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Abstract—Safety and robustness play a crucial role in the context
of the Industrial Internet of Things as autonomous and emergent
behavior increase the complexity of Cyber-Physical Production
Systems. Given the intractability of exhaustively verifying dis-
tributed production systems after modifications, testing and run-
time monitoring seem to be two promising methods used to verify
correctness in the digitally networked factory. Passive testing
and external runtime monitoring are efficient and lightweight
techniques that bridge the gap between testing and verification.
This paper presents a framework for on-the-fly simulation of
a specification relying on the Amazon Web Services Internet
of Things architecture and the use of the digital shadow. The
feasibility of the proposed architecture is evaluated using an
industrial case study.

Keywords–Passive testing, Industrial Internet of Things, Indus-
trial Cyber-Physical Systems

I. INTRODUCTION

The growing demands for individual products and shorter
product cycles caused a paradigm shift in manufacturing. The
Industrial Internet of Things (IIoT) comes with many advance-
ments, but also many challenges. While the technologies in use
are well understood, the problem lies in translating applicable
science and technology into engineering practice to meet future
production needs [1]. The Internet of Production (IoP) [2]
opens new possibilities for the interaction between different
production systems by providing semantically adequate and
context-aware data from development, production, and usage
in real-time, on an adequate level of granularity. This is a
blessing and a curse at the same time as insights gained from
the emitted data during production are turned into data that
controls the process. Consequently, this yields flexible value
chains that are subject to a high degree of reconfigurability
and experience an increasing complexity to meet their flexible
demands. Beyond that, the data-driven IoP infrastructure, the
highly iterative development, and agile manufacturing blur the
distinction between design time and runtime, resulting in a
lack of formal specifications in functionality, contexts, and
constraints as the system is exposed to continuous changes
in the environment, which take their tolls on the functional
safety and reliability of software. Its validation must go beyond
traditional validation using static methods, considering that not
all scenarios are predictable during design time, due to the
autonomous and emergent behavior.

Testing and runtime monitoring pose two potential ap-
proaches to tackle the emerging challenges for verifying the
correctness in the digitally networked factory [3]. Based on this
premise, this paper combines a specification-based, passive,
black-box testing approach paired with runtime monitoring.

A. Approach

The techniques proposed in this paper are applied after
the deployment of the system. Figure 1 shows the perception
of the IoP and the shift of continuous quality assurance and
testing to the operational phase. The systems require either the
ability to test themselves while in operation or the existence
of a monitoring component that is operated in parallel.
Currently, it is not possible to actively test the system during
the operational phase as the components are interwoven,
and each stimulus may trigger a response which cannot be
intercepted. This leads to unwanted side effects and may
disturb further process steps of the System Under Test (SUT).
Furthermore, the system’s functionality can not be interrupted
arbitrarily during the operational phase (disregarding emer-
gency stop), rendering a reset after each test case execution
as infeasible. Because the system is heavily based on the ex-
change of asynchronous messages, non-deterministic behavior
caused by, for instance, latency can complicate active testing
and hinder the repeatability. The continuous monitoring and
model-based passive testing of safety-critical properties during
the operational phase may alleviate the risk of using the system
in safety-relevant environments.

Nevertheless, the test cases generated with model-based
testing [4] during earlier stages of development can be reused
during the operational phase. The formal model from which
test cases were derived can be used for passive testing,
assuming that the specification used for generation is limited
to the input and output behavior of the system.

As passive testing is a black-box testing approach, it relies
on meaningful information exchanged between the industrial
assets to claim properties about the internal behavior of the
black-box. The passive tester runs on an external device, which
listens to the communication to extract the relevant messages
and therefore does not introduce any disturbances, slowing
down the execution speed or interfering with the normal
behavior of the system. Its purpose is to passively analyze
the input and output behavior of the SUT to detect faults, and
it is not intended for intervention.

The runtime monitor acts as a fail-safe, which triggers a
safety response upon transitioning into an unsafe region to
reduce the impact of the harm. External runtime monitoring is
a good fit for closing the gap between testing and verification.
It is a lightweight and scalable verification technique that does
not necessarily rely on a specification per se but on individual
requirements. The requirements and software components can
evolve without repercussions on the external runtime monitor,
and the physical separation, as with passive testing, guarantees
no restrictions in the functionality of the monitored component.
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Figure 1. QA and Testing as perceived in the IoP following [3]

B. Contribution and Outline
The contribution of this paper is to evaluate the feasibility

of a hybrid black-box testing approach for software quality
assurance of an industrial case study in which the execution
traces are observed, and the specification is assessed on-the-fly.

