
Sandiff: Semantic File Comparator for Continuous Testing of Android Builds

Carlos E. S. Aguiar, Jose B. V. Filho, Agnaldo O. P. Junior,
Rodrigo J. B. Fernandes, Cı́cero A. L. Pahins

Sidia: Institute of Science and Technology
Manaus, Brazil

Emails: {c.eduardo, jose.vf, agnaldo.j, rodrigo.f, cicero.p}@samsung.com

Abstract—With ever-larger software development systems con-
suming more time to perform testing routines, it is necessary
to think about approaches that accelerate continuous testing of
those systems. This work aims to allow the correlation of semantic
modifications with specific test cases of complex suites, and based
on that correlation, skip time-consuming routines or mount lists of
priority routines (fail-fast) to improve the productivity of mobile
developers and time-sensitive project deliveries and validation. In
order to facilitate continuous testing of large projects, we propose
Sandiff, a tool that efficiently analyzes semantic modifications of
files that impacts domain-specific testing routines of the official
Android Test Suite. We validate our approach on a set of real-
world and commercially-available Android images of a large
company that comprises two major versions of the system.

Keywords–Testing; Validation; Continuous; Tool.

I. INTRODUCTION

As software projects get larger, continuous testing becomes
critical, but at the same time, difficult and time-consuming.
Consider a project with a million files and intermediate ar-
tifacts. It is essential that a test suite that offers continuous
testing functionalities performs without creating bottlenecks or
impacting project deliveries. However, effectively using contin-
uous integration can be a problem: tests are time-consuming to
execute, and by consequence, it is impractical to run complete
modules of testing on each build. In these scenarios, it is
common that teams lack time-sensitive feedback about their
code and compromise user experience.

The testing of large software projects is typically bounded
to robust test suites. Moreover, the quality of testing and
validation of ubiquitous software can directly impact people’s
life, a company’s perceived image, and the relation with its
clients. Companies inserted in the Global Software Develop-
ment (GSD) environment, i.e., with a vast amount of develop-
ers cooperating across different regions of the world, tend to
design a tedious process of testing and validation that becomes
highly time-consuming and impacts the productivity of devel-
opers. Moreover, continuous testing is a de facto standard in
the software industry. During the planning of large projects, it
is common to allocate some portion of the development period
to design testing routines. Test-Driven Development (TDD)
is a well-known process that promotes testing before feature
development. Typically, systematic software testing approaches
lead to compute and time-intensive tasks.

Sandiff is a tool that helps to reduce the time spent
on testing of large Android projects by enabling to skip
domain-specific routines based on the comparison of mean-
ingful data without affecting the functionality of the target
software. For instance, when comparing two Android Open
Source Project (AOSP) builds that were generated in different
moments, but with the same source code, build environment

Suite/Plan VTS/VTS
Suite/Build 9.0 R9 / 5512091
Host Info seltest-66 (Linux - 4.15.0-51-generic)
Start Time Tue Jun 25 16:17:23 AMT 2019
End Time Tue Jun 25 20:39:46 AMT 2019
Tests Passed 9486
Tests Failed 633
Modules Done 214
Modules Total 214
Security Patch 2019-06-01
Release (SDK) 9 (28)
ABIs arm64-v8a,armeabi-v7a,armeabi

Figure 1. Summary of the official Android Test Suite – Vendor Test
Suite (VTS) – of a commercially-available AOSP build.

and build instructions, the final result is different in byte level
(byte-to-byte), but can be semantically equivalent based on its
context (meaning). In this case, it is expected that these two
builds perform the same. However, the problem is proving it.
Our solution relies on how to compare and prove that two
AOSP builds are semantically equivalents. Another motivation
is the relevance of Sandiff to the continuous testing area,
where it can be used to reduce the time to execute the official
Android Test Suite (VTS). As our solution provides a list
of semantically equivalent files, it is possible to skip tests
that validate the behavior provided by these files. Consider
the example of Figure 1 in which the official Android Test
Suite was executed in a commercially-available build based
on AOSP. The execution of all modules exceeded 4 hours,
compromising developer performance and deliveries.

By comparison of meaningful data, we mean comparison
of sensitive regions of critical files within large software:
different from a byte-to-byte comparison, a semantic com-
parison can identify domain-related changes, i.e., it compares
sensitive code paths or key-value attributes that can be related
to the output of a large software. By large, we mean software
designed by a vast amount of developers that are inserted in
a distributed software development environment whereupon
automatic test suits are necessary.

