

How to Overcome Test Smells in an Automation Environment

Mesut Durukal

IOT Division

Siemens AS

Istanbul, Turkey

e-mail: mesut.durukal@siemens.com

Abstract—This paper presents the most common test smells

and their prevention methods in a test automation framework.

In this scope, the necessity for test automation is discussed and

the most probable test smells in a test automation framework

are discussed. Possible solution methods to handle test smells

are presented and their advantages are evaluated as per the

obtained results. Presented methods are also applied in the test

activities of a big project, which is a cloud-based open IoT

operating system and consists of microservices.

Keywords-cloud services; asynchronous microservices; test

automation; test smells; robustness.

I. INTRODUCTION

It is a well-known fact that neglecting testing activities in
projects can cause major cost impacts in the later stages of
the product life cycle. To illustrate the prominence of testing,
the leaning tower of Pisa is a stunning example for costs of
fix after release. The project lasted for 10 years and its total
cost was over €30 million [1]. Another example to support
this is the annual cost of manual maintenance and evolution
of test scripts in Accenture, which was estimated to be
between $50-$120 million [2].

All levels of testing activities have to be incorporated
into projects on time to avoid such situations. For the
products/systems in which multiple units/subsystems are
integrated, each unit or subsystem is tested individually.
Nevertheless, the integrated product/system must still be
verified, which indicates the necessity of end-to-end testing.
The quality of the product is fully ensured by testing at all
levels [3].

Once the importance of testing is accepted, the next
concern would possibly be the testing approach. Necessity
for test automation arises due to several reasons. Even
though the demands are growing in projects since more
requirements and features are added day by day, timelines
tend to get shorter, and this increases the pressure on every
stakeholder. Each activity in a project has to be managed
more efficiently in terms of time and effort for this reason.
Additionally, in a continuous integration and delivery
environment, bugs possibly exist in each deployment, and
hence the need of continuous testing is evident.

Continuous testing activities would be much more
difficult to manage without test automation. Tests are
automated and scheduled executions are planned and
triggered automatically over pipelines to reduce manual
effort and testing duration.

Although there is no doubt about the need of test
automation, it has several challenges. One of the most
encountered difficulty is the inconsistent results, especially
in the asynchronous services. Therefore, robustness is very
crucial for testers to avoid additional analysis effort. Test
smell is the main cause of lack of robustness in test results.
Proposed solutions in this paper provide an insight to cope
with test smells and ensure robustness.

To sum up, testing is a must for quality of our products
and hence the prevention of unexpected costs. Thanks to test
automation, it is possible to perform testing activities,
continuously. On the other hand, automation has some
challenges since there is a risk for smells in test code. Test
smells cause extra effort and cost. Main objectives of this
paper are:

• To present the most common smells,

• To present a set of mitigating actions for those
smells within the scope of automated testing,

• To provide empirical information supporting actions.
For this purpose, system under test is presented in

Section II and Section III describes test smells. Section IV
explains the solutions, where the results are discussed in
Section V. Finally, summary of the work is addressed in
Section VI.

II. SYSTEM UNDER TEST

The system under test has been developed by more than
600 people in 10 countries. A new version is released every
two weeks. Acceptance tests are performed for each release
and regression tests are performed after every deployment,
which is approximately every 4 hours.

The architecture is built on microservices approach,
which makes use of a granular structure. In this way, services
collaborate and build the whole product. A representation of
microservices architecture is shown in Figure 1.

Figure 1. A sample representation of microservices [4].

24Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Despite all the advantages [5], there are drawbacks as
well, especially for asynchronous systems. In those systems,
user requests are responded by the relevant unit without
waiting for the response of the successive units. For each
request, a transaction is created, which leads additional
requests to other microservices. Even if the first steps of the
transaction succeed, a failure in the following steps is
possible. Unpredictable failures and processing time are
underlying causes for test smells in such architectures.