The remainder of this paper is structured as follows.
Section II gives an overview of a related approach and delimits
the contributions of this paper. Section III covers the prelim-
inaries and introduces common definitions related to passive
testing. Section IV introduces the architecture of the proposed
system, shows how the system’s behavior is supervised to give
insights into the internal states and explains the interplay of
the runtime monitor and the passive tester. Section V shows
the application of the developed system using an industrial
case study. Section VI draws a conclusion and presents future
work.

II. RELATED WORK

The contribution is heavily inspired by the work of Salva
and Cao [5], yet it differs in many aspects. In their work, a
combination of runtime verification and ioco passive testing is
proposed. Instead of using a classical proxy or middleware to
collect traces, they define a non-conformance relation using a
formal model based on transition systems for testing a SUT and
its specification with a so-called proxy-monitor. The proxy-
monitor represents an intermediary between the environment
and the SUT, which propagates the messages sent between
those two entities, whereas the test monitor in this contribution
only passively analyzes the traces. Given a specification mod-
eled as an input-output Symbolic Transition System (ioSTS),
Salva and Cao generate a proxy-monitor to check whether an
implementation is ioco-conforming to its specification against
a set of safety properties while analyzing the messages using
the proxy-tester to detect failures. This contribution, as op-
posed to the work of Salva and Cao [5], abandons the idea of
synthesizing one monitor from the specification and the safety
requirement and instead keeps them separate - the focus is put
on the specification in this contribution. This allows the spec-
ification and safety requirements to evolve and change during
the operational phase without requiring a new synthesis of the
monitor. For more information regarding the safeguarding of
safety requirements during runtime and a brief overview on
the related literature, the runtime monitoring algorithm based
on requirements written in temporal logic is proposed in [6] by
the authors. Further this contribution focuses on the application
in an industrial context, whereas Salva and Cao applied their
methodologies to the web service compositions deployed in

Platform as a Service (PaaS) environments. Especially due to
the high flexibility in the IIoT and the implications for the
Cyber-Physical Production Systems (CPPS) this property is
desired. Last but not least, the ioSTS model representing the
functional behavior of the program is used to generate a mon-
itor to check whether an implementation is ioco-conforming
and meets safety properties in the work of Salva and Cao
but this contribution directly executes the underlying model
with the data from the observations. This leads to the work of
Frantzen et al. [7] in which the state space explosion problem is
avoided by lifting a test theory for Labeled Transition Systems
(LTS) to their symbolic counterpart, where the data is treated
symbolically. Instead of generating infinitely branching test
cases offline as described in [7], the modeled specification in
this contribution is unfolded on-the-fly, resulting in an efficient
treatment of the possible infinite branching behavior.

Weiglhofer et al. [8] also build upon the ioco conformance
relation and presented an approach for the selection of test
cases using fault-based conformance testing. By mutating the
specification syntactically, a fault is modeled at specification
level such that the generated test cases fail if an implementation
conforms to a faulty specification [8]. In this contribution de-
viating behavior from the specification is considered as faulty
behavior and therefore sink states are introduced explicitly. It
has yet to be shown, if the approach by Weiglhofer et al. [8] is
a possible alternative to the ideas presented in this contribution
regarding the test case selection outlined in the future work. Hi-
erons et al. [9] proposed an algorithm for the construction of a
monitor, which is able to handle asynchronous communication
between the SUT and the monitor under certain conditions.
Instead of operating on the constructed finite automaton the
observed trace is used. The asynchronicity is of no concern
for the passive testing in this contribution as the data is
timestamped and utilized with regards to the event and not
the processing time. This allows for more flexibility as delays
in the communication are disregarded in the generation of the
monitor.