In summary, we present the key research contributions of
Sandiff:

• (i) An approach to perform semantic comparison and
facilitate continuous testing of large software projects.

• (ii) An evaluation of the impact of using Sandiff in
real-world and commercially-available AOSP builds.

Our paper is organized as follows. In Section II, we
provide an overview of binary comparators and their impact

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 2. Sandiff verifies the semantic compatibility of two files or directories (list of files) and report their differences.

on continuous testing of large projects. In Section III, we
describe Sandiff and its main functionalities: (i) input detec-
tion, (ii) content recognition, and (iii) specialized semantic
comparison. In Section IV, we present the evaluation of Sandiff
in commercially-available builds based on AOSP and discuss
the impact of continuous testing of those builds. We conclude
the paper with avenues for future work in Section V.

II. RELATED WORK

To the best of our knowledge, few approaches in the liter-
ature propose comparison of files with different formats and
types. Most of the comparison tools focus on the comparison
based on diff (text or, at most, byte position). Araxis [1] is a
well-known commercial tool that performs three types of file
comparison: text files, image files, and binary files. For image
files, the comparison shows the pixels that have been modified.
For binary files, the comparison is performed by identifying
the differences in a byte level. Diff-based tools, such as Gnu
Diff Tools [2] diff and cmp, also performs file comparison
based on byte-to-byte analysis. The main difference between
diff and cmp is the output: while diff reports whether files
are different, cmp shows the offsets, line numbers and all
characters where compared files differs. VBinDiff [3] is another
diff-inspired tool that displays the files in hexadecimal and
ASCII, highlighting the difference between them. Sandiff also
supports byte-level comparison, but the semantic comparison
is the main focus of the tool in order to facilitate the testing
of large software projects since it allows to discard irrelevant
differences in the comparison.

Other approaches to the problem of file comparison, in
a semantic context, typically use the notion of change or edit
distance [4] [5]. Wang et. al. [4] proposed X-Diff, an algorithm
that analyses the structure of a XML file by applying standard
tree-to-tree correction techniques that focus on performance.
Pawlik et. al. [5] also propose a performance-focused algorithm
that is based on the edit distance between ordered labelled
nodes of a XML tree. Both approaches can be used by Sandiff
to improve its XML-based semantic comparator.

III. SANDIFF

Sandiff aims to perform comparison of meaningful data of
two artifacts (e.g., directories or files) and report a semantic
compatible list that indicates modifications that can impact
the output of domain-related on continuous testing setups of
large projects. In the context of software testing, syntactically
different (byte-to-byte) files can be semantically equivalent.
Once the characteristics of a context are defined, previously
related patterns to this context can define the compatibility

Configuration 1
ro.build.version.preview sdk=0
ro.build.version.codename=REL
ro.build.version.all codenames=REL
ro.build.version.release=8.0.0
ro.build.version.security patch=17-08-05

Configuration 2
ro.build.version.preview sdk=0
ro.build.version.codename=REL
ro.build.version.all codenames=REL
ro.build.version.security patch=17-08-05
ro.build.version.release=8.0.0

Figure 3. Example of AOSP configuration files.

between artifacts from different builds. By definition, two
artifacts are compatible when the artifact A can be replace
the artifact B without losing its functionality or changing
its behavior. As each file type has its own set of attributes
and characteristics, Sandiff employs specialized semantic com-
parators that are design to support nontrivial circumstances of
domain-specific tests. Consider the comparison of AOSP build
output directory and its files. Note that the building process
of AOSP in different periods of time can generate similar
outputs (but not byte-to-byte equivalent). Different byte-to-
byte artifacts are called syntactically dissimilar and typically
require validation and testing routines. However, on the context
where these files are used, the position of key-value pairs do
not impact testing neither software functionality. We define
these files as semantically compatible, once Sandiff is able to
identify them and suggest a list of tests to skip. Take Figure 3
as example. It shows a difference in the position of the last
two lines. When comparing them byte-to-byte, this results in
syntactically different files. However, on the execution context
where these files are used, this is irrelevant, and the alternate
position of lines does not change how the functionality works.
Thus, the files are semantically compatible.

