
Model Checking Executable Specification for Reactive Components

Bruno Blašković
Faculty of Electrical Engineering and Computing

Zagreb, Croatia
Email: bruno.blaskovic@fer.hr

Abstract—Finding design errors in the earliest phase of
software developments is still challenging area of research. This
paper deals with model checking of executable specification.
Executable specification is introduced as C program. After
that, C program is transformed into an input model for the
Spin model checker. At the end, an example for the Zune30
bug is presented.

Keywords-executable specification; reactive component; soft-
ware model checking; model transformation

I. INTRODUCTION

Telecommunication network software system can
be modeled as the set of hierarchically connected
communicating finite state automata (FSA). The basic unit
of behavior is reactive component, modeled as FSA and
referred as model M in this paper. FSA is implemented
in C language subset. Such approach provides executable
specification for component behavior analysis. In this
paper, analysis is focused on component model checking.
Executable specification can also serve as starting point
for test cases definition, component simulator and target
code skeleton generation. Component quality assurance is
provided through safety (“Bad things will never happen”)
and liveness (“Good things will eventually happen”)
properties verification.

If property do not hold, component exhibits illegal
behavior. Model checking approach define the model and
check the properties of the model by means of assertions
(invariants) and temporal logic formulas. In the case of
illegal behavior, model checker provides counterexamples.
Counterexample consists of a set of actions that describe
paths (sequence of actions) to the errors.

FSA transitions describe dynamic behavior: C instructions
are abstractions for internal actions like method calls or
external actions like message sending/receiving events.
There are no pointers or arrays in C code yielding
straightforward translation; there is always the same FSA
with different syntax representation.

First, designer defines FSA as C program. After that,
C program is transformed to the form suitable for model
checking. In short, FSA is designer’s viewpoint about
component behavior.

In order to model check or verify component
behavior additional commands like assertions

(assert(<condition>)) and labels are included
into the program source. If all assertions are true, or if they
are never false, program satisfies “liveness” property. The
problem is where to put assertions: false assertion are hard
to detect because that part of the code can be unreachable.
Even the more, desired behavior can include another kind
of assertions that can be true “many times”, “infinitely
often” or “only once”. Such “assertions” are expressed
with Linear Time Logic (LTL) formula. In Section VI-A,
an example of linear time logic formula usage is presented.

Labels are used to check regular behavior and illegal
behavior, respectively. Program is “safe” if “error” labels
are always be unreachable, and “end” labels are eventually
reachable. Program testing will not find all false assertions,
so additional efforts are required. Model checker Spin
has built–in facilities to detect assertion violations and
unreached labels. In this paper we use model checker
Spin to find unreached “end–state” and “non–progress”
loops. Spin can also check concurrent errors from the
specification. We expect separate study in order to extend
specification with concurrent issue and to improve the
abstraction for unbounded data values. Another set of
problems are space–time limits. Space time limits are
known as state explosion problem, because number of
states grows exponentially. If only part of the system,
consisting of several components is under consideration,
state explosion problem can be under control.

This paper is organized as follows. After Introduction, in
Section II related work is described. Scope and motivations
are in Section III and theoretical background is presented in
Section IV. After that, sketches of ψ–algorithms for model
transformations are introduced in Section V. Description
of a C source to the Promela code is in Section VI. The
results of an experiment are given in Section VI-A, and, at
the end, are conclusion and further research directions.

II. RELATED WORK

First, we introduce three approaches where specification
in various formalism is translated into an model for model
checkers. The origin of formal specification with Statechart
is introduced by Harel in [1]. Statechart is an extension
of FSA. Every statechart user defines specific properties
that are hard to express in unique specification language,
because statechart have no unique and clear semantic.

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

Object–oriented statechart semantic based on Statemate tool
is formalized as labeled transition system in [2]. Graphic
editing tool TCM can produce output to SMV, NuSMV
and KRONOS model checkers. Bharadwaj and Heitmeyer
[3] uses SCR (Software Cost Reduction) tabular notation
as specification language. SCR specifications is transformed
into an input model for Spin and SMV model checker. In
all mentioned approaches [1] [2] [3], model definition phase
prepares specification for model checkers. Our approach
uses FSA encoded in C language. With such an approach,
we avoid problems with semi–formal statechart semantic and
the usage of specification languages outside UML set of
diagrams.