Lima and Faria [10] provide an approach and an archi-
tecture that puts the testing of distributed and heterogeneous
systems into a larger context. Of particular interest is the
hybrid test monitoring approach, which was adopted from
Hierons [11]. Hierons showed that multiple independent dis-
tributed testers that interact synchronously and a centralized
tester that interacts asynchronously with the SUT are incom-
parable and result in different traces and faults [11]. Currently
the techniques in this contribution were applied schematically
to one specific processing station. Within this process station
the communication was asynchronous and distributed, however
the behavior was sequential and hence it was opted for a single
tester that interacts synchronously with all the components in
the SUT using the event time [11]. When scaling the use case,
an approach similar to the one proposed by Lima and Faria [10]
shall be considered. Hierons [11] mentions that it is possible
to change the hybrid framework by making one of the local
testers also act as the centralized tester. Lima and Faria [10]
picked up this idea using a set of Local Test Driving and
Monitoring (LTDM) components and a Test Communication
Manager (TCM). The evaluation of this architecture is subject
to future work of Lima and Faria, however, a similar approach
shall be pursued for future work of this contribution.

In the next section, a partial introduction to the theory
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behind passive testing is given.

III. THEORETICAL BACKGROUND

As transition systems are a well-known formalism to model
reactive systems, they are considered as a formal representation
for the specification. However, the choice of the semantic
model can vary as shown in [12]. A transition system TS
[13] is a tuple (S ,Act ,→, I ,AP ,L), where

• S is a set of states,
• Act is a set of actions,
• →⊆ S ×Act × S is a transition relation,
• I ⊆ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S → 2AP .

The semantic model as-is currently abstracts from the inter-
actions with the environment. An explicit distinction between
actions initiated by the environment and actions initiated by
the system is made to account for the asymmetric communi-
cation between the system and the environment, following the
definition of Tretmans [4]. For modeling the input and output
behavior of a transition system, the set of observable actions
Act is partitioned into two disjoint sets, an input set ActI ,
which denotes the set of actions initiated by the environment,
and an output set ActO, which denotes the set of actions
initiated by the system itself, where Act = ActI ∪ ActO and
ActI ∩ ActO = ∅. Internal actions, which are unobservable,
are all commonly denoted with τ , where τ /∈ Act, as fairness
is not explicitly considered. Since the components are part
of a distributed control system, which uses the network to
interact through asymmetric communication, states which have
no outgoing output transition are forced to wait for an input
from the outside. Therefore it is possible that even though
the SUT is composed of determinstic components, the outputs
interleave non-determinstically. In addition to the latency of
the communication, the aforementioned leads to delays in the
occurrence of observations. For formalizing the property of
a state in which no output actions are enabled, a special
symbol δ, where δ /∈ Act ∪ {τ}, which is called quiescence
is introduced. A state s ∈ S of a transition system TS is
quiescent, if and only if no transition with an output action
from s exists, that is, ∀a ∈ ActO :

{
s′ ∈ S | s a−→ s′

}
= ∅.

Quiescence is made explicit by introducing self loops with
the symbol δ for all states s ∈ S, which do not have an
outgoing transition enabled for output actions. It is often
useful to consider transition systems where the observable
behavior is determinstic. This means that the transition systems
have at most one outgoing transition labeled with an action
a ∈ Act per state and hence only one initial state. The
determinized transition system, which may serve as a canonical
representation, is referred to as the suspension automaton [4].

In order to formally describe the possible behavior of a
transition system, the notion of execution fragments is defined.
Let TS = (S ,Act ,→, I ,AP ,L) be a transition system. A
finite execution fragment ρ of TS is an alternating sequence
of states and actions ending with a state ρ = s0a1s1a2 . . . ansn
such that si

ai+1−−−→ si+1 for all 0 ≤ i < n, where n ≥ 0.
The introduction of the execution fragment gives rise to the

formalization of the passive tester. A passive tester is modeled

as a program graph and is derived from the suspension
automaton. In contrast to the proxy-testers from [5], which use
symbolic transition systems [14], a slightly deviating definition
for modelling the specification is used. A program graph
PG [13] is a tuple (Loc,Act ,Effect ,→,Loc0, g0), where

• Loc is a set of locations and Act is a set of actions,
• Effect : Act × Eval(Var)→ Eval(Var) is the effect

function,
• →⊆ Loc×Cond(Var)×Act×Loc is the conditional

transition relation,
• Loc0 ⊆ Loc is a set of initial locations,
• g0 ∈ Cond(Var) is the initial condition.

