
System Debug and Validation: Use case Based Perspective

 Bhushan Naware Arun A Pai Ravinder Singh

 MIG, Intel Technologies India WSS, Intel Technologies India WSS, Intel Technologies India

 Pvt Limited Pvt Limited Pvt Limited

Bangalore 560103 India Bangalore 560103 India Bangalore 560103 India

Email: bhushan.g.naware@intel.com Email: arun.a.pai@intel.com Email: ravinder.m.singh@intel.com

 Abstract – Concept and Design of systems with sheer

complexity at various abstraction levels is becoming tedious and

time consuming process. To comply with the expected

requirements, subsequent validation and verification becomes

even more time consuming and expensive. When it comes to

platform level validation and debug, there are various fronts

that are to be looked at with great depth. In case of

laptops/desktops the system stack includes hardware, silicon,

firmware, bios, operating system, various drivers and

applications. In complex systems, finding root cause of issues

caught at platform validation is challenging and increases debug

throughput. In this paper, we will introduce a methodology for

validation and debug that could be applied across similar

systems. This methodology is bound to shorten the life span of

test plan creation, early identification, debug and root cause of

issues. This will result in cost saving and shorter time to market.

Keywords: Test Plan; Use case; Scenario; Win-DBG; JTAG;

Silicon Debug.

I. INTRODUCTION

 Every year the computing systems are becoming more

complex and as a result there is an increase in overall product

life cycle time starting from concept, design, development

and validation. The validation and platform debug needs to

be very efficient and test cases needs to be derived from real

use cases in-order to exercise all corner scenarios. The other

possibilities can also include stress testing of the systems that

has to be done with existing and newer features. Stress and

Stability testing consumes the maximum duration of

validation as the test duration spans across days, these test

increases the workload of the platform validation teams

exponentially due to sporadic failures which takes more time

to repro. The methodology that is proposed in this paper can

be used by extensive number of teams/customers that are

working on platform validation; be it original design

manufacturer or original equipment manufacturer or the in-

house validation teams that are responsible for product

readiness and deployment. This paper provides an

introduction to the concept of use cases as one of the obelisk

of validation metric in order to scale the validation and also

make the entire coverage robust and more adaptive. Using the

concept of use cases to bolster the system validation, there is

a preeminent advantage in the issue debugging and also

gauging of coverage across platform which can provide status

for overall product readiness with respect to the quality

requirements.

 Currently the state of the art validation methodologies

that are used by original equipment manufacturers and

original device manufacturers and also the in-house

validation teams is based on feature based approaches and the

one proposed here currently is being used for the first time in

broad system level context.

 The paper is outlined as follows. In section II, the concept

of use cases is explained. In section III the generic approach

of platform testing and debug via use cases is proposed. In

section IV with one of the running examples the concept of

use case and usage revelation is brought forward, also ease of

debugging of issue is explained in section V. The paper

finishes with conclusion in section VI.

II. HYPOTHESIS

The conventional way in which the system validation is

performed revolves around the new feature debut, in a

particular platform whether it is a hardware or software, then

checking if the standalone operation of feature matrix is

proper, and if the answer to that is yes; then subsequently it

has to be validated and substantiated for the different flows at

the platform level. Considering there is sprouting feature list

and also the new evolutions of system use patterns; platform

test plan intricacy & validation cycle time increases

multifold.

In order to mitigate and get the details on the above list

of features sorted out, there is a need of mechanism that

would give us portable and more systematic way of tracking

features at platform, which would eventually touch all the

underlying sub-features. Hence, instead of looking at the

system from new features standpoint we look at the system

from the usage scenarios.

The end-user when aims to use the system, what is the

way in which the system is used. Complexity of such flows

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

mailto:bhushan.g.naware@intel.com
mailto:arun.a.pai@intel.com
mailto:ravinder.m.singh@intel.com

is taken into account and once that use case list is in place,

we have more or less a constant feature list that would cover

a particular domain. Once the list of use cases is fairly

constant platform over platform there is more transparency in

terms of tracking. Further to that depending on a new feature

introduction, be it architectural or any software dependent it

can be knit into the particular use case; solving both the

purposes, keeping the main test tracking list constant and also

incorporating the new testing scenarios. We are following the

inverted edifice approach to solve the test case intricacy and

other allied issues.

New platform features: Silicon to Software

User manifestations & system interactions

Figure. 1 Inverted edifice: use case vs feature based

approach.

Right hand side of Figure 1 represents the Conventional

mode while the left side represent the proposed methodology.

As paper progresses, it would be more relevant and clear how

can we have ease of validation and debug addressed by new

use case based approach.