III. TEST SMELLS

Test smells are observed during the test cycles and the
solutions are applied on a cloud-based open IoT operating
system in this study. Testing activities are performed from
unit level to end-to-end level.

Counter-actions against automation difficulties for test
improvement are explained in Section IV. Before that, test
smells are defined formally in this section in order to
construct a framework for the proposals. Test smells are
defined as indicators, observed during testing cycles, for
potential problems [6]. In other words, they are regarded as
signals for the poorly designed tests [7].

A good starting point to emphasize the importance of test
smells is to explain their consequences if they are not fixed.
Table I shows all possible test results, where the highlighted
cells are two problematic groups. When a test does not catch
a failure, this corresponds to the Silent Horror [8]. On the
other hand, the situation, where a test result shows a failure
even though the feature under test is developed as expected,
indicates a False Alarm.

TABLE I. TEST RESULTS CLASSIFICATION [3]

Correct Result

Pass Fail

Execution

Result

Pass No Problem Silent Horror

Fail False Alarm Real Bugs

Silent Horrors cause extra costs in later stages of product

life cycle, since the cost of fixing a bug after the release of
the product considerably increases. According to [9], in such
a situation the cost of bug fixing is nine times higher. That’s
to say, a test smell, which is a potential cause for such a
problematic result, means additional cost in the product
budget.

Similarly, false alarms cause extra costs as well, since the
reported false alarms require an evaluation. To illustrate how
crucial they can be, crash of Helios Airways Flight 522 in
August 2005 can be examined. It is the most fatal flight
accident to date in which 121 passengers and crew were
killed when a Boeing 737-31S crashed into a mountain in the
north of Athens [10]. After the accident investigation, it was
concluded that the pilots neglected the cockpit pressure
failure alarms due to lots of false alarms. The existence of
lots of false alarms can cause an overlook of real problems or
bugs as in Helios case. The system cannot be designed by
suppressing some of the negative results, since it would be
too risky. Therefore, the only way to minimize the number of
residual bugs is to reduce the number of false alarms.

The effect of misleading test results is clear. More than a
hundred of root causes for these problems, namely test
smells, are defined [11]. In this study, the most common
smells in the automation framework are detected. For this
purpose, interviews were conducted with the test automation
engineers in the organization and maintenance tickets on test
management tool were investigated. Most of the assignments
were related to the refactoring of a test code which had
instable results. Some bugs, which were collected from end
users, imply that some scenarios are not covered by test
cases. Beyond these examples, prominent cases are
summarized in Table II.

TABLE II. MOSTLY FACED TEST SMELLS IN THIS STUDY

Test Smells Description

Duplication Code Duplication.

Instability & Unreliability Tests once pass and once fail under same
conditions.

Distortive Smells Tests with Wrong Results.

Complexity Tests, which are not easy to understand or

maintain.

Limited Scope Tests with insufficient scope.

A. Duplication

Code duplication increases maintenance effort and time.

B. Instable and Unreliable Tests

1) Flaky Test [11]: Flaky tests sometimes pass and

sometimes fail without any change in the system or

circumstances [11]. Google statistics [12] provide a clue to

guess how much trouble flaky tests introduce to projects:

• 1.5% of all test runs report a "flaky" result.

• Almost 16% of tests have some level of flakiness.

• 84% of the transitions observed from pass to fail
involve a flaky test.

2) Suite Dependency: Suite dependency arises when a

group of tests pass when they are run independently but fail

when more testers run them simultaneously or in a wrong

order.

3) Fragile Test: Failure of a test depending on a change

of a parameter addresses a fragile test. For instance, test

crash due to a test data change implies a data sensitive test.

C. Distortive Smells

Distortive smells hide the real results and lead to false
alarms or silent horrors. For example, an assertion error can
create a pass result even if the expected outcome is not
obtained.