In order to extract the execution fragments of the program
graph, it is assumed to behave like a transition system. Hence,
the transition semantics of a program graph TS (PG) over the
set Var are given by the tuple (S ,Act ,→, I ,AP ,L)

• S = Loc × Eval(Var)

• →⊆ S ×Act × S

`
g : a−−→ `′ ∧ η |= g

〈`, η〉 a−→ 〈`′,Effect(a, η)〉
(1)

• I = {〈`, η〉 | ` ∈ Loc0, η |= g0}
• AP = Loc ∪ Cond(Var)

• L(〈`, η〉) = {`} ∪ {g ∈ Cond(Var) | η |= g}.
To allow the system to make progress autonomously on the
actions that it initiates, a formalism is needed in which the
environment never refuses the outputs and the system never
refuses the inputs by the system’s environment. Therefore, the
program graph is augmented with a sink state ⊥, which can
be reached from all locations ` ∈ Loc by taking a transition
with a non-enabled input action

∀a ∈ ActI : ` 6
g : a−−→

`
g : a−−→ ⊥

. (2)

Once in the sink state ⊥, any behavior is possible. This ensures
that the program graph is always capable of accepting an action
from the environment.

This concludes the introduction of the preliminaries behind
passive testing. For details and further information, the reader
is referred to the work of Salva and Cao [5] and Frantzen et
al. [14].

IV. ADAPTATION TO INDUSTRIAL INTERNET OF THINGS

Figure 2 gives a high-level overview of the architecture.
The adapter can be seen as a semi-formal interface for trans-
forming the messages passed between the adapter and the SUT
into a suitable representation for the test and runtime monitor.
In this contribution, the emphasis is put on the test monitor.
However, a brief overview of the runtime monitor is given in
the following.

The runtime monitor analyzes the execution traces provided
via the adapter and concludes a certain property about the
SUT. The property of interest is derived from the requirements,
which usually originate from the design time and are given
in natural language. Requirements describe, for instance, the
relationship between two occurring events in which the second
event must occur within a given time bound of the occurrence
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Figure 2. Overview of the architecture.

of the first event. As we only have a black-box view of the
system, the possible monitorable requirements are limited to
the observable properties. For the use in runtime monitoring,
these requirements need to be transformed into formal logic,
for instance, using Metric Temporal Logic (MTL).

Even though the runtime monitor is able to reason about the
future time fragment of MTL, we limit ourselves only to the
past fragment, because we can’t set any fixed boundaries due to
the inaccuracies caused by the asynchronous communication.
The runtime monitor currently implements a rudimentary fail-
safe, which issues the SUT to halt, neglecting any additional
context information, in case of a violation. It was proposed
in [6], and the reader is asked to consult the reference for
details and further information.

During the execution of the SUT, the test and runtime
monitor run in parallel. The runtime monitor is responsible for
guaranteeing that the requirements are not violated, whereas
the test monitor gives insights into whether the implementation
deviates from the specification. The specification describes the
behavior of the SUT and is used to derive the program graph
for the test monitor, after determinization. The test monitor
starts the simulation from the initial state in the transition
system described by the program graph of the specification,
that is, an initial location ` ∈ Loc0 and an initial evaluation
η. If a new observation arrives, it is first preprocessed by
the corresponding adapter before being passed to the test
monitor. The test monitor receives either an input action with
its parameters or an output action with the related digital
shadow. The test monitor then proceeds with checking whether
the program graph is able to make a transition from the current
location `i to the next location `j with the received action
taking the guard and the current evaluation of the variables
into consideration. If the transition is possible, the test monitor
continues with the simulation. In case `j is the sink state ⊥,
the test monitor stops the current simulation and saves the
execution fragment up to and including `j for further analysis.
It then backtracks to the last location, in which the specification
and the SUT were conforming and continues the simulation
from there on while logging arbitrary behavior until the initial
location is reached again. This is justified by the fact that
in case a severe violation occurred, it was hopefully already
detected by the accompanying runtime monitor, which put the
system into a safe state. Since the execution of a production
line usually has a cyclical behavior, the test monitor and the
SUT are synchronized in their initial location by (re-)setting
the values of the variables. The execution fragment after the
backtracking up to the reset is also kept for further analysis.
If no observation arrives, the adapter passes a special symbol
to the test monitor which is interpreted as quiescence. For

practical reasons, a timeout for the observation of quiescence
is introduced, such that if in any location a given time bound is
exceeded, the program graph is transitioned into the sink state
⊥. The given time bound may vary from location to location,
taking into consideration the specified behavior. Currently, the
adapter checks if an observation arrived in the past second,
and if this is not the case, the special symbol is issued to the
test monitor.

