
Dealing with Challenges of Automating Test Execution

Architecture proposal for automated testing control system based on integration of testing tools

Valery Safronau and Vitalina Turlo

Software Testing Automation Department

Applied Systems Ltd.

Minsk, Belarus

safer@appsys.net, turlo@appsys.net

Abstract—If implemented correctly, automated software

testing maybe an efficient way to circumvent time and resource

shortages and ensure faster time to market for new products.

Our experience and survey data show that the execution of

automated tests is often accompanied by a number of time-

consuming and routine operations that are performed

manually, e.g., operating virtual machines, setup and cleanup

of the environment, test launch, logging defects, etc. These

menial chores can be automated with the help of simple

command files or by developing an automated testing control

solution. In the long run, the latter is a more efficient

approach. The paper focuses on the challenges that companies

face in attempting to build such a solution, and provides

practical recommendations on implementation. Finally, we

provide an architecture proposal for the system for automated

testing based on testing tools integration, define its features

and describe the interactions between its components.

Keywords-Desktop application testing; survey; industrial

experience; integration of testing tools; automated testing control

solution.

I. INTRODUCTION

High quality, timely testing is crucial to the development
of a reliable software product. By the same token, running
regression tests on every released (stable) build is critical,
especially in the case of continuously developed complex
systems with extensive functionality. However, due to the
shortage of resources, regression testing is often being
neglected, and its significant lack or incompleteness is one of
the greatest problems in software development quality
assurance.

In order to solve this issue, Automated Testing (AT) is
used. The fact is that implementing AT can be a great
challenge in its own right, as it requires well-tuned software
development and testing processes as well as clearly
organized communication flows. “One of the primary
reasons software testing tool implementations fail is because
there is little or no testing process in place before the tools
are purchased [1].”

In many instances the expression “automated testing” is
misleading, as the testing process is still being controlled by
a test engineer, especially where desktop applications are
concerned. According to the online surveys conducted by
Applied Systems Ltd. via the SurveyMonkey.com service, a
tester has to manually fulfill some or all of the operations to

execute automated tests on a new product build, such as
configuring the testing environment, starting/shutting down
Virtual Machines (VMs), launching tests, submitting bugs to
a tracking system, closing fixed bugs, generating reports, and
so on [2][3]. In addition to being very time-consuming,
manual operations drastically increase the probability of
human error. For these reasons, our goal is to enable the
unmanned execution of the full AT cycle by completely
automating these routine operations.

In this paper we describe a new, efficient approach to
controlling automated software testing that meets the
aforementioned challenges. The solution is based on the
integration of testing tools. It has been applied in practice,
and has proven useful in the automated testing of
desktop applications, ensuring non-stop execution of tests
while eliminating menial and boring tasks from the work of
testers. One of the most obvious benefits of this solution is
guaranteed regression testing of each new build.

The present work focuses on the realization of unmanned
execution of automated tests – from environment set-up and
test launch to defect tracking and report generation – but not
on design and development of automated test scripts. We
assume that test automation engineers know how to create
tests that are reliable, maintainable and data-driven, while
complying with the principles of test case independence,
absence of redundant code, and scalability.

The findings of this paper are based on more than five
years of practical experience in the automated testing of
desktop software, as well as the results of two IT community
surveys with a pool of more than 300 respondents.

Section 2 gives an overview of key previous work in the
field of automated testing. In Section 3 we examine the
evolution of automated testing and suggest a new
classification of test automation levels emphasizing the
amount of manual routine operations in the AT process.
Section 4 is dedicated to exploring the main challenges
inherent in building an Automated Testing Control System
(ATCS). In Section 5 we propose the working archetype of
such an ATCS with a detailed description of its main features
and components. The Conclusion section summarizes the
paper’s findings and outlines the field of research for future
work.

The insights of the present work will be useful to Test
Automation Engineers, Heads of Testing and QA
departments, and those practitioners who wish to develop an
in-house solution for automated testing control.

