

How to Adapt Machine Learning into Software Testing

Mesut Durukal

IOT Division

Siemens AS

Istanbul, Turkey

e-mail: mesut.durukal@siemens.com

Abstract—Software testing cycles have several difficulties, such

as coverage of a dense scope in a limited time, due to dynamic

product development approaches. Researchers try to use new

techniques to overcome these difficulties. This paper presents

the utilization of Machine Learning (ML) in software testing

stages with its effects and outcomes. Practical applications and

advantages are analyzed. The main goal is to make insights

about what can be done in different stages of software testing

by employing ML and discuss benefits and risks.

Keywords-artificial intelligence; machine learning; software

testing; test automation.

I. INTRODUCTION

Nowadays, software applications have very
comprehensive features and usages. Most of them interact
with other applications and connect to various platforms,
which results in a remarkably wide scope and complexity
[1].

Comprehensive and competitive features are required for
products to survive in the modern world. Products should
adapt to new functionalities and be compatible with
emerging technologies. On the other hand, they should
respond to rapid changes to be one of the firsts in the market
and not to be old fashioned.

Figure 1 depicts these challenges by illustrating
decreasing delivery time against increasing complexity.

Figure 1. Delivery time versus complexity of products [2].

New challenges in product development have reflections
in software testing as well. It is mandatory to take quick
actions against gaps introduced by complexity and fast
changes in testing cycles. In this manner, new approaches in

testing have been applied to overcome these raising
challenges. One of the most exciting candidates is the
application of machine-based intelligence into testing [3].
ML practices in testing promise for additional coverage and
saving on time thanks to their design capable of
understanding the system and finding the best patterns.
Machines work faster than human beings on analyzing big
data and deciding on the most optimum solution. Therefore,
faster, better and cheaper processes are expected to be
achieved by the usage of ML. Consequently, huge budget
will be allocated on adaptation of ML into software
lifecycles. Figure 2 exhibits the estimation for ML projects
budgets by 2025, which is $90BN.

Figure 2. ML Projected Revenue in $ Billion [4].

In this paper, possible ML practices on software testing
stages are investigated. Section II describes ML working
principles. Section III explains several applications and their
outcomes are analyzed in Section IV. Finally, summary of
the work is given in Section V.

II. BACKGROUND

To reduce manual effort, several automation processes
are integrated into software development projects. However,
human intervention is still needed for the following activities
[5]:

• acquiring the knowledge needed to test the system,

• defining testing goals,

• designing and specifying detailed test scenarios,

• writing the test automation scripts,

• executing scenarios that could not be automated,

• analyzing the results to determine threads.
Machines are mainly programmed to follow explicit

instructions whereas humans learn a lot through observation
and experience. ML is the key factor to fill the gap caused by

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

the difference between the learning processes of machines
and humans as much as possible and thereby to reduce
human intervention.

ML is defined by Arthur Samuel in 1959 as “the subfield
of computer science that gives computers the ability to learn
without being explicitly programmed” similar to human
beings. If the performance of a machine improves with
experiences, it means that it is learning [5].

ML algorithms run in two stages: training and execution.
First, machine learns the system, or in other words, it models
the system. This stage is called training. Then, the execution
is performed by the prediction of next steps according to
learnt experiences. In short, what was learned in the past is
applied to new data by machines. ML types can be classified
as Supervised, Unsupervised, Semi-Supervised and
Reinforcement Learning.

A. Supervised Learning

Supervised ML algorithms use labeled examples to learn
and then to predict future events. Starting from the analysis
of a known training dataset, the algorithm builds a model to
make predictions about the output values as shown in Figure
3.

Figure 3. Supervised learning [6].

B. Unsupervised Learning

Unsupervised ML algorithms are used when training
information is neither classified nor labeled. Under these
conditions, system builds a model from unlabeled data to
describe a hidden structure. The system is not expected to
estimate the right output, but it explores the data, draws
outcomes from datasets and finally describes hidden
structures from unlabeled data [1].