Translating C programs to Promela [4] is another ap-
proach that checks C programs. A similar approach exists in
[5] where Promela model is extended with direct inclusion
of C code. Both approaches [4] and [5]) addresses C–code
model checking. Our approach targets model checking of
specification modeled as C program.

In [6] [7], cbmc C program model checker is described.
C source is abstracted as Boolean program that is checked
with satisfiability (SAT) tool. Our approach uses model
extractor that is the part of cbmc. Extracted FSA follows
BNF definition for FSA introduced later in Figure 4. We
find this combination of tools useful because cbmc extracts
models and Spin can check properties expressed in linear
time temporal logic. At the end of this Section, the model
checking fundamentals are introduced in [8]. Explicit state
model checker Spin with industrial strength experience is
described in [9]. Spin modeling language is called Promela.

III. SCOPE AND MOTIVATION

It is well known fact that design errors like deadlock
states, non–progress loops, illegal program termination, and
message buffers overflow must be discovered as early as
possible during the software life cycle. This paper is fo-
cused on executable specification analysis and the model
transformation of executable specification to Promela model.
For that purposes an illustrative example regarding zune30
bug has been selected from [10]. In our case, real scale
example were components for e–Invoice service where an
infinite loop has been discovered. Zune30 bug example
has similar features as find in real scale examples, like
unreached code or infinite loop. Similar piece of code with
“small” programming mistake in telephone switch software
canceled 50% of 133 million long distance calls.

The approach introduced within the paper bridges the gap
between the tools capable of finding design errors and semi–
formal specification. Usual approach for system specification
is textual or semi–formal form, using UML or SDL+MSC
diagrams. This paper starts from the C language model
M as executable specification of state–transition system. It
is designers responsibility to provide component model as

much as possible close to the original. For that purpose,
C language specification uses only small part of C lan-
guage constructs that have direct implementation in Promela,
because there is no need for pointers, complex data–type
structures or arrays. After translation to Promela model, Spin
[9] builds pan validator where checking procedures take
place. Besides that, after model checker has proved desired
properties, executable specification can be transformed to
code skeleton (target language implementation).

Another possibility is to model specification as statechart
and directly transform to the model that can understand
the model checker. This approach yields several design
inconsistencies:

− the semantic for a Statechart model of specification and
the semantic of Promela model for the same specification
is in general case different because specification can be
interpreted in different ways,

− introducing executable specification as an intermediate
representation (Figure 3.) provides the “simulator” for
real application yielding information about overall system
semantic and behavior, avoiding design inconsistencies,

− target code and model checking results are inconsistent
without executable specification.

Instructions from the C language executable specifications
are transitions that represents the real system behavior. Sin-
gle transition is model or abstraction that describe method
call, indivisible sequence of method calls, FSA execution
or network of connected FSA executions. Although the
model M , in most cases, describes single FSA, we can easily
compose communicating FSA to the single higher level
FSA using asynchronous product of FSA. Asynchronous
product of FSA is built in feature of Spin (for details see
[9] Appendix A). Each FSA is separate process in Promela
model. Generic modelM for reactive component or generic
FSA or proces from Promela are syntactically different but
semantically equivalent basic building block for component
specification and definition. Transition tM from Figure 3.
describes the position of executable specification within
the generic model, models behavior and unify transition
semantic between all models. Each transition has the same
form as Mealy FSA but with extended transition semantic
(1).

input event

output action
(1)

Input events are:

− guards, control–flow instructions, i.g., if
− message receiving events

Output events are:

- message sending events,
- method calls,
- assignments,
- call of another FSA or FSA network.