14

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

II. RELATED WORK

As automated software testing gains popularity, the body
of literature on the subject has been growing steadily in
recent years. They provide test engineers with the theoretical
and practical base necessary for a successful implementation
of automated tests [1][4][5][6]. Authors with extensive
professional experience in the industry guide the reader
through the decision whether to automate tests, help to
navigate through a plethora of testing tools to select the best
fit ones, and give advice on building robust and documented
testing processes [1]. The works also offer guidance on test
planning, design, development, execution, and evaluation
[4][6].

For a constructive discussion on which tests cases should
be automated and guidelines for assessment of return on
investment, see the work by Dustin and Garrett in [6] and
[7], as well as Chapter 2 in Mosley and Posey in [1].

In Automated Software Testing Dustin, Rashka and Paul
introduce the concept of Automated Test Life-Cycle
Methodology (ATLM), “which is a structured methodology
geared toward assuring successful implementation of
automated testing [4].” They identify five phases of ATLM,
namely:

1) Decision to automate test.
2) Automated test tool acquisition.
3) Introduction of automated testing to a new project and

its optimization.
4) Test planning, design, development and execution.
5) Test evaluation.
Mosley and Posey argue that ATLM is an “artificial

construct” that is not very useful for practitioners. They
argue against the idea of a software testing life cycle, and
claim that the result of the implementation of test automation
depends on the quality of the processes already in place in
the organization [1]. Despite certain differences in their
approach to testing, Dustin and Mosley both promote a
deliberate, well-reasoned preparation for test automation,
including in-depth studies of test requirements, setting
realistic expectations and planning for automated testing.

Our contribution to the existing knowledge on the topic
consists in proposing an architecture design for automated
testing control system, which is based on the integration of
testing tools. We focus on how to realize completely
unmanned test execution.

III. EVOLUTION OF AUTOMATED SOFTWARE TESTING

 “Automated software testing” is a controversial
expression employed by software companies regardless of
the test automation level they have achieved.

Attempts to classify the levels of maturity of automated
testing are not new. For instance, Dustin et al. correlate the
four levels of automated testing described by Krause to the
Software Testing Maturity Model (TMM) [4][8][9].

At the initial TMM level testing is not separated from
debugging. It corresponds to “accidental automation,”
automated testing that is nonexistent or carried out on an ad-
hoc or experimental basis. Test automation is not supported

by process, planning and management activities; scripts are
not reusable or maintainable.

At the second, Phase Definition level, testing and
debugging are separated, and “incidental automation”
occurs. At this phase automated scripts are adapted, but not
reusable, and there are no defined processes.

The integration phase corresponds to a level of maturity
where testing no longer follows coding, but is integrated into
the software life cycle. At this stage, automated testing is
referred to as “intentional automation.” The process is well
documented and well-managed; scripts’ reusability and
maintainability are at the core of test design and
development.

At the fourth TMM level, testing is a measured and
quantified process. Defects are tracked and assigned a
severity level. In automated testing, this stage is called
“advanced automation” and is supplemented with post-
release defect tracking. The test team is an integral part of
product development, which ensures that bugs are found as
early as possible.

The classification of automated testing maturity levels
that we suggest below does not conflict with the TMM
model. However, we focus on a different criterion, which is
the number of operations that are still being performed
manually during automatic test execution. In addition, we
emphasize such factors as organizational needs and project
length and requirements.

In this section, we will define three stages of testing
automation evolution as we view it and provide their
principal characteristics (see Fig. 1).

A. Infancy Stage

This phase is marked by the emergence of scripts and
automated tests. The scripts usually perform frequent,
routine functions necessary to prepare the product for testing,
e.g., the copying of product installation and configuration
files to the testing PC and basic system setup. The scripts can
also be used to verify particular product functionality. Along
with the scripts, the automated tests created with special test
automation tools (e.g., Visual Studio, HP QTP) appear in the
testing process of an organization.

