
A Taint Analyzer for COBOL Programs

Alberto Lovato

University of Verona
Verona, Italy

Email: alberto.lovato@univr.it

Roberto Giacobazzi

University of Verona
Verona, Italy

Email: roberto.giacobazzi@univr.it

Isabella Mastroeni

University of Verona
Verona, Italy

Email: isabella.mastroeni@univr.it

Abstract—The potential damage injection attacks or information
leakage can inflict to an organization is huge. It is therefore
important to recognize vulnerabilities in software that can make
these attacks possible. We are implementing a static analysis
that tracks propagation of tainted values through a COBOL-
85 program. This analysis is part of an already developed
static analyzer performing many syntactic checks and a semantic
interval analysis. It can be used to find untrusted values ending
in dangerous places, for example executed as database queries,
or to verify that sensitive information coming from a database is
not displayed to the user.

Keywords–Taint analysis; Injection attacks; Information leak-
age; COBOL.

I. INTRODUCTION

COBOL is a programming language for business use.
It was designed in 1959, and is still employed in many
organizations. The existing codebase is huge, and experienced
COBOL programmers are aiming for retirement. Many or-
ganizations have migration plans, but a substantial part of
COBOL code is not going to be dismantled in the foreseeable
future. Being used for security critical tasks, e.g., transactions
between bank accounts, it is important to verify that COBOL
programs have as few vulnerabilities as possible. COBOL-
85 programs are structured into divisions. In particular, the
data division contains variable declarations, and the procedure
division contains executable code. It is imperative, structured
code, with no object-orientation.

This paper describes a prototype of a static analyzer for
tracking of values that we consider tainted—e.g., coming
from the user (untrusted), or from a database (sensitive)—
in COBOL-85 code. This is done by first translating the
program into an internal, simpler language, only considering
modification of strings, and then by defining a transfer function
propagating tainted values. The transfer function is applied by
an interpreter to each statement of the intermediate program,
to update the set of tainted variables at that program point.

Injections are the top vulnerabilities found in web applica-
tions [1], and although COBOL is generally not used in front
end development, it can still be used in the back end part of the
application. It is therefore desirable to be able to find injection
vulnerabilities in COBOL code.

Injection detection in other languages is well studied,
for example for the Java language [2], [3], JavaScript [4],
Android [5], scripting languages, e.g., Python [6], and even
web frameworks [7]. However, to our knowledge, taint analysis
in COBOL is not considered in the academic community.

The paper is structured as follows. Section II describes the
ARCTIC analyzer, that contains the code for the taint analysis
that is explained in the paper. In Section III, the analysis is
described in detail. In Section IV, the analysis of a small
COBOL program is executed. Section V concludes the paper.

II. THE ARCTIC ANALYZER

The analysis code is part of ARCTIC, a general static
analyzer for COBOL-85 programs.

ARCTIC currently performs a lot of syntactic analyses,
along with a semantic analysis for the computation of variable
intervals. More precise numerical analyses are in development.
Interval analysis also is executed on a simpler internal lan-
guage, this time only considering modification to numerical
variables.

ARCTIC is written in Java, has command-line and remote
interfaces, and can be run by a SonarQube [8] plug-in. Sonar-
Qube is a platform used in many organizations to run analyzers
and tools for code quality management of software projects.
A scanner module is responsible for running analyses on code
and sending the result to the server module. A user can then
connect to the server with a browser to look at nicely formatted
statistics and issues. The SonarQube plug-in of ARCTIC sends
analysis rules selected by the SonarQube user and the paths
of files of the project to the ARCTIC server, which analyzes
them and sends issues back to the plug-in.

The interaction between ARCTIC and SonarQube is shown
in Figure 1.

Figure 1. Interaction between the ARCTIC server and the SonarQube
plug-in.

Issues are then available to be displayed in the SonarQube
web interface. In Figure 2, there is an example result of taint

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

analysis performed by ARCTIC, as seen by a user connecting
to the SonarQube server with a browser. Issues are shown
below the line to which they belong, after the user clicks on
issue markers on the left. In this example, the analysis output is
a set of variables that are tainted before reaching every program
point, and so are the issues.

Figure 2. Taint analysis output displayed in the SonarQube web interface.

SonarQube rules represent some kinds of condition that
users want to check. Rules may be activated in user defined
quality profiles. Figure 3 is a screenshot of some rules defined
in the ARCTIC SonarQube plug-in.

SonarQube itself contains a module for analysis of COBOL
programs [9] in its Enterprise Edition, but at present it does
not perform taint nor interval analysis.

