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Abstract— In the automotive sector, electronic, mechanical, 

and software components have evolved significantly, resulting in 

increased complexity in vehicle fault diagnosis. The use of fuzzy 

classification techniques has been adapted for the online 

diagnosis of complex systems. In particular, Learning Algorithm 

for Multivariate Data Analysis (LAMDA) fuzzy classifier 

provides additional information through the Global Adequacy 

Degree (GAD) allowing to perform early preventive actions and 

supporting the operator in the decision-making process. This 

paper presents a car fault diagnosis system based on the LAMDA 

fuzzy classifier. The algorithm identifies, while the vehicle is in 

motion (online monitoring), the state of the vehicle, i.e., normal 

driving behavior, aggressive driving (driving behavior reflecting 

an impatient or angry driver) or mechanical failure. The 

implementation of the monitoring system implementation is 

performed in a midrange Renault vehicle. The algorithm 

achieves a 92.52% correct functional state identification with a 

low computational cost.  

Keywords—Fuzzy classifier; on-board diagnostics; online 

monitoring. 

 

I. INTRODUCTION 

The monitoring process provides information about the 
system functional state (situation); this information is then used 
as a tool to perform troubleshooting tasks and scheduling, 
among others [1]. In the automotive sector, electronic 
automotive control has led to significant changes in 
technology, requiring costly scanning systems for fault 
diagnosis and detection in vehicles [2]. For pollutant emission 
detection in vehicles, On Board Diagnostics (OBD) systems 
were introduced in 1988 [3]. In 1996, OBD II was created in 
order to further restrict emissions [4]. The basic operation of 
these systems is to activate a malfunction warning light, 
Malfunction Indication Light (MIL) upon detecting a fault. 
Recently, third generation on board diagnostics (OBD III) 
identifies failures by satellite, in order to report emission 
problems to the regulator and to identify the position of the 
vehicle and the fault code in order to proceed to repair it [5]. 
The disadvantage of OBD systems is that critical faults are not 
detected early (i.e., they are only detected when they have 
already occurred).  

In 2011, Hasan et al. [6] developed a system based on OBD  
system operation principle using a microcontroller which 
integrates the scanner to the vehicle, providing the driver a 
graphical interface for monitoring interesting signals in real 
time. The systems do not generate alarms to warn about the 
presence of failure.  

In 2004, He and Feng [7] proposed a method based on 
fuzzy pattern recognition and the use of similarity 
measurements, for diagnosis and fault detection in combustion 
engines. The online diagnosis test to detect abnormal operation 
of fuel injection showed 80% correct fault detection.  

In 2008, Schilling [8][9] implemented an insulation system 
and engine fault detection using Kalman filters [10]. Thus, 
when the filter residue exceeds a threshold, the presence of 
engine failure is detected. In this case, it is only possible 
identify two states, namely, normal or fault.  

The study of the angular velocity signal has also been used 
for detecting engine faults. The algorithm proposed by Gani 
and Manzie [11] verifies certain thresholds to warn about the 
presence of failure; the disadvantage is that this algorithm has 
good performance at low speeds, but it is difficult to correct the 
influence of the engine torque inertia at high speeds. 

On the other hand, fault diagnosis has been conducted in 
internal combustion engines valves based on vibrations, aiming 
to distinguish between normal or failure states through digital 
image processing. However, this method is not useful for 
differentiating between failure classes [12]. Fault detection 
from vibration allows detecting incipient faults in rotating 
mechanical systems using Probabilistic Neural Networks 
(PNN). Slowness in classifying new data is one of the 
disadvantages of the PNN [13]. 

In 2011, Wenqiang et al. [14] used Bayesian networks [15] 
and machine learning techniques [16] for detecting fault 
diagnosis in vehicles. They compared the diagnosis based on 
time-varying Bayesian networks with the traditional static 
method. With a percentage of 85.7% classification accuracy, 
the time-varying Bayesian network presents better performance 
than with the static method. The test was conducted under 
stationary conditions at a speed of 2,000 rpm, but the vehicle 
was not in motion.  