The main characteristics of this stage are:

 Lack of arranged test storage (generally, the tests
are stored on the tester’s PC and used solely by him
or her, i.e., they are not reusable or adapted to any
changes of tested interfaces).

 Need for systemized test launch.

 Figure 1. Stages of testing evolution.

15

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

 Shortage of documented procedures and common
practices for interpreting test results and creating
reports.

The infancy stage lacks a systematic approach to the
integration of AT into the software quality assurance
process.

At this point the tests are often unstable and their results
cannot be reliable. However, they may free up a certain
amount of resources by helping testing specialists fulfill the
most routine tasks.

Typically, organizations that dwell at this phase have
short-term projects, and thus lack the opportunity to upgrade
to a higher level of test automation. These include small
companies that have no testing process as such, as well as
firms that are just beginning to use automated tests.

B. Awareness Stage

In this phase the majority of activities are automated
using, for example, batch files: launching tests, starting and
shutting down VMs, copying the necessary configuration
files to the testing PC and other operations.

The following features are typical of the second stage:

 Improvement of test quality.

 Arrangement of centralized storage for tests and
libraries of functions (tests become reusable).

 Tests are launched automatically upon the issue of
each new product build.

 Naming rules for automated tests take effect.

 Guidelines for processing test results (submitting and
closing bugs) are elaborated.

At this stage, which is the most widespread among
companies, we may trace particular signs of automated
testing. A typical company representing this phase is a
developer of middle- and long-term software projects, which
has well-established testing processes and realizes the need
for regular regression testing.

C. Maturity Stage

This is the most advanced level of automated software
testing, where it is seamlessly integrated into the company’s
testing processes. As Mark Fewster and Dorothy Graham put
it, “A mature test automation regime will allow testing at the
“touch of a button” with tests run overnight when machines
would otherwise be idle [5].”

We characterize this stage as “full testing automation”.
By that we mean that all the operations related to test
execution are done automatically, without the participation
of a test engineer. These include:

 Starting and shutting down Virtual Machines (VMs)
in cases using virtualization during testing.

 Configuring the testing environment.

 Queuing builds for testing according to their priority.

 Execution of tests upon successful build compilation.

 Submission of defects to the Bug Tracking System
(BTS).

 Closing fixed bugs in the BTS (optional).

 Generation of a unified report on all passed tests.

Obviously, all of these elements should be automated to
the extent that it is cost and time efficient [1]. Generally,
such an advanced level of automation is attained by
companies developing complex software products with
extensive functionality. They are engaged in middle- and
long-term projects and have to meet the challenges of
missing or incomplete regression testing, and the effort of
achieving the advanced level is worthwhile for them.

As we proceed, we will assume that introducing
automated tests is a decided matter, its economical feasibility
is proven, and a company’s goal is to achieve the maturity
stage where tests are executed automatically, i.e., without the
interference of a test engineer. Many publications discuss the
criteria according to which tests should be automated. They
also provide techniques for evaluating return on investment
of test automation [6][7]. These particular topics are beyond
the scope of this paper.

This paper focuses on achieving the advanced level of
automation by means of a special automated testing control
solution. Below, we describe the main challenges of
developing an ATCS and propose the software architecture
of such a system.

Along with the above-listed functionality, the AT control
solution provides a common User Interface (UI) that enables
the user to fully parameterize test execution and customize
all related tools (virtualization server, BTS, automated
scripts) according to the project requirements.

At the maturity stage, the experience of earlier attempts
at testing automation is taken into account, and special
attention is paid to the scalability and expandable
architecture of the ATCS itself.

IV. MAIN CHALLENGES OF BUILDING AN AUTOMATED

TESTING CONTROL SOLUTION

In order to remove manual activities from automated test
execution, test engineers have a choice: whether to develop
special configuration and command files, or attempt to create
a special AT control program with a front-end interface that
would send relevant instructions to the testing tools [5]. We
focus on the latter, as this approach is more thoughtful and
sustainable.

