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Abstract—Software testing cycles have several difficulties, such 

as coverage of a dense scope in a limited time, due to dynamic 

product development approaches. Researchers try to use new 

techniques to overcome these difficulties. This paper presents 

the utilization of Machine Learning (ML) in software testing 

stages with its effects and outcomes. Practical applications and 

advantages are analyzed.  The main goal is to make insights 

about what can be done in different stages of software testing 

by employing ML and discuss benefits and risks. 

Keywords-artificial intelligence; machine learning; software 

testing; test automation. 

I.  INTRODUCTION 

Nowadays, software applications have very 
comprehensive features and usages. Most of them interact 
with other applications and connect to various platforms, 
which results in a remarkably wide scope and complexity 
[1].  

Comprehensive and competitive features are required for 
products to survive in the modern world. Products should 
adapt to new functionalities and be compatible with 
emerging technologies. On the other hand, they should 
respond to rapid changes to be one of the firsts in the market 
and not to be old fashioned.  

Figure 1 depicts these challenges by illustrating 
decreasing delivery time against increasing complexity. 

 

Figure 1.  Delivery time versus complexity of products [2]. 

New challenges in product development have reflections 
in software testing as well. It is mandatory to take quick 
actions against gaps introduced by complexity and fast 
changes in testing cycles. In this manner, new approaches in 

testing have been applied to overcome these raising 
challenges. One of the most exciting candidates is the 
application of machine-based intelligence into testing [3]. 
ML practices in testing promise for additional coverage and 
saving on time thanks to their design capable of 
understanding the system and finding the best patterns. 
Machines work faster than human beings on analyzing big 
data and deciding on the most optimum solution. Therefore, 
faster, better and cheaper processes are expected to be 
achieved by the usage of ML. Consequently, huge budget 
will be allocated on adaptation of ML into software 
lifecycles. Figure 2 exhibits the estimation for ML projects 
budgets by 2025, which is $90BN. 

 

Figure 2.  ML Projected Revenue in $ Billion [4]. 

In this paper, possible ML practices on software testing 
stages are investigated. Section II describes ML working 
principles. Section III explains several applications and their 
outcomes are analyzed in Section IV. Finally, summary of 
the work is given in Section V.  

II. BACKGROUND 

To reduce manual effort, several automation processes 
are integrated into software development projects. However, 
human intervention is still needed for the following activities 
[5]: 

• acquiring the knowledge needed to test the system, 

• defining testing goals,  

• designing and specifying detailed test scenarios, 

• writing the test automation scripts, 

• executing scenarios that could not be automated, 

• analyzing the results to determine threads. 
Machines are mainly programmed to follow explicit 

instructions whereas humans learn a lot through observation 
and experience. ML is the key factor to fill the gap caused by 
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the difference between the learning processes of machines 
and humans as much as possible and thereby to reduce 
human intervention. 

ML is defined by Arthur Samuel in 1959 as “the subfield 
of computer science that gives computers the ability to learn 
without being explicitly programmed” similar to human 
beings. If the performance of a machine improves with 
experiences, it means that it is learning [5]. 

ML algorithms run in two stages: training and execution. 
First, machine learns the system, or in other words, it models 
the system. This stage is called training. Then, the execution 
is performed by the prediction of next steps according to 
learnt experiences. In short, what was learned in the past is 
applied to new data by machines. ML types can be classified 
as Supervised, Unsupervised, Semi-Supervised and 
Reinforcement Learning. 

A. Supervised Learning 

Supervised ML algorithms use labeled examples to learn 
and then to predict future events. Starting from the analysis 
of a known training dataset, the algorithm builds a model to 
make predictions about the output values as shown in Figure 
3.  

 

 

Figure 3.  Supervised learning [6]. 

B. Unsupervised Learning 

Unsupervised ML algorithms are used when training 
information is neither classified nor labeled. Under these 
conditions, system builds a model from unlabeled data to 
describe a hidden structure. The system is not expected to 
estimate the right output, but it explores the data, draws 
outcomes from datasets and finally describes hidden 
structures from unlabeled data [1]. 

