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Abstract—Refinement-based verification is a formal verification
technique that has shown promise to be applicable for verification
of low-level real-time embedded object code. In refinement-
based verification, both the implementation (the artifact to be
verified) and the specification are modeled as transition systems,
which essentially capture the states of the system and transitions
between the states. A key step in the verification process is the
construction of a refinement map, which is a function that maps
implementation states onto specification states. Construction of
refinement maps is most often done manually and requires
key insights about how the implementation and specification
behave. In this paper, we develop refinement maps for various
safety properties concerning the software control operation of
insulin pumps. We then identify possible generic templates for
construction of refinement maps as a first step towards developing
a process to construct refinement maps in an automated fashion.

Keywords–Formal verification; safety-critical devices; Refine-
ment maps; Refinement-based verification.

I. INTRODUCTION

One of the key issues in designing safety-critical embed-
ded systems such as medical devices is software safety [1].
For example, infusion pumps (a medical device that delivers
medication such as pain medication, insulin, cancer drugs etc.,
in controlled doses to patients intravenously) has 54 class 1
recalls related to software issued by the US Food and Drug
Administration (FDA) [2]. Class 1 means that the use of the
medical device can cause serious adverse health consequences
or death.

Despite the fact that testing is the dominant verification
technique currently used in commercial design cycles [3],
testing can only show the presence of faults, but it never proves
their absence [4]. Alternate verification processes should be
applied to the software design in conjunction with testing to as-
sure system correctness and reliability. Formal verification can
address testing limitations by providing proofs of correctness
for software safety. Intel [5], Microsoft [6] and [7], and Airbus
[8] have successfully applied formal verification processes.

Refinement-based verification [9] is a formal verification
technique that has been demonstrated to be effective for veri-
fication of software correctness at the object code level [10].
To apply refinement-based verification, software requirements
should be expressed as a formal model. Previously, we have
proposed a novel approach to synthesize formal specifications
from natural language requirements [11], and in a later work,
we have also addressed timing requirements and specifica-
tions [12].

Our verification approach is based on the theory of Well-
Founded Equivalence Bisimulation (WEB) refinement [9]. In
the context of WEB refinement, both the implementation and
specification are treated as Transition Systems (TSs). If every
behavior of the implementation is matched by a behavior of the
specification and vice versa, then the implementation behaves
correctly as prescribed by the specification. However, this is
not easy to check in practice as the implementation TS and
specification TS can look very different. The specification
states obtained from the software requirements are marked
with atomic propositions (predicates that are true or false in
a given state). The implementation states are states of the
microcontroller that the object code program modifies. As
such, the microcontroller states includes registers, flags, and
memory. The various possible values that these components
can have during the execution of the object code program gives
rise to the many millions of states of the implementation. To
overcome this difference, WEB refinement uses the concept
of a refinement map, which is a function that provided an
implementation state, gives the corresponding specification
state. Historically, one of the reasons that refinement-based
verification is much less explored than other formal verification
paradigms such as model checking is that the construction
of refinement maps often requires deep understanding and
intuitions about the specification and implementation [13].
However, once a refinement map is constructed, the benefit is
that refinement-based verification is a very scalable approach
for dealing with low-level artifacts such as real-time object
code verification. This paper studies refinement maps corre-
sponding to formal specifications related to infusion pump
safety and proposes possible generic refinement map templates,
which is the first step toward automating the construction of
refinement maps.

The remainder of this paper is organized as follows.
Section II summarizes background information. Section III
details related work. Section IV describes the refinement maps
and refinement map templates. Conclusions and direction for
future work are noted in Section V.

II. BACKGROUND

This section explores the definition of transition systems,
the definition of refinement-based verification, and the synthe-
sis of formal specifications as key terms related to our work.

A. Transition Systems
As stated earlier, transition systems (TSs) are used to

model both specification and implementation in refinement-
based verification. TSs are defined below.
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Definition 1: A TS M = 〈S,R,L〉 is a three tuple in
which S denotes the set of states, R ⊆ SXS is the transition
relation that provides the transition between states, and L is a
labeling function that describes what is visible at each state.

States are marked with Atomic Propositions (APs), which
are predicates that are true or false in each state. The labeling
function maps states to the APs that are true in every state.
An example TS is shown in Figure 1. Here S = {S1, S2, S3,
S4}, R = {(S1, S2), (S2, S4), (S4, S3), (S3, S4), (S3, S2),
(S1, S3)} and, L(S2) represents the atomic propositions that
are true for the S2 state.