This section will cover the most common challenges that
software companies are contending with while building
automated testing solutions. These statements are based on
our own professional experience, the experience of our
colleagues and the results of our industry research.

With the view of studying certain problems of automated
test execution, we conducted two online surveys. The first
survey took place from May 10 to May 30, 2011 among the
Russian-speaking IT community from all over the world.
The link to the survey was placed at one of the most popular
IT-specialized resource sites, Habrahabr.ru. The
questionnaire consisted of 10 questions and gathered answers
from 292 respondents [2]. The second survey was run among
members of testing related groups on professional
networking site LinkedIn.com from May 25, 2011 to June 4,
2011, and received 34 responses [3]. It was comprised of the
same questions as the first survey and included an additional
question (see Section IV-C below).

16

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

The objective of our surveys was to show that despite the
use of automated tests there are manual routine operations a
tester typically performs to have them executed.

A. Incomplete Automation

“When you start implementing automated tests, you will

find that you are running the (supposedly automated) tests

manually. Automating some part of test execution does not

immediately give automatic testing [5].”
To assess the level of testing automation in their

organizations, we asked a question in our survey: “During
the automated testing, what are the operations that you still

have to perform manually?” This particular question
received 247 answers, and 45 respondents skipped it
[2].

According to the survey, only 12.6% of respondents
claim that in their organization all the operations related to
AT are executed automatically, i.e., without the interference
of an operator. As illustrated in Fig. 2, the most widespread
tasks that a tester has to perform manually are submitting and
closing bugs in the BTS (60.3% and 55.1%, respectively),
launching automated tests (52.2%) and creating reports
(44.5%). As the question allowed multiple answers, the total
percentage exceeds 100 % [2].

On the one hand, these operations are monotonous and
have a lower added value than, for example, the creation of
new test cases – an alternative to investing the tester’s time.
On the other hand, they are time-consuming. For instance, in
the case of data-driven testing, where the value of each
particular output is important, a new bug must be submitted
each time the test criteria are violated. On average, an
experienced tester submits a defect into the bug-tracking
system, including completing the assigned fields, in slightly
more than a minute, and closing a fixed bug takes about 15
seconds

1
. Multiplied by the number of defects the tester has

to process, the amount of wasted time may be considerable.

1 Measurements were done with the following properties:

1. Bug Tracking System (BTS): Microsoft Team Foundation Server (MS

TFS), Mantis, Bugzilla.
2. Experimenters: 2 Testers (both 4 years of experience).

During the experiment 10 bugs were created with the following required

fields:
MS TFS: Title, AssignTo, Iteration, Area, Tester, FoundIn, Severity.

Mantis: Category, Summary, Description, Platform, OS, Severity.

Bugzilla: Component, Version, Summary, Description, Severity, Assignee.
Opening BTS is also measured.

Another example is the set-up of the testing environment,
which is carried out manually by 25.5% of our respondents
[2]. The tester has to place a specific file into a specific
directory before the automated test run. These actions are
time-consuming, difficult to document and can be easily
missed, resulting in flawed test results [5].

B. System Scalability and Expandability

In our interviews with peers, we found that oftentimes

when a company develops a system for controlling

automated testing, it focuses on the tools currently used

without providing for system expandability. As a matter of

fact, the solution being built for specific tools has important

shortcomings. For instance, when the organization upgrades

to a new version of the bug tracking system, or wants to add

virtualization servers to the test lab, or introduces new types

of automated tests created using a different framework,

system integration and customization efforts will have a

significant cost.

The outcome is the same when the crucial factor of

system scalability is not taken into account. As product

functionality increases over time, the number of automated

tests increases as well, and there is a need for rational

distribution of virtualization resources. The extension of the

virtualization capabilities results in the rise of efforts to

maintain the test automation system, and to manage a

number of additional elements.