C. Semi-supervised Learning

Semi-supervised ML algorithms fall somewhere in
between supervised and unsupervised learning, since they
use both labeled and unlabeled data for training. Figure 4
illustrates a sample modeling.

Figure 4. Semi-supervised learning [6].

D. Reinforcement Learning

Reinforcement ML algorithm is a learning method that
interacts with its environment by producing actions and
discovers errors or rewards. Simple reward feedback is
required for the machine to learn which action is the best,
which is known as the reinforcement signal. Figure 5
exhibits the execution of Reinforcement Learning.

Figure 5. Reinforcement Learning [7].

III. METHODOLOGY

Lots of applications are developed with ML algorithms in
various models, such as Artificial Neural Networks (ANN),
Support Vector Machines (SVM), k Means Clustering,
Random Forest (RF) and k Nearest Neighbors (kNN) as
shown in Figure 6.

Figure 6. Models to Develop ML algorithms for various applications.

Several applications are developed for software testing
purposes as well. As far as the adaptation of ML into
Software Testing Life Cycle (STLC) is concerned, the whole
process is handled in a structured manner in order to make it
easily trackable. STLC is managed in three major stages [8]
as shown in Figure 7:

• Definition

• Implementation

• Maintenance

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 7. Software Testing Stages [8].

ML is utilized in all of these stages. In Section IV,
application methodologies are investigated in detail. Table I
summarizes sample tools or models used in the stages.

TABLE I. ML APPLICATIONS IN TESTING

Stage Application Tool/Model

Definition Test Case Generation AIST [5]

Implementation Code Generation &
Completion

DeepCoder [9]

TabNine [10]

Execution Applitools [11]

Maintenance Refactoring DeepCode [12]

Prioritization ANN, GA models

Suite Generation Search-Based Models

Bug Handling

• Classification

• Addressing

• Scoring

Naïve Bayes, K-Means

clustering models

IV. APPLICATIONS

In this section, ML applications in software testing stages
are discussed.

A. Test Definition

In this stage, test scenarios are defined to cover all use
cases to ensure product quality. ML improves effectiveness
and reduces manual effort in the test definition stage in
different ways. One of them is letting the machine learn the
use cases of the system by observing actions and reactions.
In this way, the mandatory parameters and expected inputs
are learnt. Similarly, error messages in negative scenarios are
also observed. At the end of the learning phase, a model of
the system is created. Afterwards, test cases are generated to
verify expected results and behaviors according to the model.
A commercial example for this approach is Artificial
Intelligence (AI) for Software Testing Association (AISTA)
[5].

If the working principle is further investigated, it can be
understood that the machine observes the responses to
requests to model the data structure. Any of the algorithms

mentioned in Section III can be applied to generate the
model. Then, a set of parameter inference rules are defined to
generate the input data required by the test cases [13]. Figure
8 [14] visualizes the model generation.

Figure 8. ML based model generation [14].

Offutt et al. [15] followed the same approach to learn the
system. They illustrate the algorithm over a sample
eXtensible Markup Language (XML) response:

<books>
 <book>
 <ISBN>0-672-32374-5</ISBN>
 <price>59.99</price>
 <year>2002</year>
 </book>
 <book>
 <ISBN>0-781-44371-2</ISBN>
 <price>69.99</price>
 <year>2003</year>
 </book>
</books>

As the machine trains the behaviors of the system, it

learns the fields of entities and supported data types. For
instance, after training, the machine knows that a book has
properties “ISBN”, “price” and “year” in data types “string”,
“double” and “integer”. Finally, test cases are generated by
forming request according to this model with perturbated
data values. Data values are smartly selected (e.g., boundary
values). Table II [15] illustrates a sample set of cases. They
constructed 100 test cases, which found 14 faults out of 18,
implying that the success rate is 78%.

TABLE II. GENERATED TEST CASES BY MACHINE [15]

Original Value Perturbated Value Test Case

<price>59.99</
price>

263-1 Maximum Value

-263 Minimum Value

0 Zero

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

After the deployments of new features, changes on User
Interface (UI) are detected and images removed from the
application are noticed. Consequently, the machine starts to
learn about the application and relations between the
modules. New test cases are generated according to these
relations. In summary, whenever there are changes in the
system under test, additional test cases are created by means
of the approach explained.