ARCTIC uses a parser for COBOL-85 code that is a fork of
proleap-cobol-parser [10], supporting ANSI 85, IBM OS/VS
and MicroFocus dialects. The Abstract Syntax Tree (AST)
produced by the parser contains representations of COBOL
components, such as divisions, statements and declarations in
a hierarchical way. Nodes of the AST can be accessed by
using the visitor pattern, that allows client programmers to act
on elements of a certain type by simply overriding a method in
a class. Syntactic checks can be performed right after parsing,
to detect situations like obsolete or insecure statements, bad
coding practices, and type errors. Some other analyses verify
the correctness of SQL code embedded into COBOL programs.
This SQL code is extracted by the COBOL parser from EXEC
SQL statements, and then parsed and analyzed with the aid of
an external library, JSqlParser [11].

III. TAINT ANALYSIS

The analyzer works by interpreting the code, in order to
compute a representation of the state where, at each program

point, it is clear which variables are tainted. It considers a ver-
sion of the program containing only relevant information, such
as data about text variables and statements manipulating or
using them. This simplifies the analysis a lot, as COBOL code
is very verbose, and many statements are redundant for the
analysis. The translation process is explained in Section III-A.
The state in our case is simply the set of tainted variables at
each program point. The interpreter executes each statement
of the intermediate language by giving to it as input state the
output state of the previous one, as shown in Figure 4.

The initial state is in general empty, as no variable is tainted
at start. However, procedure divisions in COBOL may have
parameters, since they can be called as subprograms by other
programs. We do not analyze flows between programs yet, but
the user can specify a flag, in order to consider parameters of
procedure divisions as tainted. For each statement, the analysis
tracks the current tainted variables, and if they flow into a sink,
an issue is reported. An example is shown in Table I.

TABLE I. EXAMPLE PROGRAM ANALYSIS.

State before Statement
∅ DISPLAY x
∅ ACCEPT x

{x} STRING ’Input: ’ x DELIMITED BY SPACE INTO y
{x, y} . . .
{x, y} sink(y)← report issue

Here, the second statement adds the variable x to the
set, since its content is coming from the user. The following
statement transfers taintedness to variable y. Lastly, the tainted
value reaches a sink, and the analyzer reports an issue.

A. Translation
If we are interested in detecting injection of untrusted data,

for example in a database query, we have to look for text
variables, as numerical variables cannot be used to perform an
injection attack.

ACCEPT. The means by which a user could directly insert a
value into a COBOL-85 standard program is the ACCEPT
statement, that reads input from the console, and is as such
considered a source of untrusted data. It is translated into
ACCEPT x, where x is the variable receiving the data,
unless the statement accepts data from the system date;
in that case it is translated into SKIP, since the date is
not an untrusted input.

STRING. The STRING statement concatenates several strings
into one. It is translated into the intermediate statement
STRING x1, . . . , xn INTO y.

MOVE. The MOVE statement moves the value of a variable
into another variable. It is translated into MOVE x TO y.

Paragraphs. COBOL code is organized in paragraphs, la-
beled blocks of code. Procedure calls are implemented
in COBOL by using the PERFORM statement, followed
by the names of the blocks to execute, which form the
body of the procedure. Considering for example a code
subdivided in three paragraphs like this

PAR1.
ACCEPT name
DISPLAY name.
...

PAR2.

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 3. ARCTIC rule list in the SonarQube plug-in

Figure 4. Execution of the program by the interpreter.

...
PAR3.

...

a single block would be called with PERFORM PAR1,
whereas a sequence of blocks would be called with
something like PERFORM PAR1 THRU PAR3. Proce-
dure calling statements like those above are translated into

EXECUTEBLOCKS first [last]. PERFORM can also de-
scribe loops, with the clause UNTIL, that repeats the body
of the statement until a certain condition becomes true,
or with the clause TIMES, that repeats the body of the
statement a specified number of times. Taintedness does
not change in loops, so these statements are translated
like any other kind of PERFORM.

Injection. We are also interested in statements that may
cause the unintended execution of code. For SQL in-
jection, the statement EXEC SQL PREPARE STMT
FROM :DYNSTMT END-EXEC executes a possibly dy-
namically created query stored in DYNSTMT. It is trans-
lated into EXECSQLPREPARE DYNSTMT. These state-
ments, where flow of tainted information can cause un-
intended interaction with other parts of the system, are
called sinks. We also denote the previous statement by
sink(DYNSTMT).

Control flow statements. IF statements execute a branch
or another according to the valuation of a condition.
The corresponding intermediate statement is IF condition
THEN B1 ELSE B2, where B1 and B2 are blocks of
intermediate statements.

Other statements. Statements that do not deal with string ma-
nipulation are translated into the intermediate statement
SKIP, that is ignored by the analysis.