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

IV. THEORETICAL BACKGROUND

Theoretical background is based on model M transfor-
mations [11] and consists of the following parts :
(1) “Triptych” environment for two–phase model transfor-

mations (Figure 2): (1) from high–level specification or
requirements to executable specification and (2) from
executable specification to verification (Promela–prml)
or (2) to implementation code.

(2) model M for generic reactive component (Figure 3).
Component is finite state automaton (FSA) with C lan-
guage or Promela proctype construct representation,

(3) C program as executable specification (Section V-C).
Executable specification can also be tested like any piece
of C code,

(4) Mtr model transformation as framework for model
checking executable specification (Figure 1),

(5) ψ algorithms for Mtr model transformations. Due to
restricted instruction set in C specification, model trans-
formations are simple Perl scripts.

We perform model checking for model M for property ϕ.
Our approach follows usual approach [8] for model checking
as described in Equation 2:

MFSA |= ϕLTL (2)

A model M is an executable specification expressed as
state–transition system or more precisely as extended FSA
(eFSA). Extended FSA models:
− single eFSA,
− network of communicating FSA (cFSA),
− hierarchical network of communicating eFSA (hcFSA).
There is no universal approach for model checking exe-
cutable specification. That means every domain is specific
regarding designers or users requirements. As a conse-
quence, we focus our attention to reactive software com-
ponents generic model M (Figure 3) as the basic building
block for FSA, extended FSA (eFSA), communicating FSA
(cFSA) and hierarchical FSA (h(cFSA)).

From initial state s0 (Figure 3) transition to initiates
the component. There are two possible end states, regular
(end_OK) and illegal (end_NOK), respectively.

Regular behavior is abstracted within the single transition
tM. As previously said tM can abstract the behavior of
cFSA or h(cFSA). Illegal behavior is executed within t¬M
transition. In regular cases FSA returns to initial state s0 with

Mω
C

ψ2:2fg;fg2prml Mπ
prml

ψ1Mα
spec

Figure 1. Model transformation sequence

tOK transition while in illegal cases FSA returns to initial
state with tNOK transition (represented with dashed line on
Figure 3), respectively. Following Equation 2. we introduce

model M as triple in Floyd–Hoare logic and properties ϕ
for safety and liveness:

M≡ 〈{INV pre} code {INV post}〉 −→ 〈ϕ ≡ ♦ � np 〉
(3)

Introduced linear time logicformula is checked with the pan
analyzer of model checker Spin [9]. Executable specification

<exeutable-spei�ation>

<prml>

ψ2:2fg;fg2prml

ψ1

<spei�ation>

<ode>

Figure 2. Triptych

is derived from top level semi–formal specification as de-
scribed on Figure 2. (<specification> labeled circle).
Top level specification (Mspec on Figure 1.) is transformed
to executable specification with ψ1 algorithm. In this paper

<end_OK>
end_n_2_17<end_NOK>

tM

s0:<start>

tOK
tNOK

t0

t¬M

Figure 3. eFSA generic model M for Reactive Component

we focus our attention on translation of an executable
specification to the Promela model. Promela model is the
input to Spin model checker suitable for analysis of property
ϕ from 3.

Code generation and transformation to executable speci-
fication are not the subject of this paper. The sequence of
model transformation is summarized on Figure 1. In order
to unify syntax representation for all internal FSA model
transformation BNF representation is introduced in Figure
4.

V. ψ-ALGORITHMS

First, we introduce the definition of ccfg–c control flow
graph. We shall refer ccfg simply as control flow graph
cfg. A cfg is triple (S, T, L) where:

S set of states si, si ∈ S;
T (or −→) is the set of transitions such that T ⊆

S × L× S
L is labeling functions (assign C instruction to the

label lj , l ∈ L

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

1

2 <eFSA> ::= <header> <body> | <comment>
3 <header> ::= [h|H] (.)* ’\n’
4 <comment> ::= # (.)* ’\n’
5 <body> ::= <keyw> <records>
6 <records> ::= <record> ’\n’
7 <record> ::= <fields> <separator>
8 <fields> ::= ’[\w-_\(\)]’+
9 <separator> ::= ’\s’+ | ’\t’+ | ’:’ | ’,’