C. Semi-supervised Learning 

Semi-supervised ML algorithms fall somewhere in 
between supervised and unsupervised learning, since they 
use both labeled and unlabeled data for training. Figure 4 
illustrates a sample modeling. 

 

Figure 4.  Semi-supervised learning [6]. 

D. Reinforcement Learning 

Reinforcement ML algorithm is a learning method that 
interacts with its environment by producing actions and 
discovers errors or rewards. Simple reward feedback is 
required for the machine to learn which action is the best, 
which is known as the reinforcement signal. Figure 5 
exhibits the execution of Reinforcement Learning. 

 

 

Figure 5.  Reinforcement Learning [7]. 

III. METHODOLOGY 

Lots of applications are developed with ML algorithms in 
various models, such as Artificial Neural Networks (ANN), 
Support Vector Machines (SVM), k Means Clustering, 
Random Forest (RF) and k Nearest Neighbors (kNN) as 
shown in Figure 6.   

 

 

Figure 6.  Models to Develop ML algorithms for various applications. 

Several applications are developed for software testing 
purposes as well. As far as the adaptation of ML into 
Software Testing Life Cycle (STLC) is concerned, the whole 
process is handled in a structured manner in order to make it 
easily trackable. STLC is managed in three major stages [8] 
as shown in Figure 7: 

• Definition 

• Implementation 

• Maintenance 
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Figure 7.  Software Testing Stages [8]. 

ML is utilized in all of these stages. In Section IV, 
application methodologies are investigated in detail. Table I 
summarizes sample tools or models used in the stages. 

TABLE I.  ML APPLICATIONS IN TESTING 

Stage Application Tool/Model 

Definition Test Case Generation AIST [5] 

Implementation Code Generation & 
Completion 

DeepCoder [9] 

TabNine [10] 

Execution Applitools [11] 

Maintenance Refactoring DeepCode [12] 

Prioritization ANN, GA models 

Suite Generation Search-Based Models 

Bug Handling 

• Classification 

• Addressing 

• Scoring 

Naïve Bayes, K-Means 

clustering models 

IV. APPLICATIONS 

In this section, ML applications in software testing stages 
are discussed.  

A. Test Definition 

In this stage, test scenarios are defined to cover all use 
cases to ensure product quality. ML improves effectiveness 
and reduces manual effort in the test definition stage in 
different ways. One of them is letting the machine learn the 
use cases of the system by observing actions and reactions. 
In this way, the mandatory parameters and expected inputs 
are learnt. Similarly, error messages in negative scenarios are 
also observed. At the end of the learning phase, a model of 
the system is created. Afterwards, test cases are generated to 
verify expected results and behaviors according to the model. 
A commercial example for this approach is Artificial 
Intelligence (AI) for Software Testing Association (AISTA) 
[5]. 

If the working principle is further investigated, it can be 
understood that the machine observes the responses to 
requests to model the data structure. Any of the algorithms 

mentioned in Section III can be applied to generate the 
model. Then, a set of parameter inference rules are defined to 
generate the input data required by the test cases [13]. Figure 
8 [14] visualizes the model generation. 

 

Figure 8.  ML based model generation [14]. 

Offutt et al. [15] followed the same approach to learn the 
system. They illustrate the algorithm over a sample 
eXtensible Markup Language (XML) response: 

 
<books> 
 <book> 
  <ISBN>0-672-32374-5</ISBN> 
  <price>59.99</price> 
  <year>2002</year> 
 </book> 
 <book> 
  <ISBN>0-781-44371-2</ISBN> 
  <price>69.99</price> 
  <year>2003</year> 
 </book> 
</books> 
 
As the machine trains the behaviors of the system, it 

learns the fields of entities and supported data types. For 
instance, after training, the machine knows that a book has 
properties “ISBN”, “price” and “year” in data types “string”, 
“double” and “integer”. Finally, test cases are generated by 
forming request according to this model with perturbated 
data values. Data values are smartly selected (e.g., boundary 
values). Table II [15] illustrates a sample set of cases. They 
constructed 100 test cases, which found 14 faults out of 18, 
implying that the success rate is 78%. 

