
Automated Code Generation of Multi-Agent Interaction
for Constructing Semantic Services

Sergei A. Marchenkov

Department of Computer Science
Petrozavodsk State University (PetrSU)

Petrozavodsk, Russia
e-mail: marchenk@cs.petrsu.ru

Abstract—This paper proposes a solution to the problem of
simplifying the development and maintenance of smart space
applications by creating tools for automated code generation of
multi-agent interaction for constructing semantic services. The
general scheme of automated code generation process of multi-
agent interaction for constructing semantic services is introduced.
By expanding the Web Ontology Language for Services (OWL-
S), a unified ontological description of the semantics of service
constructing processes is introduced. The code generation proce-
dures for agent data object model and interaction processes are
presented. The efforts, in automated development of semantic
services through the use of the proposed unified service ontology
,and the code generator are investigated based on estimation
of time to generate program code and the quality metrics of
generated code.

Keywords–semantic services; code generation; ontology-driven
development; information-driven interaction.

I. INTRODUCTION

The Smart Spaces (SmS) approach to smart application
development combines Internet of Things technologies with
the Semantic Web to create a class of ubiquitous environ-
ments [1]. The smart nature of this approach is due to the need
to provide participants in SmS with services in the conditions
of their mass use, the presence of heterogeneity of computing
devices and software components, their physical distribution,
a variety of resources used and possible means of network
communications for transferring data between participants. The
interaction participants are software agents, who are consumers
and producers of shared information storage.

Each agent in SmS application works in accordance with
a specific domain area and model of information-driven in-
teraction with other agents in the process of constructing
and delivering services [2]. The agent logic developer uses
the Application Programming Interface (API) middleware to
access SmS information storage. From the point of view
of agents, information storage is organized as an Resource
Description Framework (RDF) graph, as a rule, in accordance
with some ontology defined using the Web Ontology Language
(OWL) description language.

SmS middleware (platform) is a software layer that allows
agents to share content. A middleware supports a variety of
semantic interoperable access primitives, including ontology-
oriented ones. Currently, there are many available software
implementations of platforms for creating such SmS: Ope-
nIoT [3], Neo4j [4], SEPA [5], FIESTA-IoT [6]. As an
example, the paper discusses the CuteSIB [7] platform using an

ontology-oriented approach to service development. The envi-
ronments of the smart museum [8] and collaborative work [9]
environments are considered as examples of applications.

The construction of services in SmS is implemented as
a distributed computing process, that allows creating more
complex system solutions based on information-driven inter-
action of agents. In other words, services are created as a
result of agents working together. Such agents perform a step-
by-step process of changing the shared information storage
based on ”publish/subscribe” models in order to implement the
application function and ensure interaction with the resources
of the computing environment. The consumers of services are
often users. Therefore, the process of knowledge extraction
and service delivery, as a rule, is personalized taking into
account the priorities and preferences of users, considered
in the context of the current situation and the state of the
environment.

The elaboration on the Semantic Web concept and related
concepts, such as Web 3.0 [10] and the Semantic Web of
Things [11], defines the direction for the elaboration on
SmS services towards semantic services. The description of
a semantic service is represented by a machine-interpreted
service ontology. SmS services can be defined as semantic
services, which must have uniquely described semantics, be
available among other heterogeneous environments, be suitable
for automated search, composition, proactive construction and
proactive delivery. The use of semantic services in the SmS
approach changes the requirements for the development of
services, and therefore, SmS applications. In connection with
the constantly growing and dynamically changing set of par-
ticipants in the SmS environment, the complexity of the phases
of development and maintenance of services increases.

Unified service ontology. The design of semantic services
should be based on a general unified ontology. Such an
ontology defines not only the service interface in terms of
transmitted data and return values, but also defines the pur-
pose of the service, describes the process of its construction,
and uniquely determines its semantics. With this consistent
design approach, the services of different SmS applications
can interact with each other regardless of the domain area and
environment. Providing in this way the network interaction of
the SmS environments, it is possible to achieve the integration
of both the SmS themselves and their applications for solving
collaborative tasks based on semantic services.

Automation of agent programming processes. The way to
develop applications is needed that allows to reduce the amount

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-811-2

UBICOMM 2020 : The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

of program code generated by an application developer during
routine tasks through the use of computer-aided design and
programming tools. In particular, the automation of agent
programming processes when constructing services can be
achieved through the use of semantic service ontologies. On-
tologies are accepted as input parameters to generate an object
model and code templates for object-oriented programming
languages. By understanding the semantics of the service,
as well as information about the available resources of the
environment, ontology-based self-organization of agents can be
achieved by defining their functional roles, interaction models
and operations/functions in the process of constructing and
delivering a service.

The paper proposes a solution to the problem of simplifying
the development and maintenance of SmS applications by
creating tools for automated code generation of multi-agent
interaction for constructing semantic services.

The rest of the paper is organized as follows. Section II
introduces the general scheme of automated code generation
process of multi-agent interaction for constructing semantic
services. Section III provides the ontology of semantic service
in SmS. Section IV proposes the code generation procedures
for agent data object model and interaction processes. Sec-
tion V evaluates the developer efforts in automated develop-
ment of semantic services through the use of the proposed
unified service ontology and the code generator. Finally, Sec-
tion VI concludes the paper.