Intermediate statements store information about the orig-

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

inal COBOL statement, such as the line number, in order to
map issues back to the original position in the source code.
They also store the state before their execution, so that it is
readily available to be displayed at the right program point.

B. Transfer Function

Let T be the set of all sets of tainted variables. We define a
transfer function f : T → T that specifies which variables are
tainted after the execution of each statement, given the input
state T ∈ T. The interpreter implements this transfer function
in the execute method of the class corresponding to each
statement type, to produce a set of tainted variables for every
program point.

ACCEPT x. This statement gets an input string directly from
the user. This is a potential source of untrusted data, and
so we mark the receiving variable as tainted.

fACCEPT (T) = T ∪ {x} (1)

STRING x1, . . . , xn INTO y. String values are concatenated
with the STRING statement, that as such transfers the
taintedness properties from source variables to the receiv-
ing variable. If at least one of the variables containing
the strings that are being concatenated is tainted, then we
mark the receiving variable as tainted.

(2)
fSTRING(T)

=

{
T ∪ {y} if ∃x ∈ {x1, . . . , xn}.x ∈ T
T otherwise

MOVE x TO y. MOVE makes the receiving variable tainted
if and only if the source variable is tainted.

fMOVE(T) =

{
T ∪ {y} if x ∈ T
T otherwise (3)

Paragraphs. Each paragraph is a list of statements, e.g.,
P1 = S1 . . . Sn; the transfer function of a paragraph is the
composition of the transfer functions of the statements.

fP1(T) = fSn
(. . . (fS1

(T)) . . .) (4)

EXECUTEBLOCKS first [last]. For every COBOL pro-
gram, we build a list of blocks corresponding to its
paragraphs, for example P1, P2, P3. When we then
execute a block with the intermediate statement EXE-
CUTEBLOCKS P1, its transfer function is that of the
executed block.

fEB(T) = fP1(T) (5)

The transfer function of the execution of several blocks,
e.g., EXECUTEBLOCKS P1 P3, is the composition of
the functions of the executed blocks.

fEB(T) = fP3(fP2(fP1(T))) (6)

IF condition THEN B1 ELSE B2. We conservatively keep
taintedness information of both branches of a conditional
statement, and so the transfer function is the union of the
two functions.

fIF (T) = fB1
(T) ∪ fB2

(T) (7)

SKIP. This statement does nothing regarding the modification
of taintedness of variables, and so its transfer function is
the identity function.

fSKIP (T) = T (8)

Sinks do not modify taintedness, and thus they have an identity
transfer function. Table II sums up translation and transfer
function result for every intermediate statement.

C. Implementation
Figure 5 shows the transformation of a COBOL program.

Variables containing text are extracted in a list, whereas
COBOL statements are translated into intermediate language.
A list of the paragraphs found in the program is kept in mem-
ory to allow the interpreter to execute EXECUTEBLOCKS
statements.

Figure 6 outlines the execution of the intermediate pro-
gram. The interpreter executes the transfer function of every
statement, and the produced state is retained in the executed
program, associated to the next statement.

IV. EXAMPLE

In this section, we reconsider the example of Figure 2, and
show how it is transformed and executed.

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. example.
3 DATA DIVISION.
4 WORKING-STORAGE SECTION.
5 01 name PIC X(20).
6 01 query PIC X(50).
7 01 complete-query PIC

X(70).
8 PROCEDURE DIVISION.
9 PAR1.

10 IF name <> 0
11 DISPLAY ’non zero’
12 ELSE
13 ACCEPT name
14 STRING query DELIMITED BY

SIZE
15 name DELIMITED BY

SPACE
16 INTO complete-query
17 DISPLAY complete-query
18 END-IF
19 PAR2.
20 EXEC SQL PREPARE STMT FROM

:complete-query END-EXEC.

Three alphanumerical variables are declared at lines 5-7,
so the variable list name, query, complete-query is
produced by the VariableExtractor. The paragraph list
PAR1, PAR2 is saved in the intermediate program. The IF
statement at lines 10-18 is translated as

IF condition
SKIP

ELSE
ACCEPT name
STRING query, name INTO complete-query
SKIP

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE II. TRANSFER FUNCTION f .

COBOL Intermediate f(T)

ACCEPT <identifier> ACCEPT x T ∪ {x}

STRING ... INTO ... STRING x1, . . . , xn INTO y

{
T ∪ {y} if ∃x ∈ {x1, . . . , xn}.x ∈ T
T otherwise

MOVE ... TO ... MOVE x TO y

{
T ∪ {y} if x ∈ T
T otherwise

P1. <statements> P1 = S1 . . . Sn fSn (. . . (fS1
(T)) . . .)