TABLE II.  GENERATED TEST CASES BY MACHINE [15] 

Original Value Perturbated Value Test Case 

<price>59.99</
price> 

263-1 Maximum Value 

-263 Minimum Value 

0 Zero 
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After the deployments of new features, changes on User 
Interface (UI) are detected and images removed from the 
application are noticed. Consequently, the machine starts to 
learn about the application and relations between the 
modules. New test cases are generated according to these 
relations. In summary, whenever there are changes in the 
system under test, additional test cases are created by means 
of the approach explained. 

It can be concluded that, ML improves the efficiency of 
testing activities in terms of coverage, time, effort and cost. 
Instead of analyzing the model and constructing test cases 
manually, the machine performs these operations. Thus, risks 
of manual work (e.g., skipping some cases) are minimized. 

B. Implementation 

In continuous testing environments, no one would refuse 
an increase in test implementation and execution speed. 
There are many ways to do this. 

1) Code Generation & Completion 
Coding is one of the biggest tasks in software lifecycles 

including development and testing activities. Thus, ML is an 
opportunity to improve or fasten the coding practices.  

For robots, a way to write code is, first understanding the 
problem and then applying the solution. When a problem is 
defined with inputs and outputs, the needed operations are 
predicted and the related codes are generated by the 
machines. DeepCoder [9] follows the same approach. Here is 
an example of input and output in a scenario, in which 
negative numbers are filtered and listed in a reserve order 
after multiplied with 4:  

 
For the input: 
[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11] 
 
Expected output is: 
[-12, -20, -32, -36, -68] 
 
Figure 9 shows that DeepCoder predicts needed 

operations after checking inputs and outputs:  

 

Figure 9.  Predicted possibilities of operations [9]. 

Recognition of patterns between input and output values is 
achieved by passing them through hidden layers with an 
ANN model. As a result, they reached a speedup of up to 
467 times [9].   

Beyond generating a code from scratch, another way to 
improve the prcess is to automatically complete code.  After 
the patterns the most frequently used are learned, the 
machines propose the subsequent codes during 
implementation. As shown in Figure 10, Tabnine [10] is an 
application, which facilitates test implementation.  

 

 

Figure 10.  An auto-completion application: Tabnine [10]. 

In short, ML not only reduces the effort and duration 
spent on code implementation, but also suggests the most 
frequently used patterns previously. In this way, 
standardization is also improved. 

2) Execution  
In terms of execution, ML helps with: 

• Exploratory Testing 

• Usability & Efficiency Checks 

• Execution Analysis 
ML bots perform exploratory testing by clicking every 

button on the application to test the functionalities. Adam 
Carmi, co-founder of Applitools [11], states: “We want to 
make sure that the UI itself looks right to the user and that 
each UI element appears in the right color, shape, position, 
and size.” ML algorithms are used in their tool Applitools to 
perform usability and efficiency tests. The system is modeled 
by the machine according to the defined use cases. 
Parameters for difficult and easy paths are extracted, and 
new designs are oriented by these trainings.  

Furthermore, execution evaluation is performed by 
analyzing execution data with ML algorithms. During test 
executions, ML algorithms learn patterns and user tendencies 
by collecting data, taking screenshots, downloading the 
content of web pages and measuring loading times. Then, 
properties of new features are estimated, and the deviations 
are detected accordingly. For instance, if loading time of a 
new page is longer than predicted, a warning is raised. Some 
outlier detection algorithms are applied with Info Fuzzy 
Network [16] for ML based test execution purposes.  

Results show that algorithms can automatically produce a 
set of nonredundant test cases covering the most common 
functional relationships existing in software. A significant 
saving is achieved from required human effort in this way, 
which means that benefits of ML are not limited to time 
only, but also cost and quality.  
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C. Maintenance 

1) Refactoring 
According to learnt patterns, some applications like 

DeepCode [12] propose solutions against code smells. It 
alerts about critical vulnerabilities needed to be solved in the 
code. Figure 11 shows how the model of the API is 
constructed with unsupervised learning algorithms. [17]  

 

 

Figure 11.  Learning of API Specifications in DeepCode [17]. 