Therefore, such features as scalability and expandability

have to be realized in the testing control solution’s

architecture in order to maximize its performance through

the software life cycle.

C. Absence of an Easy-to-use Control Tool (User

Interface)

In the majority of cases there is no single client interface

for control and adjustment of the AT process, which

negatively affects the overall performance. The settings of

test execution are parameterized by means of config files

(see Fig. 3) [3]. More often than not, the code of the

configuration files is not subject to validation, resulting in an

increase in human errors.

Figure 2. Manual tasks in automated testing (survey results) [2].

Figure 3. Configuring the parameters of AT run (survey results) [3].

17

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

It is recommended to develop a front-end providing a
“user interface that is independent of the automation tool
used [5]. A common UI that enables the set-up of the
automated test run without writing a single line of code
augments the efficiency of software quality assurance. It
helps reduce the learning curve, as the test engineer works
with the single UI instead of interacting with several tools.

D. Lack of Uniform Cumulative Reports

In general, each test automation framework, such as HP

QTP or IBM Rational Robot, generates reports in its own

native format. In our practice we experienced firsthand the

situation when a stakeholder (manager, customer) was not

able to view test results because the corresponding tool was

not installed on his/her computer. Even if any of these

frameworks possesses an export feature, they have to handle

a stack of separate lengthy records.

A testing automation solution should provide for uniform

cumulative reports, meaning that a single summary report is

based on the results of a batch of test cases and is presented

in a structured and easily readable form. Furthermore, up-to-

date results should be available and accessible at any

moments of test execution, and the storage of reports history

should be enabled.

E. Uninterrupted Operation

An automated testing process resembles a conveyor belt.

At the entry point, we have new builds of the system under

test, and at the output, found defects and reports. To ensure

the continuity of operation and system stability, it is

necessary to develop mechanisms preventing system hang-

up. For instance, if a test has an error, it will be run

endlessly, keeping a virtual machine’s resources busy and

preventing the execution of other queued tests. Therefore, it

is useful to implement the “timeout kill” algorithm to ensure

the system’s fault tolerance.

F. Insufficient or Lacking System log

Deficient system logging hampers the debugging

process, which makes an ATCS non-transparent and its

activities hardly traceable. Therefore, when developing a

system for automated testing control, it is crucial to enable

the logging of all system components, including the events

of automated tests, virtual machines, defect management

system, reports, etc. These measures help minimize the time

needed for debugging and increase the efficiency of software

quality assurance and validation.

V. ARCHITECTURE PROPOSAL OF AUTOMATED TESTING

CONTROL SOLUTION

In this section, we describe an efficient approach to bring
automated test execution to the highest maturity level. We
present a working archetype of the software system that
controls automated tests and is independent of testing tools
used. The proposed solution eliminates routine manual
operations from the test execution process.

A. Integration of Testing Tools

The approach we recommend consists of building a
coherent and comprehensive software solution which
independently controls all operations related to AT – from
launching tests and operating virtual machines to submitting
bugs and generating reports. The solution, as Fig. 4 suggests,
is based on the integration of software tools engaged in AT,
namely the file server, the build machine, the versioning
control system, the virtualization server, the bug tracking
system, and automated tests themselves.

In order to develop such an integrator, first one needs to
analyze the tester’s interaction with all the above-mentioned
tools. The second step is to examine the APIs (Application
Programming Interfaces) of each tool. The final stage is the
development of a solution that integrates all these software
tools under a common UI, via which the tester can easily and
quickly adjust the automated testing control system
according to the requirements and processes established in
the organization.

In other words, instead of customizing and configuring
each tool separately (virtualization server, BTS, automated
tests, etc.), the tester will be able to adjust all settings via a
single easy-to-use UI.

The prototype of the described automated testing control

system was developed and successfully deployed by Applied

Systems Ltd. The program architecture consists of three

modules:

1) Automated Test Manager (ATManager)
ATManager is a complex service that controls the whole

AT process and assures communication among all elements

in the system. It plays a central part in the functioning of the

test automation solution and works using the algorithms

described below.