10 <keyw> ::= INIT | STATES | LABELS |
11 TRANSITIONS} | FINAL | SL | LT
12

Figure 4. BNF for M FSA

Control flow graph cfg follows previously mentioned BNF
syntax for eFSA, cfg derived from C source is presented
in lisp–like form as the set of state–label pairs and the set
of state–arrow–next-state triples, respectively:

(si, lj)

(si −→ si+i)

A. ψ2–c to cfg

This algorithm (c2cfg) is model extraction [7] for C
program. We use goto-cc model extractor introduced in
[6].

B. ψ2–cfg to prml

Control flow graph translation to Promela model
(cfg2prml) algorithm consists of the following steps:
(1) substitute arrow → with label:

(si → si+i) −→ (si lj si+i)
(2) abstract label lj : lj −→< lj >: abstraction is already

in C source.
(3) ∀si ∈ S substitute si with Promela if block or label

abstraction
(4) ”End of function” → end

ψ2–cfg to prml translation is realized asPerl script.

C. Example

As an example we present model M of Zune30 bug. C
program has been taken from [10] and translated to Mprml

Promela model. This C program serves as executable
specification model. Similar models Mspec of executable
specification are derived from semi formal specification of
distributed web applications, business processes and control
software. For inputs like 366, 10593 zune30.c program
enter endless loop. Assertion from line 15 with Q1:
label is never executed in C program, yielding no assert–
violation:

"MC C source for zune30"
1

2 /* BUG: issue ./zune30 366, 10593 */
3 /* and have endless loop */
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <assert.h>
8

9 int zune30(int days) {
10

11 int year = 1980;
12 while (days > 365) {
13 if ((year % 4) == 0){
14 if (days > 366) {
15 Q1: assert(1);
16 days = days - 366;
17 year = year + 1;
18 }
19 /* else { */
20 /* } */
21 }
22 else {
23 days = days - 365;
24 year = year + 1;
25 }
26 }
27 printf("%d\n", year);
28 return 1;
29 }
30

After transformation C source (MC) is translated to Promela
model (Mprml). Analysis of Promela model Mprml gives
the sequence of instructions that raise undesired behavior.

"Mπ
prml: the Promela model"

1

2 int UNKNOWN;
3 int year;
4 int days;
5 int cprntf;
6 int cgoto;
7 int creturn;
8 int cassertif;
9 int cassertFALSE;

10 int cassertTRUE;
11

12 active proctype acz() {
13

14 #if DAYS
15 days=DAYS;
16 #endif
17

18 n_2_0: UNKNOWN=0; -> goto n_2_1;
19

20 n_2_1: year = 1980; -> goto n_2_2;
21

22 n_2_2:
23 if
24 :: !(days > 365) -> goto n_2_15; //true
25 :: (days > 365) -> goto n_2_3; // false
26 fi;
27

28 n_2_15: cprntf=1 -> goto n_2_16;
29

30 n_2_3:
31 if
32 :: !(year % 4 == 0) -> goto n_2_12; // true
33 :: (year % 4 == 0) -> goto n_2_4; // false

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

34 fi;
35

36 n_2_16: creturn=2 -> goto end_n_2_17;
37 n_2_12: days = days - 365 -> goto n_2_13;
38

39 n_2_4:
40 if
41 :: !(days > 366) -> goto n_2_11; // true
42 :: (days > 366) -> goto n_2_5; // false
43 fi;
44

45 n_2_13: year = year + 1 -> goto n_2_14;
46 n_2_11: cgoto=3 -> goto n_2_14;
47

48 n_2_5:
49 if
50 :: cassertif=4 -> goto n_2_8; //true
51 :: cassertif=5 -> goto n_2_6; //false
52 fi;
53

54 n_2_14: cgoto=6 -> goto n_2_2;
55 n_2_8: cassertFALSE=7 -> goto n_2_9;
56 n_2_6: cassertTRUE=8 -> goto n_2_7;
57 n_2_9: days = days - 366 -> goto n_2_10;
58 n_2_7: cgoto=9 -> goto n_2_9;
59 n_2_10: year = year + 1 -> goto n_2_11;
60

61 end_n_2_17: skip; // End of Function
62 }
63

Next section will explain transformation from C source to
Promela model.