Bugs are not allowed to go to production thanks to 
findings. Thus, saving on time is achieved [17]. 

2) Prioritization 
Infinite testing is impossible. With limited resources, 

prioritization among the test cases has critical importance. 
Priority is decided according to [18]: 

 

• The probability to find an error, 

• Uniqueness in terms of scope, 

• Complexity or simplicity, 

• Fitness for the regression activity. 
 

For prioritization, test cases are evaluated according to the 
learnings, which are collected from the labelled training sets. 
Algorithms are developed with various approaches, such as 
ANN [19] and Genetic algorithms [GA] [20]. Figure 12 
shows how the most significant cases are selected with 
ANN.  

 

Figure 12.  Test prioritization and reduction with ANN [19]. 

Thanks to prioritization, the number of tests cases to be 
executed is significantly reduced and less time is consumed 
on execution. Additionally, adaptation against immediate 
changes is quickly ensured since regression suite can be 
generated by ML algorithms.   

3) Suite Generation 

Whenever there is a change in the software, at least the 
regression suite is executed. ML algorithms train the 
relations between the test cases and the features and decide 
the related test suite for the newly added feature.  

It is possible to construct a group of tests, which are 
similar, by observing the coverages of tests during their 
executions [21]. The main idea of the analysis performed by 
the machine is to understand which tests are contextually 
close enough to each other to construct suites. After the 
similarities between test case contexts are analyzed, they are 
grouped by their coverage. 

a) Branch Coverage: According to the number of hits 

to a branch, the algorithm calculates the distances of 

executions to the target branch and the relation between a 

test and a branch is estimated. 

b) Line Coverage: Distances are calculated with the 

number of covered lines in the code after the execution of a 

test.  

c) Exception Coverage: Exception coverage is a kind 

of reinforcement learning and aims to reach as much 

exceptions as possible. Tests, which throw more exceptions, 

are rewarded.  

d) Method Coverage: Method coverage approach 

applies the same algorithms over methods. Tests are 

evaluated according to whether they call methods or not. 

4) Bug Handling 
Bugs are of great importance since they contain valuable 

information about the product. According to bugs, useful 
analysis can be done, such as: 

 

• constructing bug classes in relation with features, 

• learning relations between bug contexts and severity,  

• learning relations between bug contexts and 
assignees. 
 

Bug classification provides hints about the weaknesses of 
the product. For example, if bugs mostly heap together on a 
feature, some actions can be taken accordingly.  In such a 
case, related tests are prioritized to investigate the feature 
deeper.  

Additionally, scoring of the bugs is very important since 
they are handled according to their severities. Bugs with the 
highest severity levels are fixed primarily, then the rest is 
handled in order. If a critical bug is not scored correctly (e.g., 
with a low severity), it may be postponed since it is not 
regarded as a priority. As a result, the regarding fix is not 
done as soon as the bug identified, which leads to additional 
costs.  

Another point to mention is, for big teams, it is not easy to 
know each assignee for all features. In such cases, the 
assignee of a bug can be proposed by the machine according 
to the previously addressed bugs. Correctly assigned bugs 
are labeled, and the system is modeled by the machine. Then 
addresses for next bugs are estimated.  

Table III summarizes results from 3 different studies.  
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TABLE III.  ACHIEVEMENTS ON BUG CLASSIFICATION BY ML 

Study Assignment Scoring 

1 [22] 50%  

2 [23] 51.4% 72.5% 

3 [24]  72%-98% 

To sum up, ML algorithms contribute to bug handling 
processes, substantially. In terms of quality and scope, 
coverage is extended by means of the ML observations. If 
the machines detect any other weakness after bugs’ analysis, 
related test cases are determined and added. Additionally, 
ML improves the management of bugs, since it helps with 
correct triage and assignment.  