When a new project is created, the tester (operator) presets

the ATCS for verifying a specific build branch: adds tests

into the system, groups them into test runs, etc. Once this is

done, ATManager takes over and probes every new build in

automatic mode.

1. ATManager monitors the state of the build machine via

its API. If the new build is completed successfully,

ATManager is notified and starts the testing procedure.

Each build can have several test runs configured to verify

it. Different test runs can be executed simultaneously on

different machines.

2. ATManager finds an appropriate test machine (VM or

physical PC). Each test run has a set of virtual machines on

which they can be executed.

Figure 4. Integration of testing tools.

18

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

3. ATManager starts a VM (in the case of using

virtualization during testing) via the API of the

corresponding virtualization server. It chooses appropriate

machines from the least busy virtualization server.

4. ATLauncher is initialized.

5. ATManager deploys build binaries and automated tests

from the file server or version control system on the VM.

Then it configures the environment on the test machine.

ATLauncher launches tests.

…Automated tests are executed…

6. ATManager sends test results to the File Server.

7. ATManager submits/updates defects to the BTS, closes

fixed bugs if these actions were allowed by the tester.

ATManager service fills in the required fields in the BTS

(e.g., Title, Tester, Product, Assigned to, etc.) using its API

(see Fig. 5 for illustration).

2) Agent for Launching Automated Tests (ATLauncher)
ATLauncher is a console application installed on each

testing machine. It is a small service that does not impact the

performance of the host system.

The main functions of the module are:

 presetting the testing environment (i.e., copy

configuration files, install the software under test);

 launching various types of tests (using the APIs of

frameworks in which they were developed);

 processing and converting the test results, etc.

The module architecture must be expandable and allow the

addition of new features.

ATLauncher starts working after ATManager has started

a VM (in the case of using virtualization) and copied all

required files, including automated test scripts and config

files. The XML file created by the control module

ATManager contains the description of tests and usage

instructions. As soon as the tests are finished, ATLauncher

creates a special results file to notify ATManager about the

completion of its task.

3) Control Panel
The user interface is represented by the control panel. It is

a client application which facilitates the interaction

between the tester and the ATCS, providing the tools

necessary to configure and manage the test run for an

application under test.

The UI allows the user to:

1. Specify the tests to be run on each build, assign priority

to the build branch, schedule test launch on event (issue

of a new build) or on schedule; choose defect tracking

options (Fig. 6).

2. Allocate the sets of valid machines for each test run,

assign tests for execution on a particular real or VMs

and their snapshots.

3. Manually launch tests on a specific build, interrupt test

execution.

4. View ATManager’s logs.

5. Monitor the testing queue in real-time (Fig. 7).

In the time of ever-increasing mobility, it is useful to

provide access to the control panel from the desktop as well

as a web interface.

B. Distribution of Functionality Among Components

While creating a solution to control an automated testing
cycle it is necessary to distribute the functionality of your
future system among its components.

 Figure 5. Scheme of communication between the components of the
ATCS.

Figure 7. Sample screenshot of the ATCS(Builds tab).

Figure 7. Sample screenshot of the ATCS(Queue tab).

19

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

In Table 1, we suggest possible options to distribute basic
functionality among ATM, ATL and the client UI. To
coordinate the work of all these components, one needs to
develop a large set of algorithms and solutions.

VI. CONCLUSION AND FUTURE WORK

One of the most serious problems facing software
development companies today is the lack of resources for
regular and comprehensive regression testing.