S1

S3 S2

S4

Figure 1. An example of a transition system (TS).

B. Refinement-Based Verification
Our verification process is based on the theory of Well-

Founded Equivalence Bisimulation refinement. A detailed de-
scription of this theory can be found in [9]. Here, we give a
very high-level overview of the key concepts. As stated earlier,
WEB refinement provides a notion of correctness that can be
used to check an implementation TS against a specification
TS. One of the key features is that WEB refinement accounts
for stuttering, which is the phenomenon where multiple but
finite transitions of the implementation can match a single
transition of the specification. This is a very key feature
because the control code implements many functions and
only some of these functions maybe relevant to the safety
property being verified. Therefore, the code maybe doing a
number of things that do not relate to the property and will
therefore be stuttering a lot w.r.t. the specification. Another key
feature of WEB refinement is refinement maps, which is the
focus of this work. Refinement maps are functions that map
implementation states to specification states. There is a lot of
flexibility in how refinement maps can be defined. This allows
for low-level implementations to be verified against high-level
specifications.

Definition 2: (WEB Refinement): Let M = 〈S,R,L〉,
M ′ = 〈S′, R′, L′〉, and r: S → S’. M is a WEB refinement of
M ′ with respect to refinement map r, written M ≈ r M ′, if
there exists a relation, B, such that 〈 ∀ s ∈ S :: sB(r.s)〉 and
B is a WEB on the TS 〈 S ] S’, R ] R’, L 〉, where L.s =
L’(s) for s and S’ state and L.s = L’(r.s) otherwise.

C. Synthesis of Formal Specifications
Our approach for development and study of refinement

maps is based on the formal TS specifications. We have devel-
oped a previous approach to transform functional requirements
into formal specifications [11]. Since this work is closely tied
to the prior work, we briefly review it here. The transformation
procedure is as follows: The first step of computing the

TSs is to extract the APs from the requirements. We have
developed three Atomic Proposition Extraction Rules (APERs)
that work on the parse tree of the requirement obtained from
an English language parser called Enju. A high-level procedure
for specification transition system synthesis has been proposed
to compute the states and transitions using the resulting list of
APs under expert user supervision. Figure 2 summarizes the
main steps of the synthesizing procedure.

Natural 

Language 

Requirement/s

Parse Tree

Formal 

specification 

(TS)

APs List

   

Enju Parser

APERs

Formal Model 

Synthesis Procedure

Figure 2. Formal Model synthesis procedure for Functional Requirements.

III. RELATED WORK

This section summarizes a few works on applying re-
finement processes to get more concrete specifications and
refinement-based verification. None of these works are applied
to insulin pump formal specifications as our work. To the best
of our knowledge, these are the most related state of art in this
area of study.

Klein et al. [14] introduced a new technique called State
Transition Diagrams (STD). It is a graphical specification
technique that provides refinement rules, each rule defines an
implementation relation on STD specification. The proposed
approach was applied to the feature interaction problem. The
refinement relation was utilized to add a feature or to define
the notion of conflicting features.

Rabiah et al. [15] developed a reliable autonomous robot
system by addressing A* path planning algorithm reliability
issue. A refinement process was used to capture more concrete
specifications by transforming High-Level specification into
equivalent executable program. Traditional mathematical con-
cepts were used to capture formal descriptions.Then, Z spec-
ification language was employed to transform mathematical
description to Z schemas to get formal specifications. Z formal
refinement theory was used to obtain the implementation
specification.

Spichkova [16] proposed a refinement-based verification
scheme for interactive real time systems. The proposed work
solves the mistakes that rise from the specification problems
by integrating the formal specifications with the verification
system. The proposed scheme translates the specifications to a
higher-order logic, and then uses the theorem prover (Isabelle)
to prove the specifications. Using the refinement-based verifi-
cation, this scheme validates the refinement relations between
two different systems. The proposed design was tested and
verified using a case study of electronic data transmission
gateway.
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A new approach that focuses on the refinement verification
using state flow charts has been presented by Miyazawa et al.
[17]. They proposed a refinement strategy that supports the
sequential C implementations of the state flow charts. The
proposed design benefited from the architectural features of
model to allow a higher level of automation by retrieving the
data relation in a calculation style and rendering the data into
an automated system. The proposed design was tested and
verified using Matlab Simulink SDK. Through the provided
case study, the scheme was able to be scaled to different state
charts problems.