VI. MODEL TRANSFORMATION: FROM C TO Promela

Model transformation is performed following the theoret-
ical concepts from the Section IV and Figure 1. The first
step is call to goto-cc that implements transformation of
C source to control flow graph cfg. (Mω

cfg −→ Mω
cfg).

Transformation is implemented in ψ:c2cfg algorithm.
Vertexes from Figure 5 are executable instructions and

edges are “connections” between instructions, respectively.
Nodes are assignments like year=year+1 or if state-
ments (for example: if(days >365). In real situations
additional assignments are method calls. We assume that
methods are safe and live, thus always return desired values.
That means methods have assume-guarantee property that is
checked separately.

The result of the transformation is coded in lisp–like
syntax:
"Mω

cfg cfg for zune30 in lisp--like syntax"
1

2 SL
3 (n_2_0 UNKNOWN)
4 (n_2_1 "year = 1980;")
5 (n_2_2 "!(days > 365)?")
6 (n_2_15 "PRINTF("%d\n",year)")
7 (n_2_3 "!(year % 4 == 0)?")
8 (n_2_16 "return 1;")
9 (n_2_12 "days = days - 365;")

10 (n_2_4 "!(days > 366)?")

UNKNOWN

year = 1980;

!(days > 365)?

PRINTF(&"%d\n"[0], year);

true

!(year % 4 == 0)?

false

return 1; days = days - 365;

true

!(days > 366)?

false

End of Function

year = year + 1;

Goto

true

days = days - 366;

false

Goto

year = year + 1;

Figure 5. C Control flow graph cfg for zune30 example

11 (n_2_17 "End of Function")
12 (n_2_13 "year = year + 1;")
13 (n_2_11 Goto)
14 (n_2_5 "!(_Bool)1?")
15 (n_2_14 Goto)
16 (n_2_8 "Assert(FALSE)")
17 (n_2_6 "(void)0;")
18 (n_2_9 "days = days - 366;")
19 (n_2_7 Goto)
20 (n_2_10 "year = year + 1;")
21

22 LT
23 (n_2_0 -> n_2_1)
24 (n_2_1 -> n_2_2)
25 (n_2_2 -> n_2_15 true)
26 (n_2_2 -> n_2_3 false)
27 (n_2_15 -> n_2_16)
28 (n_2_3 -> n_2_12 true)
29 (n_2_3 -> n_2_4 false)
30 (n_2_16 -> n_2_17)
31 (n_2_12 -> n_2_13)
32 (n_2_4 -> n_2_11 true)
33 (n_2_4 -> n_2_5 false)
34 (n_2_13 -> n_2_14)
35 (n_2_11 -> n_2_14)
36 (n_2_5 -> n_2_8 true)
37 (n_2_5 -> n_2_6 false)
38 (n_2_14 -> n_2_2)
39 (n_2_8 -> n_2_9)
40 (n_2_6 -> n_2_7)
41 (n_2_9 -> n_2_10)
42 (n_2_7 -> n_2_9)
43 (n_2_10 -> n_2_11)

For example, vertexes n_2_1 is assignment for C statement
year=1980 and transitions between vertexes are triples
(n_2_1 −→ n_2_2), respectively.