It can be concluded that, ML improves the efficiency of
testing activities in terms of coverage, time, effort and cost.
Instead of analyzing the model and constructing test cases
manually, the machine performs these operations. Thus, risks
of manual work (e.g., skipping some cases) are minimized.

B. Implementation

In continuous testing environments, no one would refuse
an increase in test implementation and execution speed.
There are many ways to do this.

1) Code Generation & Completion
Coding is one of the biggest tasks in software lifecycles

including development and testing activities. Thus, ML is an
opportunity to improve or fasten the coding practices.

For robots, a way to write code is, first understanding the
problem and then applying the solution. When a problem is
defined with inputs and outputs, the needed operations are
predicted and the related codes are generated by the
machines. DeepCoder [9] follows the same approach. Here is
an example of input and output in a scenario, in which
negative numbers are filtered and listed in a reserve order
after multiplied with 4:

For the input:
[-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]

Expected output is:
[-12, -20, -32, -36, -68]

Figure 9 shows that DeepCoder predicts needed

operations after checking inputs and outputs:

Figure 9. Predicted possibilities of operations [9].

Recognition of patterns between input and output values is
achieved by passing them through hidden layers with an
ANN model. As a result, they reached a speedup of up to
467 times [9].

Beyond generating a code from scratch, another way to
improve the prcess is to automatically complete code. After
the patterns the most frequently used are learned, the
machines propose the subsequent codes during
implementation. As shown in Figure 10, Tabnine [10] is an
application, which facilitates test implementation.

Figure 10. An auto-completion application: Tabnine [10].

In short, ML not only reduces the effort and duration
spent on code implementation, but also suggests the most
frequently used patterns previously. In this way,
standardization is also improved.

2) Execution
In terms of execution, ML helps with:

• Exploratory Testing

• Usability & Efficiency Checks

• Execution Analysis
ML bots perform exploratory testing by clicking every

button on the application to test the functionalities. Adam
Carmi, co-founder of Applitools [11], states: “We want to
make sure that the UI itself looks right to the user and that
each UI element appears in the right color, shape, position,
and size.” ML algorithms are used in their tool Applitools to
perform usability and efficiency tests. The system is modeled
by the machine according to the defined use cases.
Parameters for difficult and easy paths are extracted, and
new designs are oriented by these trainings.

Furthermore, execution evaluation is performed by
analyzing execution data with ML algorithms. During test
executions, ML algorithms learn patterns and user tendencies
by collecting data, taking screenshots, downloading the
content of web pages and measuring loading times. Then,
properties of new features are estimated, and the deviations
are detected accordingly. For instance, if loading time of a
new page is longer than predicted, a warning is raised. Some
outlier detection algorithms are applied with Info Fuzzy
Network [16] for ML based test execution purposes.

Results show that algorithms can automatically produce a
set of nonredundant test cases covering the most common
functional relationships existing in software. A significant
saving is achieved from required human effort in this way,
which means that benefits of ML are not limited to time
only, but also cost and quality.

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

C. Maintenance

1) Refactoring
According to learnt patterns, some applications like

DeepCode [12] propose solutions against code smells. It
alerts about critical vulnerabilities needed to be solved in the
code. Figure 11 shows how the model of the API is
constructed with unsupervised learning algorithms. [17]

Figure 11. Learning of API Specifications in DeepCode [17].

Bugs are not allowed to go to production thanks to
findings. Thus, saving on time is achieved [17].

2) Prioritization
Infinite testing is impossible. With limited resources,

prioritization among the test cases has critical importance.
Priority is decided according to [18]:

• The probability to find an error,

• Uniqueness in terms of scope,

• Complexity or simplicity,

• Fitness for the regression activity.