D. Complexity

1) Eager Test [10] is mainly described in literature as a

test which tries to verify lots of features of the same object

in a single run. In this case, granularity and traceability are

lost, and understandability of tests reduces.

2) Slow tests: The architecture may result in slow or

long run time of tests if it is not well-organized.

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

3) Anti-patterns are the code blocks for which the best

practices and standarts are not applied. They may stem from

dead fields, bad naming or external resources.

E. Limited Scope

Testing the functionality in a limited scope, e.g., testing
only the positive paths, hides the bugs lying under other
patterns. Users are warned by messages when there is a
misuse. Therefore, testing the functionality for the negative
paths are as important as the testing of positive paths.

Another risky situation is related to security. For
authentication and authorization functionalities, the positive
scenarios test whether the defined users can login to system.
However, in this case, the test of the negative scenarios is
more important for the prevention of malicious attacks.

Finally, in terms of scope, test data holds a great
importance for the coverage. Testers are suggested to use
smartly chosen numbers instead of magic numbers.

IV. SOLUTIONS AND RESULTS

With the recognition of the most challenging problems,
the strategy to overcome these problems is to determine root
causes and to develop solutions against them. This is
summarized in Table III.

TABLE III. COUNTER-ACTIONS AGAINST TEST SMELLS

Smell Root Cause Solution

Duplication Same code in lots of classes Helper Classes

Flaky Results

Async waits
Polling

Mechanisms

They are overlooked and not

cured.
Test History

Suite

Dependency

Tests are not grouped smartly.
Suites &

Annotations

Executions are dependent. Clean Up

Fragile Tests

Poor code/architecture

Manual Static
Code Analysis Distorted

Results

Complexity
Static Code

Analysis Tools

Limited Scope

Limited Execution Environment
Additional
Executions

Limited Test Data
Test Data

Improvement

The solutions proposed in Table III are developed to get

rid of test smells and hence to reduce maintenance effort.
Improving test designs and solutions to test smell is as

important as determining test smells. In this section,
solutions used in our study are presented in detail.

A. Helper Classes

The majority of the test steps are reused in several test
scenarios. This introduces the obligation to apply the same
fix on at several different points. This is one of the reasons
why variations between test classes exist. As test automation
framework evolves and number of tests increases, it becomes
harder to update the existing code.

Regarding the size of the project, it becomes inevitable to
implement and use helper classes after a certain point.

Instead of using duplicated code, several test classes call
helper methods. Figure 2 shows only a part of the list of tests
which use a method from a helper class. For illustration,
when a transaction time is updated to 10 seconds, tests as per
with 5 seconds will fail. With the use of a helper method, it
is sufficient to make this update at a single point only.
Otherwise, all classes, which include the wait time, should
have been scanned to be updated.

Figure 2. Lots of tests doing the same operation over helper classes.

 Additionally, helpers improve the understandability of
the code as well, as shown in Figure 3.

Figure 3. Change in understandability of the code with Helper Classes.

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

B. Polling Mechanisms

Flaky results are often produced by the methods which
do not wait for the result of a call properly. According to a
research [12], possible causes of flaky results are collected in
Table IV with their frequency.

TABLE IV. POSSIBLE REASONS FOR FLAKY RESULTS

Async Wait 27,08%

IO 22,45%

Concurrency 16,97%

Test Order Dependency 12,42%

Network 9,59%

Time 3,14%

Randomness 2,93%

Resource Leak 2,50%

Floating Point Operation 1,73%

Unordered Collections 1,18%

As suggested in [13], instead of reporting a failure after a

single execution, at least the results from three executions are
compared to decide whether it is a failure or success. Toward
this aim, adaptive retry algorithms are integrated into code.

Test executions are observed before and after applying
retry mechanisms to understand their effect. Figure 4 shows
the results of 23 consecutive executions. The code without
retry failed 6 times, and the code with retry failed only once.

Figure 4. Test results before and after applying retry mechanisms [3].