As mentioned earlier, the execution fragments and their
simulation results are saved in order to guide the testing
process during maintenance or for regression testing. They can
be used to prioritize test cases by checking if the execution
fragment matches a predefined test case. If that is the case,
the test case should receive less importance during the testing
process in maintenance as other test cases, which occurred
less frequently with the same criticality. Furthermore, using the
execution fragments obtained after backtracking, it is possible
to investigate whether the test monitor was underspecified
for a specific sequence of in- and output observations. The
execution fragments that lead to the sink state ⊥ can be used
for debugging and aid the developer to validate the behavior
of the SUT after modifying the software by fixing a bug, for
instance.

In the next section, first, the case study is introduced.
Following that, it is explained how the specifications modeled
in a subset of UML and SysML are translated into a program
graph used for passive testing, and a brief evaluation of the
approach is given.

V. CASE STUDY

The presented approach is validated using an industrial
use case, which represents a part of the completion process
from a windshield production. It has three processing stations:
Cleaning (cleaning the windshield), Priming (application of a
primer), and Quality Assurance. The Cleaning subprocess was
used for evaluation, and it consists of a proximity sensor, a
pneumatic suction cup including a valve, a camera, and a robot
equipped with a cleaning tool. Each of these components, from
now on, referred to as industrial assets, has a task-specific
digital shadow. For further details, the reader is referred
to [15].
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Figure 3. Overview of the Cleaning subprocess.
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A. Digital Shadow
Even though the term digital shadow is ubiquitous, the

notion of its concept still differs. The digital shadow comprises
task-specific data of the processes, which allows for the
reconstruction of the entire life-cycle of an industrial asset [16].

In this case study, Amazon Web Services was used to
implement the control of the completion process. The digital
shadow serves as a method of data aggregation and refinement
for the control of the Cleaning subprocess, as shown in
Figure 3 by the superordinate shadow service. Each industrial
asset uses a digital shadow for its virtual representation and
is controlled by an asset driver, which possesses a shadow
service that is responsible for the communication with the su-
perordinate shadow service of the entire Cleaning subprocess.
The industrial assets can communicate locally with each other
via the asset drivers using an edge device. All messages are
exchanged and transmitted through the use of the Message
Queuing Telemetry Transport (MQTT) protocol, as shown in
Figure 3.

B. MQTT
MQTT is a lightweight and asynchronous machine to

machine (M2M) protocol based on TCP/IP. It offers a 1-
to-n connection and three Quality of Service (QoS) levels.
Unlike request/response protocols such as HTTP, MQTT uses
a publish/subscribe pattern of topics via a message broker,
which reflect the hierarchical structures of the systems. Each
industrial asset was assigned a shadow/update topic, to which
updates of its digital shadow can be sent. Similarly, other
messages with additional information or describing certain
actions were defined in [16].

C. Modeling the Use Case
The behavior of the SUT is specified using state machines

in a subset of UML and SysML as depicted in Figures 4-7.
In the following, the workflow of the Cleaning subprocess is
described. The proximity sensor detects whether a windshield
has been inserted into or removed from the workpiece carrier.
This information is transferred to the asset driver via I2C
as a 24V signal if a windshield is in range of the sensor
or a 0V signal if not. The asset driver passes this change
via MQTT to the superordinate shadow service, as shown in
Figure 3. The superordinate shadow service then proceeds with
updating the digital shadow and issues a message, if the update
was successful, with the corresponding content of the updated
digital shadow via the respective shadow/update/accepted
topic. Figure 4 shows exemplarily the specification of the
Cleaning subprocess. The focus in the subsequent section is
put onto the control process after the proximity sensor has
detected a workpiece in the workpiece carrier. All subsequent
processes are triggered by the control logic of the Cleaning
subprocess. As soon as the digital shadow of the proximity
sensor indicates that a windshield has been placed in the work-
piece carrier, the shadow service of the Cleaning subprocess
sents a message to open the valve to the pneumatics asset
driver using the topic fpl/cleaner/cleaner pneumatics , as
illustrated in Figure 5. The asset driver of the pneumatics
responds to this message by opening the valve and confirms
the change afterward using its shadow service. As soon as
the shadow/update of the pneumatics is propagated in the
shadow service of the superordinated shadow service, the