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

acz S1

S2

days = -(36)

S4

UNKNOWN = 0

S10

year = 1980

S12

(!((days>365)))

S18

((days>365))

S20

cprntf = 1

S22

(!(((year%4)==0)))

S28

(((year%4)==0))

S52

creturn = 2

S53

(1)

S0

-end-

S30

days = (days-365)

S32

(!((days>366)))

S38

((days>366))

S40

year = (year+1)

cgoto = 6

cgoto = 3

S42

cassertif = 4

S44

cassertif = 5

S46

cassertFALSE = 7 S48

cassertTRUE = 8

S50

days = (days-366)

year = (year+1)

cgoto = 9

Figure 6. FSA for Promela model Mπ
prml

After that, algorithm ψ2:cfg2prml is applied, resulting in
Promela model Mπ

prml as presented in Section. V-C. The
algorithm translates control flow graph to Promela code
Mπ

cfg −→Mπ
prml . The Promela model is another invariant

form of Mπ
C model, Figure 6 visualize it as an finite

state automaton. Spin‘s verifier pan has options that enable
visualization of Promela models as automaton.

There are significant difference from cfa from figure
5, instructions lj are placed on transition labels and many
instructions have abstracted form < lj >, for example,
assert is replaced with cassertif=4 abstracted form.

Next step is Promela model analysis of liveness and safety
properties.

A. Experiment result analysis

The analysis of Promela model from Section V-C yields
the following results:
− there are unreached portions of code
− there are endless loops
In order to achieve this results two verifier runs are required:
− Non–progress cycles (loops) are detected with linear

temporal logic formula: ♦�np_, where np_ is Promela

built–in variable for marking the progress of global
system state status. In our example, formula is false
producing counterexample with non–progress cycle.

− unreached instruction from Promela model (“dead–
code”) is standard built–in function into the pan verifier.

The output from the pan verifier is counterexample with
the path to the error. Each row presents the line number
of instruction from the Promela model presented in Section
V-C. Non–progress loop is sequence of instructions with line
numbers 24 32 40 45 53 24 32 40 . . .

"non-progres loops"
1

2 z30.ltg.prml:14 [days = 366]
3 days = 366
4 z30.ltg.prml:17 [UNKNOWN = 0]
5 z30.ltg.prml:19 [year = 1980]
6 year = 1980
7 <<<<<START OF CYCLE>>>>>
8 z30.ltg.prml:24 [((days>365))]
9 z30.ltg.prml:32 [(((year%4)==0))]

10 z30.ltg.prml:40 [(!((days>366)))]
11 z30.ltg.prml:45 [cgoto = 3]
12 cgoto = 3
13 z30.ltg.prml:53 [cgoto = 6]
14 cgoto = 6
15 spin: trail ends after 16 steps
16 year = 1980
17 days = 366

Counterexample pointing unreached code use pan verifier
built in options for unreached code detection. Each row
presents the line number of unreached instruction from
Promela model presented in Section V-C (27, 35, 36, 44,
. . .).

"unreached end--state"
1

2 unreached in proctype z30
3

4 z30.ltg.prml:27, "cprntf = 1"
5 z30.ltg.prml:35, "creturn = 2"
6 z30.ltg.prml:36, "days = (days-365)"
7 z30.ltg.prml:44, "year = (year+1)"
8 z30.ltg.prml:44, "year = (year+1)"
9 z30.ltg.prml:49, "cassertif = 4"

10 z30.ltg.prml:49, "cassertif = 5"
11 z30.ltg.prml:54, "cassertFALSE = 7"
12 z30.ltg.prml:55, "cassertTRUE = 8"
13 z30.ltg.prml:56, "days = (days-366)"
14 z30.ltg.prml:57, "cgoto = 9"
15 z30.ltg.prml:58, "year = (year+1)"
16 z30.ltg.prml:61, "-end-"
17 (11 of 53 states)

VII. CONCLUSION AND FURTHER WORK

We have presented model checking of specification as
software model checking for C language.

We find that Spin model checker is feasible solution
because Spin finds deadlocks, unreached code, assertion
violations, invalid end states, and analyze linear time log-
icformula. In the same time, executable specification can be

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

analyzed, tested as every C program. Our approach avoids
complex and long term development of model extractor with
tools like CIL. Another benefit is the application of linear
time logicformula on C specification. Usual approach puts
assertions in the code in the place according to the designer’s
discretion. Sometimes it is necessary that assertion is true
to “some point in the future infinitely often” which can
be expressed as temporal logic formula. With our approach
linear time logic formula is the part of Promela model and
consequently also the part of C specification. State explosion
and designer mistakes during specification definition are still
problems that needs improvements. “Designers will never
use it” syndrome is always the problem when introducing
development paradigms.