Figure 5 shows a scenario to illustrate retry mechanisms.

Figure 5. Successful response after 3rd request.

A deletion scenario is studied to figure out the working
principle of retry mechanisms. In this scenario, “myservice”
responds requests coming from end-user and communicates
to entity service to save and delete objects. After the receipt
of a creation request, the call is responded and the operation
is queued. However, if the object is tried to be deleted before
the creation finishes, the request is refused since the object
cannot be found. This does not address a bug because
deletion works when the object exists. In this case, whenever
a negative response is returned from the server, the request is
retried after a polling duration until the maximum timeout is
reached. If the request was not retried, test would fail.

Additionally, polling mechanisms replace static waits.
For instance, when an operation is expected to be fulfilled in
2 minutes, even though waiting up to 2-minute-wait is
accepted, polling for the result with a certain frequency
prevents longer waits after the process is completed.

C. Test History

Against instabilities, scheduled jobs are created over
pipelines. Execution of tests multiple times enables us to
observe sporadic issues. After each execution, results are
automatically reported and instabilities are filtered out at the
end. Hence, the risk of overlooking a failure is minimized. A
sample representation is shown in Figure 6 [14].

Figure 6. Test Result Trend across executions [14].

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

D. Test Suites and Annotations

Tests are labeled with annotations to group similar
scenarios to execute together. Thus, the whole suite is
divided into subsets and by parallel executions durations of
the regression testing are decreased. Besides, tests which
block each other can be managed in this way to handle suite
dependencies. A sample annotation is:

@Test(groups = { TestGroups.ENTITY, TestGroups.DELETE,

TestGroups.UI }, enabled = true)

E. Clean Up

Cleaning the created objects after each test execution is
of great prominence since otherwise, they result in conflicts
in the following executions. Thanks to clean ups integrated
in the automation framework, conflicts are not only hindered
but also the load on testing environments are also reduced.

F. Reviews

1) Test Definition Review: Test definitions are reviewed

by a separate team after their creations. In this way, on one

hand, coverage concerns are fulfilled and on the other hand,

Eager tests are rearranged.

2) Test Code Review: According to a list of code review

standards, test code is reviewed in many aspects by different

people, thus the weaknesses in the code are minimized, and

quality is enhanced.

a) Cross check: Review of the test design by a second

eye reveals smells since a fresh look provides an extra point

of view. Fragile codes, false alarm and silent horror cases,

scope overlaps, structural smells are treated in this way.

b) Best practices: Removing unnecessary code blocks

is observed as one of the most fundamental factors which

slow down test executions. A login operation, which is

performed over user interface, is a relatively slow operation.

Similarly, final modifiers and some other parametric usages

affect the memory consumption and execution performance.

As a best practice, naming conventions are set to prevent

bad naming and obscure tests.

G. Tools Usage

Code quality tools detect smells and advice for the
solutions. SonarQube is used in this study to scan test code
and to improve quality. Lots of vulnerabilities, such as
fragile and long tests, duplicated codes and structural smells,
are revealed and fixed by means of these scans. Figure 7
shows that SonarQube warns about magic numbers.

Figure 7. Warnings of SonarQube.

H. Additional Executions

Apart from regression suites and functionality checks,
some additional exploratory and compatibility testing are
performed to increase test coverage. Some other smells, like
Testing Happy Path Only, can be reduced with Exploratory
testing. In a sprint, distribution of found bugs over one
service is illustrated in Figure 8.

Figure 8. Distribution of found bugs over one service [3].

Therefore, testing different scenarios helps finding
hidden bugs. However, there is another limitation beyond
scope, which is execution platform. Regardless of the
context, running a test only on a single platform limits
observation. For instance, verification of user interface
functions on a single browser may lead to miss out some
bugs appearing on other browsers. To eliminate these risks,
cross browser testing is integrated into testing processes with
Selenium Grid [15], as shown in Figure 9.