stm [stateMachine] cleaner process [Internal behavior of Cleaner]

pneumatics:
cleaner pneumatics

$aws/things/cleaner core/
shadow/update/accepted

(step: turn pneumatics on) /

identification:
cleaner identification

robot:
cleaner robot

$aws/things/cleaner core/
shadow/update/

accepted
(step: identification)
[is loaded == true] /

$aws/things/cleaner core/
shadow/update/

accepted(step: robot)
[product id ==

”PG11106000008”] /

$aws/things/cleaner core/
shadow/update/accepted

(step: turn pneumatics off)
[robot.working state ==”finished”] /

$aws/
things/

cleaner core/
shadow/update/

accepted(step: finish)
[is loaded == false ] /

Figure 4. State machine of the Cleaning subprocess.

stm [stateMachine] cleaner pneumatics [Internal behavior of Pneumatics]

closed

entry /
valve: ”closed”,
is loaded: false

open

entry /
valve: ”open”,
is loaded: true

fpl/cleaner/cleaner pneumatics
(valve: ”open”)

[valve == ”closed”] /
$aws/things/cleaner pneumatics/

shadow/update
(is loaded: true)

fpl/cleaner/
cleaner pneumatics

(valve: ”close”)
[valve == ”open”] /

$aws/things/cleaner pneumatics/shadow/update(is loaded: ”false”)

Figure 5. Sub-state machine cleaner pneumatics of the Cleaning subprocess.

control logic triggers the identification step (Figure 6) in which
a camera detects the product identifier of the windshield and
transfers it back to the control logic. Based on this information,
the superordinated shadow service sends a message to the asset
driver of the robot to start it (Figure 7). Once the robot has
finished and updated its digital shadow, a message is sent to
the pneumatic asset driver to close the valve. As soon as the
asset driver of the pneumatics received the message and closed
the valve, the digital shadow of the Cleaning subprocess is

stm [stateMachine] cleaner identification [Internal behavior of Identification]

free

entry/
working state: ”free”,

product id: ”null”

busy

entry/
working state: ”busy”,

product id: ”null”

finished

entry/
working state: ”finished”,

product id: ”PG11106000008”

fpl/cleaner/
cleaner identification(activity: ”start”)

[working state == ”free” ∧ product id == ”null”] /
$aws/things/cleaner identification/

shadow/update
(working state: ”busy”)

unobservable
internal action

[working state == ”busy”
∧ product id == ”null”] /

$aws/things/
cleaner identification/shadow/

update(working state: ”finished”,
product id: ”PG11106000008”)

fpl/cleaner/
cleaner identification

(activity: ”reset”)
[working state = ”finished”] /

$aws/things/cleaner identification/
shadow/update

(working state: ”free”, product id: ”null”)

Figure 6. Sub-state machine cleaner identification of the Cleaning
subprocess.
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stm [stateMachine] cleaner robot [Internal behavior of Robot]

free

entry /
working state: ”free”,

product id: ”null”

busy

entry /
working state: ”busy”,

product id:
”PG11106000008”

finished

entry /
working state: ”finished”,

product id: ”PG11106000008”

fpl/cleaner/cleaner robot
(activity: ”start”, product id: ”PG11106000008”)
[working state == ”free” ∧ product id == ”null”] /

$aws/things/cleaner robot/
shadow/update

(working state: ”busy”,
product id: ”PG11106000008”)

unobservable
internal action

[working state == ”busy” ∧
product id == ”PG11106000008”] /
$aws/things/cleaner robot/shadow/
update(working state: ”finished”)

fpl/cleaner/cleaner robot
(activity: ”reset”)

[working state == ”finished”]/
$aws/things/cleaner robot/

shadow/update(working state: ”free”,
product id: ”null”)

Figure 7. Sub-state machine cleaner robot of the Cleaning subprocess.

updated to the finished state. Further, after the windshield has
been removed and the proximity sensor no longer registers the
windshield, the cell updates its state to free.