Sandiff consists of three main functionalities: (i) input
detection, (ii) content recognition, and (iii) specialized se-
mantic comparison, as shown in Figure 2. During analysis of
directories and files, we can scan image files or archives that
require particular read operations. The first step of Sandiff
is to identify these files to abstract file systems operations
used to access the data. This task is performed by the Input
Recognizer. Then, the Content Recognizers and Comparators
are instantiated. In order to use the correct Comparator, Sandiff
implements recognizers that are responsible to detect supported
file types and indicate if a file should be ignored or not based
on a test context. Once Sandiff detects a valid file, it proceeds
to the semantic comparison. The Comparators are specialized
methods that take into consideration features and characteris-
tics that are able to change the semantic meaning of execution
or testing, ignoring irrelevant syntactically differences. Note
that the correct analysis of semantic differences is both file
type and context sensitive. Sandiff implements two operation

52Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE I. SUMMARY OF CONTENT RECOGNITION ANALYSIS FOR
EACH FILE.

Attribute Meaning
Tag Represents a file type
Action Action to be taken with the file. (COMPARE or IGNORE)
Reason In case of action IGNORE, the reason of ignore
Context Information about context that is used to define the ACTION

modes: (i) file and (ii) directory-oriented (walkables). In file-
oriented mode, the input is two valid comparable files, whereas
directory-oriented is the recursive execution of file-oriented
mode in parallel, using a mechanism called Orchestrator.
In the following sections, we describe the functionalities of
Sandiff in detail.

A. Content Recognition
To allow the correct selection of semantic comparators,

Sandiff performs the analysis of file contents by leveraging
internal structures and known patterns, i.e., artifact extension,
headers, type signatures, and internal rules of AOSP to then
summarize the results into (i) tag, (ii) action, (iii) reason, and
(iv) context attributes, as shown in Table I. Each attribute
helps the semantic comparators achieve maximum semantic
coverage. To measure the semantic coverage, we gathered the
percentage (amount of files) of file types inside vendor.img
and created a priority list to develop semantic comparators.
For instance, both ELF (32 and 64 bits) files represent about
60% of total files inside .img files, whereas symbolic link files
about 14% and XML files about 6%. This process enables us
to achieve about 90% of semantic coverage. As the comparison
is performed in a semantic mode, it is necessary to know the
context in which the artifact was used to enable the correlation
between files and test cases. Note that a file can impact one
or more tests in a different manner, e.g., performance, security
and fuzz tests. The remaining 10% of files are compared using
the byte-to-byte comparator.

Each recognizer returns a unique tag from a set of known
tags, or a tag with no content to indicate that the file could
not be recognized. Recognizers can also decide whether a
file should be ignored based on context by using the action
attribute and indicating a justification in the reason attribute.
Recognizers are evaluated sequentially. The first recognizer
runs and tries to tag the file: if the file cannot be tagged,
the next recognizer in the list is called, repeating this process
until a valid recognizer is found or, in the latter case, the file
is tagged to the default comparator (byte-to-byte). Table II
summarizes the list of AOSP-based recognizers supported by
Sandiff.

B. Semantic Comparators
Sandiff was designed to maximize semantic coverage of

the AOSP by supporting the most relevant intermediate files
used for packing artifacts into .img image files, i.e., the
bootable binaries used to perform factory reset and restore
original operational system of AOSP-based devices. To ensure
the approach assertiveness, for each semantic comparator, we
performed an exploratory data analysis over each file type and
use case to define patterns of the context’s characteristics.
The exploratory data analysis over each file type relies on

TABLE II. LIST OF AOSP-BASED RECOGNIZERS SUPPORTED BY
SANDIFF.

Recognizer Tags Action
IgnoredByContextRecognizer ignored by context Ingore
ContextFileRecognizer zip manifest Compare
MagicRecognizer elf, zip, xml, ttf, sepolicy, empty Compare
AudioEffectsRecognizer audio effects format Compare
SeappContextsRecognizerc seapp contexts Compare
PKCS7Recognizer pkcs7 Compare
PropRecognizer prop Compare
RegexLineRecognizer regex line Compare
SEContextRecognizer secontext Compare

ExtensionRecognizer
Based on file name.
e.g.: file.jpg ? ”jpg”

Compare

three steps: (i) file type study, (ii) where these files are
used, and (iii) how these files are used (knowledge of its
behavior). The result of this analysis was used to implement
each semantic comparator. The following subsections describe
the main comparators of Sandiff.