Figure 9. Selenium Grid [15].

In other respects, for hardware tests, a limited number of
real devices are available. Thus, a machine manager server is
developed in order to increase execution platforms. Upon
request, the server prepares a virtual environment for the
execution.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

I. Test Data Generation

Instead of using static numbers in test data, test data
covering different values and corner cases is generated. A
piece of code to generate a wide range of data is developed
in the framework. Some of the insufficient coverage of scope
is resolved with this approach. Figure 10 shows a list of
generated test data.

Figure 10. Combinations of test input data.

It should also be noted that spending more effort than
needed would be another reason for inefficiency. Several
parameters with multiple possible values introduce
thousands of test cases. Employing systematic test design
methods reduces the number of test cases to a reasonable
level. Figure 11 illustrates methods which are used such as
Equivalence Class Partitioning [16] and Boundary Value
Analysis [16] to determine test input and cover all use cases.

Figure 11. Equivalence Classes and Boundary Conditions.

One of the most stunning examples of test input
insufficiency in this study is experienced in the verification
of data upload feature. The feature under test works well
with integer values whereas the data is lost for whenever
double values used. Moreover, user interface crashed when

string values were sent. Full functionality is ensured after a
careful investigation of test results generated with the use of
all possible data types and boundaries.

V. DISCUSSION: CONTRIBUTION AND BENEFITS

In this section, the advantages of explained approaches
are presented. However, the risks of implementing counter-
actions are also worth being discussed. Implementation of a
new mechanism requires some time. Since continuous
testing already consumes all resources, reserving extra time
for new implementation is not easy. Moreover, regardless of
available resources, the effect of the applications is not fully
known. For example, refactoring has a risk of code breakage.

Accepting some risks, solutions are implemented to
overcome test smells. Several advantages are observed as
explained in detailed in Section V. They can be analyzed in
the project management triangle of cost, time and scope.

In terms of cost, after the implementation of proposed
solutions, effort on maintenance is considerably reduced.
Flaky results are reduced and necessity for analysis is
decreased. Figure 12 shows how polling mechanisms
reduced flaky results.

Figure 12. False Alarms Equivalence Classes and Boundary Conditions.

In addition, lines of code are reduced and refactoring
effort on those is minimized. Figure 2 gives a snapshot of
reuse of simplified and optimized code. One of the most
common methods, which is used for an entity creation, is
called from various tests 160 times. This means number of
lines in code is decreased from 160*N to 160+N.

As far as time is concerned, time is saved in terms of
implementation, execution and analysis durations.
Improvements lead to rapid automation and adaptation,
which in turn is very important since regression testing is
needed any time in continuous deployment processes. From
the product backlog, it is observed that time spent on
implementation of a new test and on analysis to understand
the root cause of a failure is reduced thanks to improved
debugging and logging structures. In one sprint, 4 out of 16
(25%) tasks were related to refactoring issues such as
addition or correction of test steps before application of
solutions. Refactoring tasks are not needed any more with
the implementation of solutions.

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Another advantage of improved scope coverage, bugs are
detected in earlier stages of product development and hence
the reduced costs.

VI. CONCLUSION AND FUTURE WORK

Coping with test smells is a preferential challenge in
software lifecycle processes. Minimization of smells has
great benefits in terms of cost, time and quality.

In this paper, the necessity for testing and test automation
is briefly discussed. The system under test is described. Test
smell types are categorized and relative preventive actions
are presented. A list of actions taken against test smells is as
follows:

• Helper Classes

• Polling Mechanisms

• Test History

• Test Suites & Annotations

• Clean Up

• Static Code Analysis

• Usage of Tools

• Additional Executions

• Test Data Improvement

Eliminating test smells saves a lot in terms of
maintenance costs and time pressure. Suggested approaches
can be adapted by any organization with a customization
according to their work to achieve cost reduction.