D. Transformation and Application
The transformation of the specification given in SysML

to the program graph used by the test monitor is currently
a manual task. The variables occurring in the digital shadow
are modeled as atomic propositions a ∈ AP , which serve as
invariants in the respective location. The topics of the MQTT
messages are mapped to the actions Act of the program graph
and are modeled as signals with their corresponding properties
in SysML. The shadow/update topics are always interpreted
as outputs of the SUT, and the shadow/update/accepted
messages as input actions. Furthermore, all fpl/cleaner mes-
sages are interpreted as input actions. Concretely, the transi-
tions are interpreted as follows: the trigger of a transition is
an input action in ActI , the guard is a guard in Cond(VAR),
and the effect is an output action in ActO. Before a guarded
transition is taken, the associated guard is evaluated using the
current evaluation of the variables in the source location of the
transition.

It is important to note that the signals should not be
modeled as in- and outputs at the same time. The message
fpl/cleaner/cleaner identification, for instance, should
not be modeled as an output from pneumatics to identifi-
cation in the Cleaning subprocess and as an input in the
state machine of cleaner identification from free to busy,
because that would not reflect the way the messages are
passed using AWS. The change of state must take place
beforehand, and this can be done, e.g., by the message
$aws/things/cleaner core/shadow/update/accepted.
The entry/ keyword of a state in the SysML state machine
implicitly models a shadow/update/accepted message. For
example, in Figure 5, the transition from closed to open
with the trigger fpl/cleaner/cleaner pneumatics has an
output action shadow/update as an effect, which triggers a
shadow/update/accepted message in the entry/ method of
the state busy and sets the values of the variables in VAR
implicitly on the evaluation derived from the digital shadow.

The experimental evaluation of the hybrid-approach was
done on a Raspberry Pi 3 Model B+, which was added as an

additional industrial asset beneath the Cleaning subprocess.
The industrial asset was subscribed to all occurring topics in
the specification using the adapter.

E. Results and Insights
The test monitor was able to detect deviations from the

specification from the behavior of the SUT at runtime. There
were no severe errors, only a few implementation inaccuracies.
For instance, cleaner identification was exposed to a faulty
shadow/update. The digital shadow was set to busy even
though cleaner identification was in the state finished, and
cleaner robot was started already. Furthermore, cleaner robot
immediately switches its state from free to finished. Conse-
quently, the state busy was never set in the shadow/update.
Last but not least, cleaner pneumatics receives an activity :
”start“ message but isn’t implemented with the free, busy or
finished concept in mind. The cleaner process updates its own
digital shadow using an internal function of AWS and hence
does not send any shadow/update messages. This restricts the
set of observable messages to the shadow/update/accepted
messages.

VI. CONCLUSION

It was shown that a specification-based, passive, black-
box testing approach paired with runtime monitoring is an
appropriate way for improving the quality assurance during
operation. While the model-based testing theory describes
how to derive test cases, it does not state how to prioritize
or select test cases. Therefore, the execution fragments can
be used to guide testing during maintenance by prioritizing
test cases, which were not observed during runtime or by
focusing on the test cases that failed during machine operation.
Another benefit of bookkeeping the execution fragments is
the possibility to recheck them against a variety of system
properties, which have not yet been considered. In the case
of machine modification and reconfigurations, the execution
fragments can be used in regression testing. Another possibility
for the test case selection poses the work of Weiglhofer et
al. [8], which uses a fault-based testing technique and can also
be applied to the use case from this contribution.

A. Outlook
Currently, the techniques were applied schematically to the

Cleaning subprocess. Future work shall extend the method-
ologies to the other subprocesses and also consider their dis-
tributed communication. Here, the approaches by Hierons [11]
and the concept of Lima and Faria [10] shall be examined.

The runtime monitor currently halts the execution of the
system by sending a stop message in case a violation is
detected. In some situations, this may lead to damage of the
product or the machine. Improved routines could be developed
by considering context information such that no harm is caused
to the product or machine.
Currently, it is not possible to apply a stimulus to the SUT
without affecting other industrial assets. It is expected that
testing in idle phases of the process increases reliability. Future
work shall enable testing during runtime.

If a deviation from the specified behavior is detected, but
the system remains in a state that is not violating, the model of
the specification might be underspecified. In this case, appro-
priate suggestions for updating the model of the specification
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to improve the quality could be proposed. Furthermore, the
derivation of the test monitor from the specification modeled
in SysML is currently a manual task, and error-prone, which
shall be automated in future work. Last but not least, an
evaluation of how well this approach aids in regression testing
is pending.
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