For prioritization, test cases are evaluated according to the
learnings, which are collected from the labelled training sets.
Algorithms are developed with various approaches, such as
ANN [19] and Genetic algorithms [GA] [20]. Figure 12
shows how the most significant cases are selected with
ANN.

Figure 12. Test prioritization and reduction with ANN [19].

Thanks to prioritization, the number of tests cases to be
executed is significantly reduced and less time is consumed
on execution. Additionally, adaptation against immediate
changes is quickly ensured since regression suite can be
generated by ML algorithms.

3) Suite Generation

Whenever there is a change in the software, at least the
regression suite is executed. ML algorithms train the
relations between the test cases and the features and decide
the related test suite for the newly added feature.

It is possible to construct a group of tests, which are
similar, by observing the coverages of tests during their
executions [21]. The main idea of the analysis performed by
the machine is to understand which tests are contextually
close enough to each other to construct suites. After the
similarities between test case contexts are analyzed, they are
grouped by their coverage.

a) Branch Coverage: According to the number of hits

to a branch, the algorithm calculates the distances of

executions to the target branch and the relation between a

test and a branch is estimated.

b) Line Coverage: Distances are calculated with the

number of covered lines in the code after the execution of a

test.

c) Exception Coverage: Exception coverage is a kind

of reinforcement learning and aims to reach as much

exceptions as possible. Tests, which throw more exceptions,

are rewarded.

d) Method Coverage: Method coverage approach

applies the same algorithms over methods. Tests are

evaluated according to whether they call methods or not.

4) Bug Handling
Bugs are of great importance since they contain valuable

information about the product. According to bugs, useful
analysis can be done, such as:

• constructing bug classes in relation with features,

• learning relations between bug contexts and severity,

• learning relations between bug contexts and
assignees.

Bug classification provides hints about the weaknesses of
the product. For example, if bugs mostly heap together on a
feature, some actions can be taken accordingly. In such a
case, related tests are prioritized to investigate the feature
deeper.

Additionally, scoring of the bugs is very important since
they are handled according to their severities. Bugs with the
highest severity levels are fixed primarily, then the rest is
handled in order. If a critical bug is not scored correctly (e.g.,
with a low severity), it may be postponed since it is not
regarded as a priority. As a result, the regarding fix is not
done as soon as the bug identified, which leads to additional
costs.

Another point to mention is, for big teams, it is not easy to
know each assignee for all features. In such cases, the
assignee of a bug can be proposed by the machine according
to the previously addressed bugs. Correctly assigned bugs
are labeled, and the system is modeled by the machine. Then
addresses for next bugs are estimated.

Table III summarizes results from 3 different studies.

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE III. ACHIEVEMENTS ON BUG CLASSIFICATION BY ML

Study Assignment Scoring

1 [22] 50%

2 [23] 51.4% 72.5%

3 [24] 72%-98%

To sum up, ML algorithms contribute to bug handling
processes, substantially. In terms of quality and scope,
coverage is extended by means of the ML observations. If
the machines detect any other weakness after bugs’ analysis,
related test cases are determined and added. Additionally,
ML improves the management of bugs, since it helps with
correct triage and assignment.

V. RELATED WORK

In this section, an application is discussed on bug
severity estimation. For this application, bugs of MindSphere
[25] are used. MindSphere is the cloud-based IoT open
operating system from Siemens. In the project, bugs are
labeled with severity classes:

• Severity 1: Safety

• Severity 2: Critical

• Severity 3: Major

• Severity 4: Minor
Severity 1 is for the cases, which are related to human

life and safety issues. Currently, there is not a Severity 1 bug
in the project. For the other severity classes, severity
assignment to a bug is important in terms of prioritization.
Additionally, in the project, Severity 2 bugs are especially
tracked, since they are regarded as release blocker issues.
Therefore, decision for a bug whether it is Severity 2 or not,
affects the progress of the release.

For two different purposes, 889 customer bug entries are
collected from Jira. On this data, estimation of a bug severity
for 3 classes (Severity: 2,3,4) and decision on a bug whether
it is a release blocker or not (Severity 2 or not) are tested.
Figure 13 shows the distribution of severity of bugs.