V. RELATED WORK 

In this section, an application is discussed on bug 
severity estimation. For this application, bugs of MindSphere 
[25] are used. MindSphere is the cloud-based IoT open 
operating system from Siemens. In the project, bugs are 
labeled with severity classes: 

• Severity 1: Safety 

• Severity 2: Critical 

• Severity 3: Major 

• Severity 4: Minor 
Severity 1 is for the cases, which are related to human 

life and safety issues. Currently, there is not a Severity 1 bug 
in the project. For the other severity classes, severity 
assignment to a bug is important in terms of prioritization. 
Additionally, in the project, Severity 2 bugs are especially 
tracked, since they are regarded as release blocker issues. 
Therefore, decision for a bug whether it is Severity 2 or not, 
affects the progress of the release. 

For two different purposes, 889 customer bug entries are 
collected from Jira. On this data, estimation of a bug severity 
for 3 classes (Severity: 2,3,4) and decision on a bug whether 
it is a release blocker or not (Severity 2 or not) are tested. 
Figure 13 shows the distribution of severity of bugs. 

 

 

Figure 13.  Bug Counts per Severity. 

Since the bugs are collected from a real-life project, 
sample count is not very high. 5% of data is separated for 
testing and training is performed with SVM on the rest. 
Figure 14 exhibits the confusion matrix for 3 classes. The 
accuracy is found to be 64% for this case. 

 

 

Figure 14.  Confusion Matrix for 3 classes. 

For two classes (Severity 2 or not), accuracy is 77%. 
Related confusion matrix can be seen in Figure 15. 

 

Figure 15.  Confusion Matrix for 2 classes. 

Severity estimation is not an easy task for bugs. For the 
same service, a bug can be both Severity 4 and Severity 2. 
Similarly, the same failure, i.e., data upload failure, can 
imply different severity levels depending on the conditions 
or input parameters. Therefore, it is very likely to face 
difficult decision cases. Considering these challenges, the 
results can be evaluated as successful.  

VI. DISCUSSION 

ML is applicable in all stages of software testing cycles. 
The usage of ML in testing activities has lots of advantages. 
Test coverage is improved by automatic test generation by 
machines. For the machine generated test cases, machines’ 
success rate in detecting faults is reported as 78%.  

In addition, ML applications provide extra speed in all 
stages of testing. Compared to humans, machines decide 
much faster. At least for the rough estimations, AI results can 
provide a quick feedback. As presented in Section IV, 467 
times faster implementation is achieved.   

Moreover, manual effort is obviously reduced. Instead of 
manual tasks, the machines work for defining, executing and 
maintaining tests.  Outliers are detected by algorithms during 

49Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

https://tureng.com/tr/turkce-ingilizce/substantially
https://tureng.com/tr/turkce-ingilizce/substantially


 

execution. In this way, the risk off missing bugs is 
minimized and the cost is reduced with early fixes.  

Advantages of ML applications in testing are 
unneglectable, however, potential risks should not be 
ignored. Performance, security, control and social risks can 
be faced in failure cases. Error cases can result in misleading 
actions, including security risks or fatal consequences [26]. 
Furthermore, if ML goes out of control, or is abused by 
people, some ethical and social concerns can arise. In short, 
it can be concluded that ML is a safe and beneficial tool only 
when it is under control.  

VII. CONCLUSION AND FUTURE WORK 

Rapidly improving software world grows a great rivalry 
and creates a pressure on stakeholders in terms of time, cost, 
scope and quality. Besides development processes, these 
challenges are faced also during the testing cycles. Thus, any 
effort that can overcome these challenges is welcomed. In 
this respect, ML is probably the most promising discipline to 
improve testing by making better and faster decisions.  

Even though it is assumed that ML can never fully 
replace human beings, it is already surpassing humans in 
several tasks, such as playing games and providing 
recommendations. As far as these advances are concerned, 
the goal is to make use of ML in testing as much as possible. 

ML algorithms provide a remarkable benefit on testing 
activities. It contributes with test coverage improvement, 
manual effort reduction, better conclusion and addressing. 

As a future work, it is aimed to develop an algorithm to 
support bug assignment. Improving the algorithm for triage 
is on future agenda and finally, comparison of results with 
the studies in literature will be performed. 
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