Recently, the use of the Hilbert-Huang transform (HHT) 
and Support Vector Machines (SVM) have led to engine fault 
diagnosis using the engine’s sound. It attains a percentage of 
91.43% correct classification [17]. In this case, only one signal 
(microphone signal) was used; moreover, SVMs did not allow 
multiple classes, and the required calculation involved a high 
computational cost. 

The above proposals are limited to identify engine failure 
and others extend to other parts of the vehicle, but only 
performing troubleshooting in a static vehicle. Moreover, 
proposals do not provide additional information about whether 
the system is in a normal state or have progression toward a 
fault condition. 
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To monitoring complex systems, fuzzy clustering 
techniques have been used, which have demonstrated good 
performance in industrial settings [18]. Fuzzy clustering 
algorithms allow, from a historical data, grouping similar data 
in the same class or functional state (e.g., normal, alarm, fault, 
etc.) and determining the degree of membership of a new data 
to all classes. Each class is associated to a functional state of 
the system. The LAMDA fuzzy clustering technique [19] has 
been widely used for process monitoring; especially due to its 
low computational cost [20] and because it allows the 
identification of new states which were not in the historical 
data, through the Non Informative Class (NIC) class. 

 In this work, a methodology for monitoring a vehicle 
online is proposed.  The objective is to recognize the functional 
states (faults or not) online. The monitoring is based on a fuzzy 
classifier to estimate the GAD (Global Adequacy Degree) of a 
data vector (instantaneous values of the measured variables) to 
each class or functional state. Then, the data vector is 
associated with the class with the maximum GAD. The GAD 
may provide information that a system is in a normal state, but 
moving away from this class indicates the start of a fault, 
allowing early action to be taken. 

The rest of this paper is organized as follows: Section II 
describes the monitoring systems and the method for acquiring 
and pre-treating data is explained. In the same section, the 
fuzzy clustering algorithm Learning Algorithm for Multivariate 
Data Analysis (LAMDA) is discussed and used to identify the 
functional states online in a vehicle. Then, the experimental 
setup is explained; and finally the results and discussions are 
analyzed and conclusions are described.   

II. MONITORING SYSTEM 

A monitoring system provided information in real time 
about the status of the process variables and location of faults 
[21]. Fuzzy clustering algorithms enabled monitoring, 
diagnosis and fault detection from n-dimensional analysis, 
independent of time [22]. Using LAMDA fuzzy clustering 
algorithm, the degrees of membership of a data vector to its 
classes is defined, providing important information for decision 
making in any system. 

With the offline analysis of data and using the fuzzy 
clustering algorithm, a classifier was obtained with which it 
was possible to monitor vehicle operating status online. The 
diagram in Figure 1 corresponds to the proposed methodology 
used for the vehicle monitoring online. 

The monitoring systems included a data acquisition phase 
where the critical variables of the vehicle (see Table 1) were 
analized. A pre-treatment of each signal was performed, and 
this made for each data vector in each sampling time. In an 
offline phase, the features of each class were identified with 
historical data of the vehicle and then, at an online phase, 
online recognition of the states of the vehicle was identified.  
This way was possible to early identify, the functional state in 
which the vehicle was located, before an incipient failure could 
generate a more serious fault. The following subsections 
explain each one of the phases. 

 

Figure 1. Methodology for the classifier. 

A. Data acquisition and pre-treatment 

 Sensors required to measure the signals were installed on 
the vehicle. At each sampling time (one sample every 250ms), 
recorded values of the variables in the data vector x were 
analyzed. 

Signals measured (shown in Table 1) were carried by the 

sensors to an onboard computer through the data acquisition 

card NI USB-6218. The monitoring and online classification 

of signals were performed by a Supervisory Control and Data 

Acquisition (SCADA), developed in Labview
®
, the interface 

of which is shown in Figure 2.   