Figure 13. Bug Counts per Severity.

Since the bugs are collected from a real-life project,
sample count is not very high. 5% of data is separated for
testing and training is performed with SVM on the rest.
Figure 14 exhibits the confusion matrix for 3 classes. The
accuracy is found to be 64% for this case.

Figure 14. Confusion Matrix for 3 classes.

For two classes (Severity 2 or not), accuracy is 77%.
Related confusion matrix can be seen in Figure 15.

Figure 15. Confusion Matrix for 2 classes.

Severity estimation is not an easy task for bugs. For the
same service, a bug can be both Severity 4 and Severity 2.
Similarly, the same failure, i.e., data upload failure, can
imply different severity levels depending on the conditions
or input parameters. Therefore, it is very likely to face
difficult decision cases. Considering these challenges, the
results can be evaluated as successful.

VI. DISCUSSION

ML is applicable in all stages of software testing cycles.
The usage of ML in testing activities has lots of advantages.
Test coverage is improved by automatic test generation by
machines. For the machine generated test cases, machines’
success rate in detecting faults is reported as 78%.

In addition, ML applications provide extra speed in all
stages of testing. Compared to humans, machines decide
much faster. At least for the rough estimations, AI results can
provide a quick feedback. As presented in Section IV, 467
times faster implementation is achieved.

Moreover, manual effort is obviously reduced. Instead of
manual tasks, the machines work for defining, executing and
maintaining tests. Outliers are detected by algorithms during

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

https://tureng.com/tr/turkce-ingilizce/substantially
https://tureng.com/tr/turkce-ingilizce/substantially

execution. In this way, the risk off missing bugs is
minimized and the cost is reduced with early fixes.

Advantages of ML applications in testing are
unneglectable, however, potential risks should not be
ignored. Performance, security, control and social risks can
be faced in failure cases. Error cases can result in misleading
actions, including security risks or fatal consequences [26].
Furthermore, if ML goes out of control, or is abused by
people, some ethical and social concerns can arise. In short,
it can be concluded that ML is a safe and beneficial tool only
when it is under control.

VII. CONCLUSION AND FUTURE WORK

Rapidly improving software world grows a great rivalry
and creates a pressure on stakeholders in terms of time, cost,
scope and quality. Besides development processes, these
challenges are faced also during the testing cycles. Thus, any
effort that can overcome these challenges is welcomed. In
this respect, ML is probably the most promising discipline to
improve testing by making better and faster decisions.

Even though it is assumed that ML can never fully
replace human beings, it is already surpassing humans in
several tasks, such as playing games and providing
recommendations. As far as these advances are concerned,
the goal is to make use of ML in testing as much as possible.

ML algorithms provide a remarkable benefit on testing
activities. It contributes with test coverage improvement,
manual effort reduction, better conclusion and addressing.

As a future work, it is aimed to develop an algorithm to
support bug assignment. Improving the algorithm for triage
is on future agenda and finally, comparison of results with
the studies in literature will be performed.

ACKNOWLEDGMENT

I am very grateful to Ms. Berrin Anil Tasdoken who has
reviewed the paper and guided me for the improvements.

REFERENCES

[1] M. Durukal, "Practical Applications of Artificial Intelligence
in Software Testing", International Journal of Scientific
Research in Computer Science, Engineering and Information
Technology (IJSRCSEIT), Volume 5 Issue 4, pp. 198-205,
July-August 2019, doi : 10.32628/CSEIT195434.

[2] W. Platz, "What’s beyond continuous testing? AI," SD Times,
2017.

[3] W. Murray, P. Karuppiah, and C. Stancombe," On the way to
smart, intelligent, and cognitive QA," World Quality Report
2017-18, 9th edition, 2017.

[4] "Which Industries Are Investing in Artificial Intelligence?,"
Splunk, Priceonomics Data Studio, 2018.

[5] T. King, "AI Driven Testing: A New Era of Test
Automation," Japan Symposium on Software Testing JaSST,
pp. 1-30, 2019.

