AFLS)
and adaptive driving beam (ADB) is adopted. The functional
requirements elicited from a part of vehicle regulation of
UNECE, such as R.48 and R.123, and requirements of OEM.
The target system is an ECU of intelligent headlamp system.
The main functional requirements of intelligent headlamp
system consist of passing beam, AFLS, driving beam and
ADB. The functional requirements of AFLS consist of class
C, class E, class V and class W that elicited from the
regulation of UNECE. The functional requirements of ADB
are elicited from OEM. Figure 9 shows the functional
requirements of AFLS and Figure 10 shows the functional
requirements of ADB.

Figure 9 Functional requirements of AFLS

The ECU of intelligent headlamp system receives

environmental information, such as vehicle speed,
illumination and other vehicle, from other ECUs and controls
the headlamps of vehicle. At the first phase, the functional
requirements are elicited from informal documents that
contain functional and non-functional requirements for ECU,
R.48 and R.123 of UNECE, and described in MS word. The

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

functional requirements in MS word are exported to DOORS
for requirement management.

Figure 10 Functional requirements of ADB

During this phase, 117 functional requirements for

headlamp system and 60 functional requirements for ADB
are generated as DOORS objects. After that, the functional
requirements in MS word are described in MS excel to
generate a functional model. Because the functional
requirements of ECU can be modeled as a discrete system,
Stateflow are used to generate the functional model.
Transition table function in Stateflow can generate the
functional model with tabular description automatically,
shown as Figure 11.

When the traceability links between the functional model
and requirement are generated, the functional requirements
verification and validation can be done through the
functional model. If any inconsistency and corruption exist
in the functional model, model analyzer will find it.
SIMULINK design verifier analyzes the function model and
generates test cases for structural coverage, such as condition,
decision and MC/DC. During this phase, 167 test cases are
founded and 48 test cases are generated. Figure 12 shows the
report of SIMULINK design verifier.

Figure 11 Functional modeling with transition table

Figure 12 Validation result of the functional model

When the validation of the functional requirements

through the functional model is finished, test cases can be
generated from the functional requirements. Through the
DOORS interface, XML test modules can be generated and
associated automatically. Since the title of each test case is
an object ID of DOORS module, traceability between
requirements and test cases can be managed easily. Vector
TAE is used to edit the XML test modules and Vector
CANoe is used to execute the XML test modules. Because
generated XML test modules contain test sequence,
description and external reference to DOORS only, test
engineer have to develop each test case according to
functional requirements. During this phase, states and
transitions in the functional model are mapped to technical
signals in technical model. Depending on the technical
model, various signal format, such as CAN, LIN and
FlexRay, can be used. In this case study, headlamp ECU is
connected with other ECU through CAN network. 12
messages with 49 signals are in CAN database file and 30
environment variables are developed to controls the CAN
message and test environment. Figure 13 shows test case
generation with DOORS-TAE interface and Figure 14 shows
developed test cases with technical signals.

Figure 13 Test case generation with DOORS interface

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

Figure 14 Developed test cases

When test cases are developed, each test case can be

executed on the Vector CANoe with SUT. If real SUT is not
available yet, simulation model can replace the real SUT as
well as other ECUs. In the test environment, 9 ECUs are
simulated that are not available in the LAB., such as
Transmission control Unit (TCU), Engine Management
System (EMS) and camera module, and a prototype and
simulation model of ECU of intelligent headlamp are used to
test. After execution of test cases, test report of the test cases
that includes test verdict and traceability links are generated
automatically. Also, the test report contains detail test step
with time stamp and statistics. Figure 15 shows a part of test
report that includes timestamp, test step, verdict and
traceability link. Also, DOORS can import XML test report
data through DOORS interface. With the test report,
traceability between functional requirements and test reports
can be established and managed.

Figure 15 Test report

VI. CONCLUSION

To create and manage functional requirement traceability
for model-based testing framework of automotive embedded
system, automated and semi-automated tracing is considered.
Bidirectional traceability between functional requirements,
MS documents and IBM DOORS, are created through IBM
DOORS interface. Also, traceability between functional
requirements and functional model and traceability between
requirements and test cases are created through COTS tools,
such as MATLAB SIMULINK and Vector CANoe, for
practical requirement tracing. The case study shows discrete
system only but applicable to continuous system. Automated
tracing for model-based testing framework is very helpful to
verify and validate automotive embedded system.

ACKNOWLEDGMENT

This research was supported by the MSIP(Ministry of Science,
ICT & Future Planning), Korea, under the C-ITRC(Convergence
Information Technology Research Center) support program (NIPA-
2013-H0401-13-1005) supervised by the NIPA(National IT
Industry Promotion Agency.)

REFERENCES

[1] J. Huang, O. Gotel, and A. Zisman, Software and Systems

traceability. Springer-Verlag, London, 2012.

[2] M. Utting and B. Legeard, Practical model-based testing, 1st
ed., vol. 1. Elsevier: San Francisco, pp.19–35, 2007,

[3] M. Adedjouma, H. Dubois, and F. Terrier, “Requirements
exchange:from specification documents to models” The 16th
International Conference on Engineering of Complex
Computer System (ICECCS 2011) IEEE, April, 2011, 27-29,
pp. 350-354, ISBN:978-1-61284-853-2.

[4] K. Han, I. Son, and J. Cho, “A study on test automation of
IVN of intelligent vehicle using model-based testing” The
Fifth International Conference on Ubiquitous and Future
Networks (ICUFN 2013) IEEE, July, 2013, 2-5, pp. 123–128,
ISSN:2165-8528, doi:10.1109/ICUFN.2013.6614794.

[5] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. Akbar
Raja, and K. Kamran, “Requirement traceability: A
systematic review and industry case study” Int. J. Soft. Eng.
Knowl. Eng., May, 2012, vol. 22, pp. 1-49, ISSN:0218-1940,
doi: 10.1142/S02181940120 05846.

[6] M. Weber and J. Weisbrod, “Requirement engineering in
automotive development-experiences and challenges” IEEE
Joint International Conference on Requirement engineering,
2002, Sep, 9-13, pp. 331-340, ISSN:1090-705X, doi:
10.1109/ICRE.2002.1048546.

[7] World Wide Web Consortium. RIF Overview. [Online].
Available from: http://www.w3.org/TR/2010/NOTE-rif-
overview-20100 622/ 2014. 05. 07

[8] Object Management Group. Requirement Interchange
Format.[Online]. Available from:
http://www.omg.org/spec/ReqIF/ 2014.05.07

[9] Eclipse Incubation. Requirement Modeling Framework.
[Online] Available from: http://www.eclipse.org/rmf/
2013.05.07

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-348-3

VEHICULAR 2014 : The Third International Conference on Advances in Vehicular Systems, Technologies and Applications