The most obvious and popular solution is implementing
automated testing. However, despite the abundance of tools
for testing automation, this endeavor presents many
challenges, especially in the case of testing desktop
applications. In the first place, the word “automated” does
not mean, as one might be led to believe, that operations are
handled without human interaction. In fact, in the process of
automated test execution – Configure the testing
environment Start the virtual test machine Launch tests
 Execute tests Submit bugs to the bug-tracking system
 Generate test reports – only a few operations, besides the
test execution itself, are automated. In addition to the fact
that “non-automated” activities are time-consuming and
inefficient, they also leave room for human error.

To meet these challenges, some companies developing
complex software are trying to create a solution that would
control the whole AT process from A to Z without the
participation of an operator. Only 12.6% succeed [2].

In this paper, we have described an efficient and
innovative approach to automating test execution based on
the integration of all testing tools under a common UI. We
also provided practical advice on how to develop such an AT
control solution, proposed the system architecture, defined
the key functionality of its components and schematized the
communication among them.

In the future, we plan to assess the costs and benefits of
implementing an AT control solution into a company’s QA
management system.

ACKNOWLEDGMENT

We would like to express gratitude to Ivan Bachtin, who
did a wonderful job developing the prototype of the
automated testing control system we refer to in this paper,
and to Sergei Usovich, who provided financial support and
shared our enthusiasm. We also thank our friends and
colleagues who shared their experience and insights and
contributed to this work, namely Maks Shatokhin, Alexander
Abramov, and Dmitry Romanovich.

In fact, a few hundred people contributed to the progress
of this paper in different ways, and we are especially
thankful to the respondents to our online surveys, which
provided a solid support to our statements and arguments.

 REFERENCES

[1] D. Mosley, B. Posey, “Just Enough Test Automation,” Prentice Hall,
2002, pp. 12-14.

[2] Online survey “Problems of automated desktop software testing” by
Applied Systems Ltd. via Habrahabr.ru,
https://www.surveymonkey.com/s/automated_testing_problems
30.05.2011.

[3] Online survey “Challenges of automated software testing” by Applied
Systems Ltd. via LinkedIn.com,
https://www.surveymonkey.com/s/automated_testing, 30.05.2011.

[4] E. Dustin, J. Rashka, and J. Paul, “Automated Software Testing:
Introduction, Management, and Performance,” Addison-Wesley
Professional, 1999, pp. 38- 45.

[5] M. Fewster, D. Graham, “Software Test Automation: Effective use of
test execution tools,” Addison-Wesley Professional, 1999, pages: 3,
62, 246, 329.

[6] E. Dustin, T. Garrett, “Implementing Automated Software Testing:
How to Save Time and Lower Costs While Raising Quality,”
Addison-Wesley Professional, 2009, pp. 192-204.

[7] T. Garrett, “Useful Automated Software Testing Metrics,”
http://idtus.com/img/UsefulAutomatedTestingMetrics.pdf,
21.07.2011.

[8] M. Krause, "A Maturity Model for Automated Software Testing,"
Medical Device and Diagnostic Industry Magazine, December 1994.

[9] I. Burnstein, T. Suwanassart, and C. Carlson, “The Development of a
Testing Maturity Model,” Proc. Ninth International Quality Week
Conference, San Francisco: The Software Research Institute, 1996.

TABLE 1. DISTRIBUTION OF BASIC FUNCTIONALITY AMONG

COMPONENTS OF ATCS

Functionality

Module Control via

common UI
AT-

Manager

AT-

Launcher

1. Operate virtual
machines (VM)

- start/shut down VM

- add VM and snapshots
to the system

- group VMs

+ - +

2. Launch automated
tests

- + +

3. Submit/close bugs in

the BTS

+ - +

4. Generate a uniform
cumulative report

+ - +

5. Convert results into a

single easy-to-interpret

format

+ - -

6. Copy tests, config
files, product setup files

to the testing machine

+ - +

7. Install the tested
product

- + +

8. Log all system events + + -

9. Abort text execution + + +

20

VALID 2011 : The Third International Conference on Advances in System Testing and Validation Lifecycle

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-168-7

https://www.surveymonkey.com/s/automated_testing_problems