[6] A. R. Shah, C. S. Oehmen, and B. Webb-Robertson, "SVM-
HUSTLE—an iterative semi-supervised machine learning
approach for pairwise protein remote homology detection,"
Bioinformatics, Volume 24, Issue 6, 15 March 2008, pp. 783–
790, doi: 10.1093/bioinformatics/btn028

[7] Reinforcement learning [Online] Available from:
https://en.wikipedia.org/wiki/Reinforcement_learning 2019.
11.05

[8] M. M. Lehman, "Programs, life cycles, and laws of software
evolution," in Proceedings of the IEEE, vol. 68, no. 9, pp.
1060-1076, Sept. 1980. doi: 10.1109/PROC.1980.11805

[9] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D.
Tarlow, "DeepCoder: Learning to Write Programs,"
Proceedings of ICLR'17, March 2017

[10] Tabnine [Online] Available from: https://tabnine.com/
2019.11.05

[11] Applitools [Online] Available from: https://applitools.com/
2019. 11.05

[12] DeepCode [Online] Available from: https://www.deepcode.ai/
2019. 11.05

[13] H. Ed-douibi, J. L. Cánovas Izquierdo and J. Cabot,
"Automatic Generation of Test Cases for REST APIs: A
Specification-Based Approach," 2018 IEEE 22nd
International Enterprise Distributed Object Computing
Conference (EDOC), Stockholm, 2018, pp. 181-190. doi:
10.1109/EDOC.2018.00031

[14] K. Meinke and P. Nycander, "Learning-based testing of
distributed microservice architectures: Correctness and fault
injection," SEFM 2015 Collocated Workshops, pp. 3-10,
2015.

[15] J. Offutt and X. Wuzhi "Generating test cases for web
services using data perturbation." ACM SIGSOFT Software
Engineering Notes 29.5, pp. 1-10, 2004.

[16] M. Last and M. Freidman, "Black-Box Testing with Info-
Fuzzy Networks," World Scientific, City, 2004.

[17] J. Eberhardt, S. Steffen, V. Raychev and M. Vechev,
"Unsupervised learning of API aliasing specifications." In
Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 745-
759, 2019.

[18] P. Saraph, M. Last, and A. Kandell, "Test case generation and
reduction by automated input-output analysis," Institute of
Electrical and Electronics Engineers Inc., City, 2003.

[19] Dr. A. P. Nirmala, Md Shajahan, Somnath K, "Impact of
Artificial Intelligence in Software Testing," International
Journal of Scientific Research in Computer Science,
Engineering and Information Technology (IJSRCSEIT), ISSN
: 2456-3307, Volume 3, Issue 3, pp.1519-1526, 2018.

[20] S. Dhawan, K. S. Handa, and R. Kumar, "Optimization of
software testing using genetic algorithms," In Proceedings of
the 11th WSEAS international conference on Mathematical
and computational methods in science and engineering
(MACMESE'09), World Scientific and Engineering Academy
and Society (WSEAS), pp. 108-112, 2009.

[21] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A. Arcuri,
"Combining multiple coverage criteria in search-based unit
test generation," Springer International Publishing, Search-
Based Software Engineering, volume 9275 of Lecture Notes
in Computer Science, pp. 93–108, 2015.

[22] J. Anvik, L. Hiew and G. C. Murphy, "Who should fix this
bug?." In Proceedings of the 28th international conference on
Software engineering, pp. 361-370, 2006.

[23] V. Stagge, "Categorizing Software Defects using Machine
Learning." LU-CS-EX, 2018.

[24] Imran, "Predicting Bug Severity in Open-source Software
Systems Using Scalable Machine Learning Techniques." PhD
diss., Youngstown State University, 2016.

[25] MindSphere [Online] Available from: https://
https://siemens.mindsphere.io/en/ 2019.11.05

[26] S. Levin and J. C. Wong, "Self-driving Uber kills Arizona
woman in first fatal crash involving," The Guardian, March.
19, 2018.

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