Cimatti et al. proposed a contract-refinement scheme for
embedded systems [18]. The contract-refinement provides
interactive composition reasoning, step-wise refinement, and
principled reuse refinements for components for the already
designed or independently designed components. The proposed
design addresses the problem of architectural decomposition of
embedded systems based on the principles of temporal logic to
generate a set of proof obligations. The testing and verification
of the Wheel Braking System (WBS) case study show that the
proposed design can detect the problems in the architectural
design of the WBS.

Bibighaus [19] employed the Doubly Labeled Transition
Systems (DLTS) to reason about possibilities security prop-
erties and refinement. This work was compared with three
different security frameworks when applied to large class
systems. The refinement framework in this work preserves and
guarantees the liveness of the model by verifying the timing
parameter of the model. The analysis results show that the
proposed design preserves the security properties to a series
of availability requirements.

IV. REFINEMENT MAPS AND REFINEMENT MAP
TEMPLATES

Figures 3-9 show the formal TS specification for 8 insulin
pump safety requirements and the refinement map we have
developed corresponding to each specification TS. The formal
TS specifications were developed as part of our previous work
in this area [11] [12]. As can be seen from the figures, each
TS consists of a set of states and the transitions between the
states. Also, each state is marked with the atomic propositions
that are true in the state.

Our strategy for constructing the refinement maps is as
follows. A specification state can be constructed from an
implementation state by determining the APs that are true in
the implementation state. If a specification has n APs, then we
construct one predicate function for each AP. The predicate
functions take the implementation state as input and output a
predicate value that indicates if the AP is true in that state
or not. Thus, the collection of such predicate functions is the
refinement map.

We next discuss the refinement map for the specification in
Figure 3. The safety specification from [20] is as follows: ”The
pump shall suspend all active basal delivery and stop any active
bolus during a pump prime or refill. It shall prohibit any insulin
administration during the priming process and resume the
suspended basal delivery, either a basal profile or a temporary
basal, after the prime or refill is successfully completed.” The
APs corresponding to this safety requirement are (1) BO: active
bolus delivery; (2) BA: active basal delivery; (3) P: priming
process; and (4) R: refill process. The refinement map however

has to account for what is happening in the implementation
code and relate that to the atomic propositions.

The predicate function for BO uses several variables from
the code including NB: Normal Bolus and EB: Extended Bolus
as there are more than one type of Bolus dose supported by the
system. So the AP BO should be true if there is a NB or an EB.
NB is only a flag that indicates that a normal bolus should be in
progress. The actual bolus itself will continue to occur as long
as a counter that keeps track of the bolus has not reached its
maximum value. Therefore, for example for a normal bolus,
we use a conjunction of NB and the condition that the NB
counter (NBc) is less than its possible maximum value (NBm).
We use a similar strategy for the extended bolus as well. This
refinement map template works for all processes similar to a
Bolus dosage delivery, such as basal dosage delivery, priming
process, and refill process. Therefore, we term this refinement
map template as ”process template.” For the basal dosage (BA
AP) a number of basal profiles (BPs) are possible that accounts
for BP1 thru BPn. TB stands for temporary basal. As can be
noted from Figures 4-9, the process template accounts for a
large number of predicate functions corresponding to APs.

The second refinement map template is a simple one called
the ”projection template,” which is used when the AP in the
specification TS corresponds directly to a variable in the code.
An example of the projection template can be found in Figure
4, where the User Reminder (UR) AP is mapped directly
from a flag variable in the code that corresponds to the user
reminder. A variation of this template is a boolean expression
of Boolean variables in the code. An example of such an AP
is the UIP AP in Figure 8.

The third refinement map template is called the ”value
change template,” which is used when the AP is true only
when a value has changed. An example use of this template
can be found in Figure 4 for the CDTC AP. CDTC corresponds
to the change in drug type and concentration and is true when
the drug type or concentration is changed. For the drug type
change, DT is the variable that corresponds to the drug type.
The question here is how to track that a value has changed. The
idea is to use history variables. HDT is a history variable that
corresponds to the history of the drug type, i.e., the value of
the drug type in the previous cycle. If HDT is not equal to DT
in a code state, then we know the drug type has changed. The
inequality of HDT and DT is used to construct the predicate
function. For all the safety requirements analyzed, these three
refinement map templates cover all the APs. Table 1 gives the
expansions for all the abbreviations used in Figures 3-9, so
that the corresponding refinement maps can be comprehended
by the reader.