 
TABLE 1. SENSORS AND VARIABLES MEASURED 

 

Measured variables Sensor 

Air flow 
Mass air flow (Toyota - Denso Air flow 
meter 22250-45040) 

Engine speed, measured in RPM 

(revolutions per minute)  
Hall effect sensor  

Butterfly valve position, indicates 

the percentage of  accelerator 
opening 

Throttle potenciometer 

Voltage  Lambda or oxygen sensor 

Vibrations from mechanical 

deformations 

Piezoelectric accelerometer (AC150-2C 

Accelerometer) 

 

 
 

Figure 2. User interface designed in Labview®. 
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Data acquisition card is configured to acquire sensor data 

every 250ms. The pre-treatment of data was performed using a 

low pass Chebyshev filter of order 6 [23], which eliminates 

the high frequency components. Then the average of each 

signal is calculated by means of a sliding window taking 300 

samples of the same class for each average. Each sample 

(individual) corresponds to a data vector                 , 
with (d=5), with the information from the five variables 

(descriptors) systems. 

B. Fuzzy clustering algorithm 

In order to find classes or functional states in the training 
stage, it is possible to use fuzzy clustering algorithms such as 
Fuzzy C-means (FCM) [24], GK-means (GKM) [25], or 
Learning Algorithm for Multivariate Data Analysis (LAMDA) 
[26], among others. 

The LAMDA fuzzy clustering technique has been widely 
used for process monitoring especially for its low 
computational cost [27][28][29] and because it allows 
identifying new states which were not in the historical data 
through the NIC.  

LAMDA fuzzy clustering algorithm was employed with the 
aim of finding the degrees of membership (GAD) of a data 
vector to a class or functional state at each instant of time. This 
algorithm also takes into account the contribution of each 
descriptor (a variable measured in the vehicle) to other classes. 
For the contribution of a determined sample in the time n, the 
value of Marginal Adequacy Degree (MAD) is estimated in 
each variable for each class [30][31]. 

 
1)  Training Phase (Offline) 

From historical data, at each sample time, a data vector 
                 (with d=total number of measured 
variables) is obtained.  These vectors are used for training.  

For each sample (data vector x) the Marginal Adequacy 
Degree is calculated.  To calculate the MAD, possibility 
functions are used; in this case, the following probabilistic 
function was used (1) [32].   

 

        
   

             
           (1) 

 
where       is the normalized value of the descriptor l of a 

particular data vector i, with         and        .      is 

the mean value  for the j class and the descriptor l, with 
        ; this parameter was calculated using the historical 
samples belonging to each class (see (2)) [33]. 

 

     
 

  
      

    

   
   (2) 

 
where    is the total number of historical individuals 

belonging to class j.  As each of the historical data is analyzed, 
the value of      is updated using an estimate of the moving 

average of the data for each descriptor in each class. 
The membership from a data vector to a j class is estimated 

with the Global Adequacy Degree.  The      for a j class is 

computed from the        (see (3)). This interpolation is 

performed between the fuzzy operators T-norm (in this case 
MIN), which corresponds to a logical intersection operation, 
and S-norm (in this case MAX), which corresponds to a logical 
union operation. The Exigence Index α is a value between 0 
and 1 that indicates the exigence with which an individual is 
attributed to a class; the closer this parameter to 1, the more 
demanding the classification.  

                       

                                            (3) 

 
In the trained classifier, a data vector is associated to a class 

if the maximum GAD calculated corresponds to that class. 
Each class represents a functional state (i.e., normal driving 

behaviour, aggressive driving or a type of mechanical or 
electrical failure). 

2) Online monitoring 

While the vehicle was in motion, current status (failure or 
not) could be identified using the trained classifier.   

The online monitoring consisted of the GADj with   
      calculation at each sample time.  

This way, at each sample time, the monitoring system 
estimates the membership to each class.  The vehicle behavior 
online was classified in the class (functional state) with the 
maximum GAD value (for example, normal state) and the 
other GADs were useful to identify if there was a movement 
away from this class which indicated the start of a fault, 
allowing early action to be taken.  If the vehicle had a failure, 
the data vector was classified into the class associated with this 
failure. 

To prevent a misclassification, when a new state (not 
included in the training phase) is present, a Non Identification 
Class (NIC class) is included. For this class, the average value 
for all descriptors (       ) is           , and the MADs 

and GADNIC values are estimated with the equations 1 and 3 
respectively. The NIC automatically defines a threshold for 
classifying a data vector into the defined classes. Then, the 
behaviors that are not associated with any of the defined 
classes are classified into the NIC class.   