Further work will focus on more rigid data–types consis-
tency check. That requires formal development of abstract
data structures. In most cases, such data structures are
defined over infinite domains so further refinements should
avoid infinite data domains, or introduce data abstractions.

Besides Spin, the comparison with other model checkers,
like Petri net tools, could improve verification. Model check-
ers search for solutions within finite space, the improvement
of model checking with unbounded parameters (days in our
example) yields: M(days) |= ϕ.

Bounded model checking [12] and the usage satisfiability
modulo theory (SAT [13] and SMT [14]) solvers are the
promising research direction.

Automated code generation from executable specifica-
tion is another possible direction for research. The most
promising is TDD “Test Driven Development” because code
skeleton is populated with test case commands.

REFERENCES

[1] D. Harel, “Statecharts in the making: a personal account,”
in Proceedings of the Third ACM SIGPLAN History of
Programming Languages Conference (HOPL-III). San
Diego, California: ACM, 9-10 June 2007, pp. 1–43.

[2] R. Eshuis, D. N. Jansen, and R. Wieringa, “Requirements-
level semantics and model checking of object-oriented stat-
echarts.” Requirements Engineering, vol. 7, no. 4, pp. 243–
263, 2002.

[3] R. Bharadwaj and C. L. Heitmeyer, “Model Checking
Complete Requirements Specifications Using Abstraction,”
Automated Softwware Engineering, vol. 6, no. 1, pp. 37–68,
1999.

[4] K. Jiang, “Model Checking C Programs by Translating C to
Promela,” Master’s thesis, Uppsala Universitet, Department
of Information Technology, 2009.

[5] G. J. Holzmann, “Logic Verification of ANSI-C Code with
SPIN,” in SPIN Model Checking and Software Verification,
ser. Lecture Notes in Computer Science, K. Havelund,
J. Penix, and W. Visser, Eds., vol. 1885, 7th International
SPIN Workshop. Stanford CA USA: Springer, August
2000, pp. 131–147.

[6] “CBMC is a Bounded Model Checker for ANSI-C,”
(last time visited July, 5th2012). [Online]. Available:
http://www.cprover.org/cbmc

[7] E. Clarke, D. Kroening, and F. Lerda, “ A Tool for Check-
ing ANSI-C Programs ,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004)
, ser. Lecture Notes in Computer Science, K. Jensen and
A. Podelski, Eds., vol. 2988. Springer, 2004, pp. 168–176.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking. The MIT Press, January 1999.

[9] G. Holzmann, Spin model checker, the: primer and reference
manual, 1st ed. Addison-Wesley Professional, 2004.

[10] W. Weimer, S. Forrest, C. L. Goues, and T. Nguyen,
“Automatic program repair with evolutionary computation,”
Commun. ACM, vol. 53, no. 5, pp. 109–116, 2010.

[11] A. Metzger, “A systematic look at model transformations,” in
Model-Driven Software Development, S. Beydeda, M. Book,
and V. Gruhn, Eds. Springer Berlin Heidelberg, 2005, pp.
19–33.

[12] Armin Biere and Alessandro Cimatti and Edmund M. Clarke
and Ofer Strichman and Yunshan Zhu, “Bounded Model
Checking,” Advances in Computers, vol. 58, pp. 117–148,
2003.

[13] Biere, Armin and Heule, Marijn J. H. and van Maaren,
Hans and Walsh, Toby, Ed., Handbook of Satisfiability, ser.
Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185.

[14] Armando, Alessandro and Mantovani, Jacopo and Platania,
Lorenzo, “Bounded model checking of software using SMT
solvers instead of SAT solvers,” Int. J. Softw. Tools Technol.
Transf., vol. 11, no. 1, pp. 69–83, Jan. 2009.

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-233-2

VALID 2012 : The Fourth International Conference on Advances in System Testing and Validation Lifecycle