V. CONCLUSION AND FUTURE WORK

In this paper, we have developed refinement maps corre-
sponding to the specification TSs of several infusion pump
safety requirements. This is a first step in automating the
construction of refinement maps. Our eventual goal is to
develop a process for the construction of refinement maps.
The refinement maps from this paper will be used as bench-
marks to study and develop generic refinement map templates.
Heuristics will be developed based on the output of the Enju
parser to select a refinement map template for each atomic
proposition. The development and testing of this process is
part of future work.
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P

BO BA

R

• BO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• P = P ∧ (Pc < Pm)

• R = R ∧ (Rc < Rm)

• BA = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)]

Figure 3. A formal presentation of requirement 1.1.1 from [20] and the suggested refinement maps.

AI

RTV R

UR

CDTC

• AI = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• CDTC = (DT 6= HDT) ∧ (CDTCc < CDTCm)

• UR = FLAG

• RTVR = (CRV 6= HRV) ∧ (RTV Rc < RTV Rm)

Figure 4. A formal presentation of requirement 1.1.3 from [20] and the suggested refinement maps.

IBO

INDV

SPM

SY NC

• IBO = [NB ∧ (NBc < NBm)] ∨ [EB ∧ (EBc < EBm)]

• INDV = [BP1 ∧ (BP1c < BP1m)] ∨ [BP2 ∧ (BP2c < BP2m)] ∨ . . .∨
[BPn ∧ (BPnc < BPnm)] ∨ [TB ∧ (TBc < TBm)] ∨ [NB ∧ (NBc

< NBm)] ∨ [EB ∧ (EBc < EBm)]

• SMP = [P ∧ (Pc < Pm)] ∨ [R ∧ (Rc < Rm)]

• SYNC = INCAL ∧ (INCALc < INCALm)

Figure 5. A formal presentation of requirement 1.8.2 and 1.8.5 from [20] and the suggested refinement maps.

NB

REQ

ALRT

DNY

• NB = NB ∧ (NBc < NBm)

• REQ = REQ-FLAG

• ALRT = ALRT-FLAG

• DNY = CALL-FUNCT

Figure 6. A formal presentation of requirement 1.3.5 from [20] and the suggested refinement maps.

SET UCNF CONC

• SET = CLRS ∨ [CHNS ∧ (CHNSc < CHNSm)] ∨ RESS

• UCNF = FLAG

• CONC = [SETT ∧ (SETTc < SETTm)] ∨ [CHNC ∧ (CHNCc <
CHNCm)]

Figure 7. A formal presentation of requirement 2.2.2 and 2.2.3 from [20] and the suggested refinement maps.
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UIP WAR ACT

• UIP = BG ∨ TBG ∨ INCR ∨ CORF

• WAR = FLAG

• ACT = CNFI ∨ [CHNI ∧ (CHNIc < CHNIm)]

Figure 8. A formal presentation of requirement 3.2.5 from [20] followed by the suggested refinement maps.

ELR ELRF FWAR

• ELR = [EL ∧ (ELc < ELm)] ∨ [LR ∧ (LRc < LRm)]

• ELRF = ELF ∨ LRF

• FWAR = FLAG

Figure 9. A formal presentation of requirement 3.2.7 from [20] followed by the suggested refinement maps.

TABLE I. LIST OF ABBREVIATIONS

Abbreviation Meaning
AI Active Infusion

CDTC Change Drug Type and Concentration
DT Data Type

HDT Historical Data Type
UR User Reminder

RTVR Reservoir Time and Volume Recomputed
CRV Current Reservoir Volume
HRV Historical Reservoir Volume

REQ-FLAG Request Flag
CALL-FUNCT Call-Function for Calculation

INCAL Insulin Calculations
CLRS Clear Settings
CHNS Change Settings
RESS Reset Settings

BG Blood Glucose
TBG Targeted Blood Glucose
INCR Insulin to Carbohydrate ratio
CORF Correction Factor
CNFI Confirm Input
CHNI Change Input

EL Event Logging
LR Log Retrieving

ELRF Event Logging or Logging Retrieving Failure
ELF Event Logging Failure
LRF Logging Retrieving Failure
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