III. EXPERIMENTAL SETUP 

The failures to be identified in the proposed monitoring 
system were chosen as reported in Section I. The vehicle 
condition under normal and aggressive driving conditions was 
also taken into account, in such a way that aggressive driving 
was not confused with a failed state.  

To build the database, the test protocol consisting of a 
distance of 1,700m was established. The time of a round trip 
was about 5min. For each state, 2 to 3 replicates were made. 
Each repetition consisted of a complete tour of the 1,700m. As 
a conditions of the terrain, the route was a paved runway with 
ridgesand slopes in some areas. Each failure was caused 
before starting the tour. 

From historical data, 7,666 samples were obtained, where 
each functional state has approximately 1,100-1,300 data. By 
applying the pre-treatment, explained in Section II, samples 
were reduced to 5,866, of wich 70% (4,016 samples) were used 
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for the training phase, each sample corresponded to a vector 
with the 5 variables described in Section II (see Table 1).  The 
4,016 data vectors                  with d=5 were 
classified with a fuzzy clustering algorithm. 

The classifier was obtained using the LAMDA fuzzy 
clustering algorithm with an exigency index    0.5. Each 
class had an associated state. The classes considered in the case 
study are described in Table 2.   

 

TABLE 2. DESCRIPTION OF CLASSES  

 

Abbreviation of 

 Classes 

Class description 

C1 Normal state vehicle – normal driving 

C2 Normal state vehicle – aggressive driving 

C3 Disconnect injector cylinder 1  

C4 Disconnect spark plug cylinder 1 

C5 Clogging of the air filter 

C6 Lower rim 

C7 NIC 

  

Each class differs from the others according to a profile that 

characterizes it (see Figure 3), where each bar corresponds to 

the value of   (mean value of the descriptor in each class).  

 

 
Figure 3. Profile classes 

 

 

After the training phase, the vehicle was analyzed online using 

the same testing protocol implemented for the training phase, 

but only one full tour for each functional state was carried out. 

1,760 samples were analyzed in the on-line phase. At each 

sample time (each 250ms), the data vector was analyzed by 

the monitoring system and the different functional states were 

induced and identified.  

IV. RESULTS AND DISCUSSIONS 

Figure 4 shows the classification obtained with the training 
data and the verification of the 6 classes corresponding to each 
functional state of the vehicle and the NIC class, as established 
in Table 2. 

 
 

Figure 4. Classifier training data.  
 

The X axis of Figure 4 indicates the number of individuals 
or samples used in classification and the Y axis shows the 7 
classes identified. The graph shows some small groups of 
samples, different from those grouped in the NIC, which do not 
correspond to the class in which they were classified.  

This occurs because data start to be acquired when the 
vehicle is idling, i.e., the engine is running but the vehicle is 
not moving; therefore, the first samples of classes 4, 5 and 6 
are confused with other states. On the other hand, class 1 
(Normal state vehicle-normal driving) and class 6 (lower rim) 
tend to merge because of the pressure the tyre loses when 
extracting the air to simulate the failure; it was not enough to 
ensure that system was fully differentiated in these two states 
of the vehicle. 

The percentage of correctly classified individuals was 
92.45% for the 4,016 data used in the training stage (see Figure 
3). 

Once the classifier was trained, the next step was 
monitoring performed when the vehicle was in motion to 
observe if the class that registers the SCADA system matches 
the functional state in which the vehicle was operating. At each 
sampling time, the recorded data vector was analyzed and the 
functional status that occurred in the vehicle was calculated. 
The graphical interface indicates the user, online, the current 
functional state of the system via a flashing light (see Figure 5), 
since this testing was performed under standard conditions and 
different faults were generated. 

 

 
 

Figure 5. Functional state in which the vehicle is operating. 

 
For the online phase, the percentage of correctly classified 

individuals was 92.52% for the 1,760 data (see Figure 6). 
When comparing Figures 3 and 4, it can be seen that small 

test groups were not grouped in the class they really belonged 
to; this corresponds to situations similar to those already dealt 
with by the training data.   

 

 
 

Figure 6. Online data classification. 