III. TEST AND DEBUG TRIGGERED VIA USE CASE

 Having understood the use case approach, we need to

check the details on the usage of the same with respect to the

validation and debug on real world platform. The following

section takes a look at both the validation and debug of

platform spanning out with the use case based approach from

an idealist system standpoint. In-order to understand about

applicability of use case approach for debug and validation

strategies, we need to first observe on type of abstraction

layers we have and then pertaining to abstraction layers, what

kind of validation problems and debugging complexities can

precede. Identification of problem, with anticipated

complexities & trying to address it with proposed approach

would help, in reduction of both the validation as well as

debugging related issues. This is seen in the following section

with hibernate system state example.

 Taking into account the “outside in approach” we

normally see what a silicon (CPU) offers, after that we design

the features, as well as other supported customaries. When

we have the requisite hardware, i.e., silicon and board, it

comes to the BIOS, Firmware’s & device drivers. When all

these things are good, we then move towards the choice of

“OS” and the subsequent test requirements that are needed

in-order to perform our validation. From the representation in

Figure 2, it becomes much evident on what complex level the

System validation happens.

Figure. 2 Silicon to Software features depiction and traditional testing

methods

Validating a scenario with proper use case defined becomes

easier to test & articulate. Let us take a look at small example

to explain how a use case definition can help to ease the

complexity of validation. Goal is to validate system states that

a system under test supports, and see what the test coverage

is attached to the particular use case, map it back and get

information about supported power states. Using various

tools we can get re-confirmation that indeed these are the

power features that we are expecting on the system. Once the

existing use case is available amalgamating any new power

feature onto the system power state matrix, becomes quite a

simple task. Figure 3 provides an insight into one of the

systems and the various power states that it supports in

particular. This is a toned down version of multiple states via

which the system can navigate through in different phases of

validation and actual usage.

Figure. 3 System and corresponding supported and un-supported power

states.

 In addition to the validation strategies of available power

states & checking on the coverage gap of existing power

states or completely abstaining power state, we can also look

at the use case definition as one of the major pillars for debug.

Silicon
Board Readiness

BIOS Firmware and Driver readiness

OS readiness and SW stack checks

Sleeping

System Working
State (S 0)

Any Sleeping State
(S 1 - S 5)

Waking

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

 Consider one of the debugging scenarios here with

platform power policy and the way failure condition is

debugged. We expect S4 (Hibernate) state as a default

platform state present, but for some reason we have the S4

(Hibernate) not mentioned in the available states list. Then,

from the use case lists we can take starting point as absence

of S4 (Hibernate) state & what are the platform use cases that

would be hindered and in-turn what feature lists cannot be

tested. Then from Figure 2. Silicon to Software depiction, we

can check that what can be the probable cause of system state

failure, whether it maps to silicon abstraction layer or due to

any other failure. Once the leads are generated the debug

process direction is decided accordingly. Say we have issue

with the OS then follow up software debugging is done and

subsequent resolutions would get us the issues sorted out.

Figure. 4 System power state details

IV. VALID USE CASE ANALYSIS

 This section demonstrates the usage of this model to get

more robust understanding of use case application. For

explanation purpose, system state Hibernate a.k.a. S4 is

considered. Validation plans & tests are derived from use

case scenarios. Various Combination and tests are planned

with S4 entry/exit criteria kept in mind. Coverage is

quantified with features planned and validation matrix

created subsequently for an end to end use case and flow.

 Basic understanding of Hibernate use case, provides

information such as the condition of system, power

consumption during hibernate, input wake mechanism, how

system should behave after wake and what to restore after

hibernate exit. Additionally various user scenarios which

include multi domain interactions are also covered. Table I

enlists some of the features/test that needs to be checked and

covered during Hibernate use case validation.

TABLE I. FEATURE/TEST CASE CHECKS DURING HIBERNATE

USE CASE

SI

No

Condition in Hibernate

Scenario When

1 System in off condition Yes during entry

2 Power consumption

status

While in S4 system should measure

the lowest power

3 Wake scenario Wake using USB, LAN or any other

input source based on the system

feature.

4 Context Saving

While entry, hiber file should be

generated with all the active context

stored and on exit it should retrieve

all the context from the

Hiberfile.sys

5 Battery Management

System should trigger Hibernate

based on the amount of time the

system is in idle.

6 Responsiveness Involves Time taken for entry and

exit for hibernation

7 Memory Management Check System memory

Decomposition when resumed from

Hibernation

8 Video/Audio Resume

after Hibernation

Context shouldn’t be lost and user

should be able to resume the MM

content

9 Input Sequence

What type of input sequence need

to be planned for entry such as

power button, via OS , using scripts

etc.