1) Checksum: Performs byte-to-byte (checksum) compari-
son and is the default comparator for binary files (e.g., bin,
tlbin, dat) and for cases where file type is not recognized
or unsupported. Sandiff employs the industry standard [6]
MD5 checksum algorithm, but also offers a set of alternative
algorithms that can be set manually by the user: SHA1,
SHA224, SHA256, SHA384, SHA512.

2) Audio Effects: AOSP represents audio effects and con-
figurations in .conf files that are similar to .xml:

(i) <name>{[sub-elements]}
(ii) <name> <value>

Audio files are analyzed by an ordered model detection
algorithm that represents each element (and its sub-elements)
as nodes in a tree that is alphabetically sorted.

3) Executable and Linking Format (ELF): ELF files are
common containers for binary files in Unix-base systems that
packs object code, shared libraries, and core dumps. This
comparator uses the definition of the ELF format (<elf.h>
library) to analyze (i) the files architecture (32 or 64-bit),
(ii) the object file type, (iii) the number of section entries in
header, (iv) the number of symbols on .symtab and .dynsym
sections, and (v) the mapping of segments to sections by
comparing program headers content. To correlate sections to
test cases, Sandiff detects semantic differences for AOSP
test-sensitive sections (e.g., .bss, .rodata, .symtab, .dynsym,
.text). When ELF files are Linux loadable kernel modules (.ko
extension, kernel object), the comparator checks if the module
signature is present to compare its size and values.

4) ListComparator: Compares files structured as list of
items, reporting (i) items that exists only in one of the com-
pared files, (ii) line displacements (lines in different positions),
and (iv) duplicated lines. To facilitate the correlation between
files and test cases, Sandiff implements specific semantic
comparators for Prop, Regex Line and SELinux files, as they
contain properties and settings that are specific to a particular
AOSP-based device or vendor.

a) Prop: Supports files with .prop extensions and
with <key> = <value> patterns. Prior to analysis, each

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

line of a .prop file is categorized in import, include or property,
as defined below:

(i) import: lines with format import <key>.
(ii) include: lines with format include <key>.

(iii) property: lines with format <key> = [<value>].

After categorization, each line is added to its respective list.
The comparator provides a list of properties to be discarded
(considered irrelevant) on the semantic comparison. A line can
be ignored if is empty or commented.

b) RegexLine: Performs the comparison of files in
which all lines match a user-defined regex pattern, e.g.,
’/system/.’ or ’.so’, offering the flexibility to perform
semantic comparison of unusual files.

c) SELinux: Security-Enhanced Linux, or SELinux, is a
mechanism that implements Mandatory Access Control (MAC)
in Linux kernel to control the permissions a subject context
has over a target object, representing an important security
feature for modern Linux-based systems. Sandiff supports
semantic comparison of SELinux specification files that are
relevant to security test cases of the VTS suite, i.e., Seapp
contexts, SELinux context, and SELinux Policy, summarizing
(i) components, (ii) type enforcement rules, (iii) RBAC rules,
(iv) MLS rules, (v) constraints, and (vi) labeling statements.

5) RC: The Android Init System is responsible for the
AOSP bootup sequence and is related to the bootloader, init
and init resources, components that are typically customized
for specific AOSP-based devices and vendors. The initializa-
tion of modern systems consists of several phases that can im-
pact a myriad number of test cases (e.g., kernel, performance,
fuzz, security). Sandiff supports the semantic comparison of
.rc files that contain instructions used by the init system:
actions, commands, services, options, and imports.

6) Symbolic Link: The semantic comparison of symbolic
links is an important feature of Sandiff that allows correlation
between test cases and absolute or relative paths that can
be differently stored across specific AOSP-based devices or
vendors, but result in the same output or execution. The
algorithm is defined as follows: first it checks if the file status
is a symbolic link, and if so, reads where it points to. With
this content it verifies if two compared symbolic links points
to same path. The library used to check the file status depends
on the input type and is abstracted by Input Recognizers. Take
the following instances as examples:

File System→ <sys/stat.h>

Image File→ <ext2/ext2fs.h>

ZIP→ <zip.h>

7) True Type Font: Sandiff uses the Freetype library [7]
to extract data from TrueType fonts, which are modeled in
terms of faces and tables properties. For each property field, the
comparator tags the semantically irrelevant sections to ignore
during semantic comparison. This is a crucial feature of Sandiff
since is common that vendors design different customizations
on top of the default AOSP user interface and experience.