PERFORM P1 EXECUTEBLOCKS P1 fP1(T)

PERFORM P1 THRU P3 EXECUTEBLOCKS P1 P3 fP3(fP2(fP1(T)))

control flow IF condition THEN B1 ELSE B2 fB1
(T) ∪ fB2

(T)

sinks e.g., EXECSQLPREPARE source T

other statements SKIP T

...
01 name PIC X(20)
01 age PIC 999
...

...
ACCEPT name
ACCEPT date FROM DATE YYYYMMDD
...
PAR1.
 DISPLAY name
 ...
PAR2.
 ...
...

Variable

Extractor

Translator

"name",...

...
ACCEPT name
SKIP
...
PAR1.
 SKIP
 ...
PAR2.
 ...
...

COBOL Program Intermediate Program

PAR1

PAR2

Paragraph List

Figure 5. Transformation of a COBOL program into the intermediate representation.

Interpreter
...
ACCEPT name
STRING name, bd INTO id
SKIP
...

Intermediate Program Executed Program

...
{}
{name}
{name, id}
...

...
ACCEPT name
STRING name, bd INTO id
SKIP
...

Figure 6. Execution of the intermediate program by the interpreter.

whereas the statement at line 20 is translated as

EXECSQLPREPARE complete-query

Then, each statement is executed by applying the logic
defined in Section III-B. For example, the transfer function of
the IF statement is defined as
fIF (T) = fSKIP (T) ∪ fSKIP (fSTRING(fACCEPT (T)))

(8)
= T ∪ fSTRING(fACCEPT (T))
(1)
= T ∪ fSTRING(T ∪ {name})
(2)
= T ∪ T ∪ {name,complete-query})
= T ∪ {name,complete-query}

Before executing the IF statement, the set T is empty,

since none of the declared variables are tainted at that point.
The final set is thus {name, complete-query}.

V. CONCLUSION

The prototype we developed is able to track propagation of
tainted values in COBOL-85 programs. We are not aware of
any other taint analyzer for COBOL code. At the moment, the
analyzer only checks for SQL-injection, but, as future work,
we could also consider other kinds of injection, or the other
way round, the leaking of sensitive values. Information from
a database, e.g., a credit card number, may be displayed to
the user if a variable containing it is used as argument of
the COBOL statement DISPLAY. This kind of analysis would
require considering DISPLAY statements and analogous ones
(e.g., GUI output statements) as sinks, while sources of tainted

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

information would be statements reading from the database
into host variables. Also, other versions of COBOL may allow
users to inject values via other means, e.g., a graphical user
interface, and not only via the ACCEPT statement, so we may
extend the analysis to include this possibility.

REFERENCES
[1] “Owasp Top 10 Project,” 2019, URL:

https://www.owasp.org/index.php/Category:OWASP˙Top˙Ten˙Project
[retrieved: 2019-10-27].

[2] F. Spoto, E. Burato, M. D. Ernst, P. Ferrara, A. Lovato, D. Macedonio,
and C. Spiridon, “Static Identification of Injection Attacks in Java,”
ACM Trans. Program. Lang. Syst., vol. 41, no. 3, 2019, pp. 18:1–18:58.

[3] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “TAJ:
effective taint analysis of web applications,” in Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, 2009,
pp. 87–97.

[4] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg,
“Saving the World Wide Web from Vulnerable JavaScript,” in Proceed-
ings of the 2011 International Symposium on Software Testing and
Analysis, ser. ISSTA ’11. New York, NY, USA: ACM, 2011, pp.
177–187.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269.

[6] S. Liang and M. Might, “Hash-flow Taint Analysis of Higher-order
Programs,” in Proceedings of the 7th Workshop on Programming
Languages and Analysis for Security, ser. PLAS ’12. New York, NY,
USA: ACM, 2012, pp. 8:1–8:12.

[7] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
“F4F: Taint Analysis of Framework-based Web Applications,” in Pro-
ceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’11.
New York, NY, USA: ACM, 2011, pp. 1053–1068.

[8] “SonarQube platform,” 2019, URL: https://www.sonarqube.org [re-
trieved: 2019-10-27].

[9] “SonarCOBOL,” 2019, URL: https://www.sonarsource.com/products/
codeanalyzers/sonarcobol.html [retrieved: 2019-10-27].

[10] “Proleap Cobol Parser,” 2019, URL: https://github.com/uwol/proleap-
cobol-parser [retrieved: 2019-10-27].

[11] “Java SQL Parser,” 2019, URL: https://github.com/JSQLParser/JSqlParser
[retrieved: 2019-10-27].

23Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