 Understanding few of the scenarios would help in

gauging usage of this model on real system cases. Gradually

starting with the functional test then moving to inter

operational tests, stress test and finally to the reliability

checkouts is the methodology of this use case model.

 In every stage of checkouts, various tests are performed

and result is measured against expected outcome. Starting

with functional checks where the basic entry/exit of

hibernation is tested and expectation is to have all the

precondition met. Entry to S4 when initiated, triggers

following processes all apps drivers and services are notified,

all the system context is saved on the boot media.

Resumption from S4 is determined by OS boot manager by

detecting a valid hibernation file, after that it directs the

system to resume, restoring the contents of memory and all

architectural registers, the contents of the system memory are

read back in from the disk, decompressed, and restored back

to its original state [4].

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

After functional tests, few inter-operability scenarios are

run to make sure system memory is checked properly with all

active context saved and resumed. The example scenarios for

system memory check would be video player run resuming

from where it was paused or YouTube streaming window

reloaded and paused, etc. Consecutive Hibernate cycles, with

counts gradually increasing from 100, 500 to 1000 are

checked. This provides the overall stability and confidence

on the system reliability. Additionally inclusion of traffic

along with hibernate cycle is done where, scenarios such as

Bluetooth file transfer and S4 cycles simultaneously, are run

for multiple iterations.

TABLE II DIFFERENT HIBERNATION FILE BASED ON FAST

STARTUP OPTION

Hibernation File Type Default Size Supports

FULL 40% of physical

memory

Hibernate, Hybrid

Sleep, fast Startup

REDUCED 20% of physical

memory

Fast Startup

V. ISSUE DEBUG ON HIBERNATION

 Debugging any issue from platform remains challenging

and most troublesome due to the sheer number of variables

that can affect the flow. It becomes more tedious and

cumbersome process if any power flow is involved as there

are numerous transitions which increases failure probability

& debug complexities. Of the all power state flow Debug of

Hibernation use case remains is one of the toughest.

 For any power flow it has two contexts, 1st being entry

and 2nd being exit or resume from concerned power state.

Issues mostly prevail among these two context. The issues

seen can be categorized into following failure buckets.

1. Context not getting saved after resuming from S4

a. The system is not taking the S4 flow and

entering into other alternative Power flow

path such as S3 or S5.

2. Devices not recognized after resuming from S4

a. Multiple devices gets lost or doesn’t detect

after resume such as storage devices like

USB, Yellow bangs to various modules

such as Connectivity modules, IO or any

controllers.

3. Soft Hangs

a. Recoverable Hangs which can be due to

issues in device driver loading after resume.

b. Unrecoverable Hangs or device lost while

resuming resulting in Memory dump such

as Blue Screen of Death (BSOD), Green

Screen of Death (GSOD).

4. Hard Hangs

a. Non Recoverable error or hang observed

resulting in system not responding towards

any of the user commands

b. These issues can be due to IP hangs or

Silicon hangs. Debugging done via Joint

Test Action Group (JTAG).

5. Responsiveness

a. Time taken to enter the Hibernate is more

compare to the Target specified.

b. Time taken to resume from Hibernate fails

to meet the target specified.

6. Auto Wake Issues

a. Systems wake as soon as it enters S4.

b. System wakes from S4 after certain

duration.

 All failure needs a different debug approach, in order to

achieve the best results. Each failure above needs dedicated

effort and support to root cause and narrow down upon the

exact problem causing component. At high level we can

understand the debug strategy using following flow chart

given in Figure 5 and aligning it with the use case based

model gives us the flexibility of getting things done at much

faster, organized and streamlined way. We start the debug to

check if it is a hard hang and if it is the case we need to use

hardware mechanisms and tool like JTAG to scan inside the

silicon using its Design for Test (DFT) capabilities. If there

are only soft hung seen, then we need to get it bucketed in

sub-category and pursue a different method of debug

regarding the same. This flow chart explains at a very high

level of abstraction of a well knitted and branched out debug

tree. With more and more defects the tree would fan out to

utmost complexities and that is where the use case scenarios

will come in handy to identify the feature dependencies and

debug them as applicable.

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

Figure. 5 Debug flow for Hibernation issues

 For any platform, the flow defined can help and pin point

what are the use cases impacted in power management

domain and also the effect of same on the corresponding

overlapping domains. Issue debug with the flow chart

provided helps in promptly resolving and nailing the issue.

This would get us also the details on the overall system

coverage. Also with the methodology that we are following,

it becomes easier for us to check for the hard hangs or soft

hang and also follow the proper bucketing procedure as stated

earlier.