8) XML: XML is the de facto standard format for web
publishing and data transportation, being used across all
modules of AOSP. To support the semantic comparison of
XML files, Sandiff uses the well-known Xerces library [8]

by parsing the Document Object Model (DOM), ensuring
robustness to complex hierarchies. The algorithm compares
nodes and checks if they have (i) different attributes length,
(ii) different values, (iii) attributes are only in one of the inputs,
and (iv) different child nodes (added or removed).

9) Zip and Zip Manifest: During the building process of
AOSP images, zip-based files may contain Java Archives (.jar),
Android Packages (.apk) or ZIP files itself (.zip). As these
files follows the ZIP structure, they are analyzed by the same
semantic comparator. Note that, due to the archive nature of
ZIP format, Sandiff covers different cases:

(i) In-place: there is no need to extract files.
(ii) Ignore metadata: ignore metadata that is related to

the ZIP specification, e.g., archive creation time and
archive modification time.

(iii) Recursive: files inside ZIP are individually processed
by Sandiff, so they can be handled by the proper
semantic comparator. The results are summarized to
represent the analysis of the zip archive.

Another important class of files of the AOSP building
process are the ZIP manifests. Manifest files can contain
properties that are time-dependent, impacting naive byte-to-
byte comparators. Sandiff supports the semantic comparison
of manifests by ignoring header keys entries (e.g., String:
”Created-By”, Regex: ”(.+)-Digest”) and files keys entries
(e.g., SEC-INF/buildinfo.xml).

10) PKCS7: Public Key Cryptography Standards, or
PKCS, are a group of public-key cryptography standards that
is used by AOSP to sign and encrypt messages under a Public
Key Infrastructure (PKI) structured as ASN.1 protocols. To
maximize semantic coverage, Sandiff ignores signatures and
compares only valid ASN.1 elements.

C. Orchestrator
The orchestrator mechanism is responsible to share the

resources of Sandiff among a variable number of competing
comparison jobs to accelerate the analysis of large software
projects. Consider the building process of AOSP. We noticed
that, for regular builds, around 384K intermediate files are
generated during compilation. In this scenario, running all
routines of the official Android Test Suite, known as Vendor
Test Suite (VTS), can represent a time consuming process that
impacts productivity of mobile developers. To mitigate that, the
orchestrator uses the well-known concept of workers and jobs
that are managed by a priority queue. A worker is a thread
that executes both recognition and comparison tasks over a
pair of files, consuming the top-ranked files in the queue. To
accelerate the analysis of large projects, Sandiff adopts the
notion of a fail greedy sorting metric, i.e., routines with higher
probability of failing are prioritized. The definition of failing
priority is context-sensitive, but usually tend to emphasize
critical and time-consuming routines. After the processing of
all files, the results are aggregated into a structured report
with the following semantic sections: (i) addition, (ii) removal,
(iii) syntactically equality, and (iv) semantic equality.

IV. EXPERIMENTS

In order to verify the comparison performance of San-
diff, we made experiments between different commercially-
available images of AOSP. The experiments consist on com-
paring the following image pairs:

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE III. OVERALL SUMMARY OF THE IMPACT OF USING SANDIFF IN REAL-WORLD COMMERCIALLY-AVAILABLE AOSP BUILDS.

Comparison
Add Remove Edit Type Edit Equal Error Ignored

Semantinc Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary
Experiment #1 0 0 0 0 11 12 0 0 2185 2185 0 19 0 0
Experiment #2 13 13 27 27 0 0 3 3 0 0 0 0 0 0
Experiment #3 23 23 18 18 527 606 0 0 1929 1805 0 45 0 0

* Add = file is present on the second input. Remove = file is present in the first input. Edit = file is present in both inputs, but the comparison returned differences. Type Edit = file
is present in both inputs, but there were changes in its metadata (e.g., permissions). Equal = file is present in both inputs, and the comparison returns an equal status. Error = file is
present in both inputs, but the comparison returns an error status. Ignored = file is present in both inputs, but is not semantically relevant, so it was ignored.

- Experiment #1: Comparing two revisions within same
AOSP version: 8.1.0 r64 x 8.1.0 r65.

- Experiment #2: Comparing last revision of AOSP Oreo with
initial release of AOSP Pie: 8.1.0 r65 x 9.0.0 r1.

- Experiment #3: Comparing last revision of AOSP Pie with
its initial release: 9.0.0 r1 x 9.0.0 r45.