As a future work, statistical data will be collected over
execution results. Especially, for flaky cases, success/fail
ratio and execution duration statistics will be used for further
improvements. Moreover, integration of the collected data to
artificial intelligence applications on automation framework
is on future agenda.

ACKNOWLEDGMENT

I am very grateful to Ms. Berrin Anil Tasdoken who has
reviewed the paper and guided me for the improvements.

REFERENCES

[1] HOW was the Leaning Tower of Pisa stabilized? [Online]
Available from: https://leaningtowerpisa.com/facts/how/how-
pisa-leaning-tower-was-stabilized/ 2019.11.05

[2] M. Grechanik, Q. Xie, and C. Fu, ʺMaintaining and evolving
GUI-directed test scripts,ʺ Proceedings of the 31st
International Conference on Software Engineering, 2009, pp.
408-418.

[3] M. Durukal, ʺHow to Ensure Testing Robustness in
Microservice Architectures and Cope with Test Smells.ʺ
International Journal of Scientific Research in Computer
Science, Engineering and Information Technology. pp. 167-
175, 2019, doi: 10.32628/CSEIT195425.

[4] Microservice Monitoring. [Online] Available from:
https://www.appdynamics.com/solutions/microservices/
2019.11.05

[5] M. Amaral, et al. "Performance Evaluation of Microservices
Architectures Using Containers," 2015 IEEE 14th
International Symposium on Network Computing and
Applications, Cambridge, MA, 2015, pp. 27-34, doi:
10.1109/NCA.2015.49.

[6] G. Bavota, et al. "Are test smells really harmful? An empirical
study," Empirical Software Engineering, 2015, 20: pp. 1052-
1094, doi: 10.1007/s10664-014-9313-0.

[7] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D.
Binkley, "An empirical analysis of the distribution of unit test
smells and their impact on software maintenance," 2012 28th
IEEE International Conference on Software Maintenance
(ICSM), Trento, 2012, pp. 56-65, doi:
10.1109/ICSM.2012.6405253.

[8] A. Vahabzadeh, A. M. Fard, and A. Mesbah, "An empirical
study of bugs in test code," 2015 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Bremen, 2015, pp. 101-110, doi:
10.1109/ICSM.2015.7332456

[9] What is the cost of a bug? [Online] Available from:
https://azevedorafaela.com/2018/04/27/what-is-the-cost-of-a-
bug/ 2019.11.05

[10] Analysis shows pilots often ignore Boeing 737 cockpit alarm
[Online] Available from:
https://www.travelweekly.com/Travel-News/Airline-
News/Analysis-shows-pilots-often-ignore-Boeing-737-
cockpit-alarm/ 2019.11.05

[11] V. Garousi and B. Küçük, "Smells in software test code: A
survey of knowledge in industry and academia." Journal of
Systems and Software, 2018, 138, pp. 52-81, doi:
10.1016/j.jss.2017.12.013.

[12] F. Palomba and A. Zaidman, "Does Refactoring of Test
Smells Induce Fixing Flaky Tests?," 2017 IEEE International
Conference on Software Maintenance and Evolution
(ICSME), Shanghai, 2017, pp. 1-12.
doi: 10.1109/ICSME.2017.12

[13] Flaky Tests at Google and How We Mitigate Them. [Online]
Available from: https://testing.googleblog.com/2016/05/flaky-
tests-at-google-and-how-we.html/ 2019.11.05

[14] JUnit Plugin [Online] Available from:
https://wiki.jenkins.io/display/JENKINS/JUnit+Plugin/
2019.11.05

[15] Setting up a Selenium Grid for distributed Selenium testing
[Online] Available from:
https://www.edureka.co/blog/selenium-grid-tutorial/
2019.11.05

[16] A. Bhat and S. M. K. Quadri, "Equivalence class partitioning
and boundary value analysis-A review." 2015 2nd
International Conference on Computing for Sustainable
Global Development (INDIACom). IEEE, 2015.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