 Let us take a peculiar example of failure and then map it

back in out flow chart and then subsequently take it further

down to the abstraction level where we see the failure being

pin pointed. After that we would also check for the

interpretations from the coverage viewpoint what can be

removed. As per the description from section IV the major

thing that we have failures with hibernate flow is entry and

exit from it.

Figure 6. Representation of iterative stress validation scenario

 We have a stress testing scenario as shown in Figure. 6

where there are back to back S4 cycles needed for

qualification of platform release. During overnight stress run

we see the failure, depicting a display off symptom, while

system has power and other peripherals are properly in place.

Then, we need to start debugging from the point where we

need to identify whether the failure was while resuming or

entering to the S4 state. After initial level of analysis as per

the debugging flow say we zero down to the conditions

saying it is soft hang with indication that while entering to

S4, system went into corrupt state. After some more analysis

we get to know that because of an issue with inbuilt OS

drivers we are having a suspected failure.

 Inferring from the above information at hand we can tell

that we do not have issues with the hardware per say, be it

silicon or board specific or any other third party hardware IP.

We could also say that there are bunch of probable causes

from the software side when we are in process of debugging.

Deeper dive in the debug can then in-turn reveal, what is the

exact component / entity failing and would help in getting

what features are blocked owing to this failure. Once that

information is available, we could then get a reduced

platform test coverage as the tests involving resuming from

S4 in any way would all get blocked. To quantify it we can

explicitly say approximately a test plan would see reduction

 For better understanding the Figure 7 depicts the

pictorial representation of the use case and also gives an idea

about inferences at various levels.

 Failing

Signature hard

hang?

Start

Debug VIA JTAG

interface

Yes

Debug via Win-Dbg or

Driver traces

Root Cause the failure

using failure signature

Stop

No

Implement the fix

System in S0 state (with stress) | System is S4 State

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

Figure 7. Observations and inference matrix generated from S4 fail analysis

 From a single issue we could get many inferences and

also a fair bit of idea as to what would be main features

blocked. In similar fashion we would be having information

from all issues coming in and giving the validation teams a

clear picture of what is status of platform health, where there

are more bugs and more focus is needed and also we could

get information on redundant tests that are not yielding bugs.

Basically dynamically changing the test plan. So all in all this

would emphasize and enhance the test plan quality and also

the way system validation is done providing all the necessary

aids and opportunities of improvement.

VI. RESULTS & CONCLUSION

 This paper discusses the methodology for alignment of

system test content and gauging of the details of system

coverage, how issues can be debugged efficiently and

effectively. The overall essence of paper is to move from the

feature centric validation and debug to the use case based

approach & intuitive debug of the issues targeting platform

agnosticism. The use case approach eventually helps in the

easier feature test additions and also the validation at system

level. Debugging and error categorization also becomes way

easier if we follow this methodology. The proposed

methodology can be extended to any of the systems use case

wherein we can perform the respective scaling of test plans

and other features checks depending on the user scenarios. A

running use case example and the debug fan outs for the

erroneous conditions are also presented as part of the paper.

 As part of deployment of this methodology internally we

have used the same approach for the previous two platforms

for validation and have seen 20% reduction in validation

cycle times overall. If we translate it to direct $$ savings it

would be around the 20% budget saving given for the

platform validation. This when clubbed with various OS

where individual platform validation cycle is performed

amounts for a considerable amount of money. Additionally

taking this methodology and furthermore AI based

algorithms we have developed tools internally which takes

the platform defects as inputs and provides us with the

requisite test plan generated dynamically, which is a reduced

set list depending on the defect trends seen in the earlier runs.

REFERENCES

[1] N. Kumar, "IoT architecture and system design for healthcare systems,"

2017 International Conference on Smart Technologies for Smart Nation

(SmartTechCon), Bengaluru, India, 2017.
[2] A. V. Ramesh, S. M. Reddy and D. K. Fitzsimmons, "Airplane system

design for reliability and quality," 2018 IEEE International Reliability

Physics Symposium (IRPS), Burlingame, CA, USA, 2018.
[3] Advanced Configuration and Power Interface Specification, Version 5.

November 2013.

[4] IEEE Standard for Test Access Port and Boundary-Scan Architecture -

Redline," in IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001)

- Redline, vol., no., pp.1-899, May 13 2013.
[5] J. Ryser, M. Glint A Scenario-Based Approach to Validating and

Testing Software Systems Using Statecharts

[6] I. Jacobson: Basic Use Case Modeling; Report on Object Analysis and

Design, vol. 1, n° 2, pp. 15-19, 1994

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-671-2

VALID 2018 : The Tenth International Conference on Advances in System Testing and Validation Lifecycle