These pairs were compared using both semantic (Sandiff)
and binary (checksum) comparison methods. To evaluate the
robustness of each method, we analyzed the files contained in
system.img, userdata.img and vendor.img images,
which are mounted in the EXT2 file system under a UNIX
system. Note that, differently from Sandiff, binary comparison
is not capable of reading empty files and symbolic link targets.
These files are listed as errors, as shown in Table III.

Based on the experiments of Table III, we can note that
Sandiff was able to analyze large software projects like the
AOSP. First, the semantic comparison was able to determine
the file type and to compare not only the file contents, but
it is metadata. In contrast, binary comparison was unable
to compare symbolic link’s targets and broken links failed.
Second, the semantic comparison was able to discard irrelevant
differences (e.g., the build time in build.prop) which are
not differences in terms of functionality. Note that, during
experiment #2, Sandiff is unable to perform a full analyses
between these trees because there were structural changes. For
instance, in AOSP Oreo, the /bin is a directory containing
many files, while in AOSP Pie, the /bin is now a symbolic
link to another path (that can be another image as well). As
a result, Sandiff detects this case as a Type Edit and does not
traverse /bin since it is only a directory in AOSP Oreo.

V. CONCLUSION

In this paper, we presented Sandiff, a semantic comparator
tool that is designed to facilitate continuous testing of large
software projects, specifically those related to AOSP. To the
best of our knowledge, Sandiff is the first to allow correlation
of test routines of the official Android Test Suite (VTS) with
semantic modifications in intermediate files of AOSP building
process. When used to skip time-consuming test cases or to
mount a list of priority tests (fail-fast), Sandiff can lead to
a higher productivity of mobile developers. We showed that
semantic comparison is more robust to analyze large projects
than binary comparison, since the former is unable to discard
irrelevant modifications to the output or execution of the target
software. As we refine the semantic comparators of Sandiff,
more AOSP specific rules will apply, and consequently, more
items can be classified as ”Equal” in Sandiff’s comparison
reports. In the context of making Sandiff domain agnostic,
another venue for future work is to explore machine learning
techniques to detect how tests are related to different types

of files and formats. We also plan to integrate Sandiff to the
official Android Test Suite (VTS) to validate our intermediate
results.

ACKNOWLEDGMENTS

We thank both Rafael Melo da Silva and Nick Diego
Yamane Pinto for their valuable help during the development
of the project. This work was supported by Sidia: Institute of
Science and Technology.

REFERENCES
[1] Araxis Ltd. Araxis: Software. [Online]. Available: https://www.araxis.

com/ [retrieved: October, 2019]
[2] Free Software Foundation, Inc. Diffutils. [Online]. Available: https:

//www.gnu.org/software/diffutils/ [retrieved: October, 2019]
[3] C. J. Madsen. Vbindiff - visual binary diff. [Online]. Available:

https://www.cjmweb.net/ [retrieved: October, 2019]
[4] Y. Wang, D. J. DeWitt, and J. Cai, “X-diff: an effective change detec-

tion algorithm for xml documents,” in Proceedings 19th International
Conference on Data Engineering, March 2003, pp. 519–530.

[5] M. Pawlik and N. Augsten, “Efficient computation of the tree edit
distance,” ACM Transactions on Database Systems, vol. 40, 2015, pp.
3:1–3:40.

[6] D. Rachmawati, J. T. Tarigan, and A. B. C. Ginting, “A comparative
study of message digest 5(MD5) and SHA256 algorithm,” Journal of
Physics: Conference Series, vol. 978, 2018, pp. 1–6.

[7] FreeType Project. Freetype. [Online]. Available: https://www.freetype.
org/freetype2/ [retrieved: October, 2019]

[8] Apache Software Foundation. C xml parser. [Online]. Available:
https://xerces.apache.org/xerces-c/ [retrieved: October, 2019]

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

https://www.araxis.com/
https://www.araxis.com/
https://www.gnu.org/software/diffutils/
https://www.gnu.org/software/diffutils/
https://www.cjmweb.net/
https://www.freetype.org/freetype2/
https://www.freetype.org/freetype2/
https://xerces.apache.org/xerces-c/

	Introduction
	Related Work
	Sandiff
	Content Recognition
	Semantic Comparators
	Checksum
	Audio Effects
	Executable and Linking Format (ELF)
	ListComparator
	RC
	Symbolic Link
	True Type Font
	XML
	Zip and Zip Manifest
	 PKCS7

	Orchestrator

	Experiments
	Conclusion
	References