 

In the online classification, the functional state of the 
system was correctly identified. Also, when entering new data, 
different from those recorded in the historical classification, the 
fuzzy classification algorithm groups them into the NIC class, 
generating in this way, a new class that had not been 
considered during training. This case identified a fault which 
occurred that was not included in the historical classification, 
causing the interface to indicate that the system was in the NIC 
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class. The vehicle was then inspected at an Automotive 
Diagnostic Center and an electrical failure was diagnosed.  

The LAMDA fuzzy clustering algorithm allows online 
identification of different states or classes through the GAD, 
which provides information about the possible change from a 
normal state to a failure state, allowing early action to be taken. 
This is possible by identifying the class to which an individual 
belongs (defined by the highest degree of membership) and the 
class that this individual could migrate to, by knowing the next 
lowest GAD and its associated class.  

Table 4 shows the degree of membership associated with 
each of the two sample types, and it can be observed that while 
in a normal driving state, the sample has a degree of 
membership to an aggressive driving or a failed class. 

 
TABLE 4. MEMBERSHIP DEGREES ASSOCIATED TO EACH CLASS 

 

Sample C1 C2 C3 C4 C5 C6 

1070 0.5013 0.5719 0.4846 0.5414 0.5003 0.5089 

1778 0.4702 0.4954 0.5549 0.5169 0.4400 0.4724 

 

Sample 1,070, for example, has a degree of membership to 
class 2 (Aggressive driving) of 0.5719, while for class 4 
(disconnect spark plug) the degree of membership is 0.5414 
and in other classes the degree of membership is lower 
compared to the two previous classes. This way, it is 
established that the 1,070 samples belong to class 2 because 
their degree of membership to this class is higher than to the 
others. Therefore, if the system is in class 2, is more likely to 
go to class 4 than any of the other classes.  

In the 1,778 sample, the highest degree of membership is to 
class 3 (Disconnect injector cylinder 1), while the degree of 
membership immediately below corresponds to class 4 
(Disconnect spark plug) and the lowest of all the membership 
degrees corresponds to class 5 (Clogging of the air filter). This 
indicates that if the system is in class 3, it is more likely to 
change to class 4, and is less likely to change to class 5.  

Moreover, this proposal has the advantage that the variables 
analyzed are easily accessible, since it is not necessary to open 
the ECU (Electronic Control Unit); this allows analysis of 
more system components apart from the engine. Additionally, 
the results were obtained with a low computational cost (to 
identify the situation in a sample, instant calculation requires 
no more than a few milliseconds). The data processing is 
performed on a laptop with Intel Core 2 Duo of 2 GHz and 4 
GB of RAM, located at the front of the car. The analysis and 
classification of a data vector is executed in a much shorter 
time compared with the sampling interval (250ms). 

The system correctly identifies new data that enters the 
algorithm and classifies correctly. Through the graphical 
interface shown in Figure 2, a flashing light warns the driver of 
the vehicle about the type of fault that the system has, so that a 
driver can check the type of fault identified and contact an 
Automotive Diagnostic Center.  

The developed system is useful for Renault vehicle, if you 
want to replicate the experiment in a different system, the 
classifier must be trained again. 

      

V. CONCLUSION AND FUTURE WORK 

A useful system is proposed for online monitoring of a 
vehicle, using a LAMDA fuzzy clustering algorithm. A 
warning light advises the driver by a graphical interface about 
of the functional state of the vehicle, thanks to the online 
monitoring of the variables. 

LAMDA fuzzy classifier provides information about how 
the system evolves, enabling identification of the current status 
of the vehicle and the possibility of migration to another state, 
fault or not, based on the degree of membership associated 
with each class.   

LAMDA fuzzy clustering has a low computational cost and 
allows the identification of new classes that were not in the 
historical data, through the NIC class. Additionally, the 
algorithm achieves a correct functional state identification, in 
front of other techniques. 

In the future, this algorithm will allow the inclusion of 
unforeseen situations, as it defines all kind of degrees of 
membership, including the NIC, and from this, it is possible to 
identify that there is not a high degree of membership to 
situations registered in the historical data. Possible future work 
would be to predict these states using prior knowledge of the 
degrees of membership obtained with the LAMDA algorithm.  
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