II. AUTOMATIC ONTOLOGY-DRIVEN DEVELOPMENT

The development of SmS applications follows the princi-
ples of ontology-driven software development. According to
these principles, the design phase is reduced to the creation
of a specification for a specific domain and services in the
form of an OWL/RDF description. The use of ontologies
allows to achieve a common understanding of the structure
of information storage between agents to facilitate knowledge
reuse through concepts already defined in other ontologies, as
well as support for formal logic and logical reasoning [12].
Thus, it is beneficial to use the features of the ontology-
driven approach in the case of using ontologies at all phases
of development.

To automate the development stages, traditional design
and development methods are being replaced by methods that
facilitate the implementation of an approach with extensive
use of Computer-Aided Design (CAD) and Computer-Aided
Programming (CAP) tools. Such tools support application
prototyping.

CAD tools are are being used to automate processes aimed
at creating and maintaining various ontological and graphical
representations during of application systems design. In turn,
CAP tools are being used to simplify the task of programming
agents. Rather than directly coding up executable programs
for software agents, the developer provides an ontology with
a problem domain and service specification allowing code
generation algorithms to create correct code functions, data
structures, and other elements of the specified programming
language. The integrating efforts of CAD and CAP tools
will bring automated program-code generation directly from
design-phase specifications. CAD and CAP tools can also be
distributed together with a middleware providing an integrated
environment for building/deploying and managing applica-
tions, such as in the OpenIoT middleware [3].

The design phase is reduced to creating a specification of
a problem domain and services as an RDF/OWL description.
There is a large number of works aimed at solving CAD
problems at the design phase for ontology-driven software
development [12][13]. For example, ontology development
tools, such as Protégé [14] and OWL-S Editor [15] allow
users to create these specifications and provide guidance to
find mistakes based on validation mechanisms. These tools
serve as rapid prototyping environments, in which ontology
designers can instantly create individuals of their ontology and
experiment with semantic restrictions, and enable developers
to visualize descriptions in a graphical manner are even able
to generate user interfaces that can be further customized for
knowledge acquisition in a particular domain.

At the implementation phase, which involves the use of
programming languages to encode the resulting design so-
lutions, software agents from the design specifications and
models are created. At this phase, solving the CAP tool [16]
is not enough for an automated task of ontology-driven pro-
gramming of agents. Existing solutions for ontology-driven
software development solve this problem in part by mapping
OWL classes, their instances and properties to programming
language classes, their objects, and fields, respectively [14].

Obviously, this approach is difficult both for practical
implementation and for use in the case of statically typed
compiled programming languages. However, it is convenient
for dynamically typed interpreted and object-oriented pro-
gramming languages. This approach is primarily intended for
creating data structures and elements of the object model of
an agent problem domain. However, it does not allow creating
methods, functions and other elements of internal program
logic. One of the examples of this approach is SmartSlog
CodeGen, which is part of the SmatSlog ontology library
designed for creating SmS applications. Its mechanisms allow
creating data structures for particular OWL ontology entities.

A solution is proposed, aimed at creating the program code
generator for agents based on ontology using object-oriented
programming languages (e.g., C++, Java, Python). The general
scheme of the program code generation process is shown in
Figure 1. The main features of the proposed code generation
scheme are: (i) use as input ontologies, together with OWL
domain ontologies, service ontologies for SmS based on the
OWL-S ontology [15]; (ii) generation, in addition to data
structures, elements of the program logic of agent interaction
based on the API of the SmS middleware for the purpose of
constructing and delivering services, as well as an object model
of the domain.

Figure 1. The general scheme of automated code generation process of
multi-agent interaction

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-811-2

UBICOMM 2020 : The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

An agent developer provides a problem domain specifi-
cation as an OWL description and a specification of SmS
services as an OWL-S-based description. The generator uses
a static pattern of templates and handlers. Code templates
are ”pre-code” of data structures, classes and functions that
implement OWL-S-based and OWL ontologies entities and
their properties.Handlers can transform one or more templates
into the final code replacing specialized tags with names and
elements taken from ontologies. The code can be generated
for several agents, depending on the agents involved in con-
structing and delivering the services described with the OWL-
S-based specification. The transformation should occur during
ontology RDF graph traversal based on Jena OWL framework.
Jena constructs a meta-model to represent the graph. The
generator should traverse this model comprehensively, and
those nodes are visited that a handler needs to transform its
templates into final code.

III.ONTOLOGICAL SEMANTIC SERVICES MODEL

SmS allow effectively organizing the interaction of its
participants and their sharing of information [1]. In particular,
a virtual digital image is created for each participant, which is
semantically linked with other participants and resources. The
service ontology describes the context of the environment and
its participants, interacting agents and the resources involved.
The ontological model is created on the basis of a conceptual
description of semantic web services using models for organiz-
ing information-driven interaction of agents, defined within the
SmS approach. Due to such a unified ontological description
of service construction processes, an increase in the quality
of service design is achieved. Services become suitable for
automated search, composition, construction and delivery to
users by describing the interface (service purpose, inputs and
outputs, etc.) and the processes that occur.

The World Wide Web Consortium (W3C) has introduced
an ontology built on top of OWL to describe semantic web
services. This ontology is called OWL-S [17]. The main
purpose of OWL-S is to allow users to discover, invoke,
compose, and monitor with a high degree of automation Web
resources offering particular services and having particular
properties,using a minimalistic approach for describing seman-
tic Web Services. OWL-S describes the characteristics of a
service by using three top-level concepts: a service profile, a
service model, and a service grounding.

The purpose of a service profile is to define a service in
a uniform way for future use, detailing the content of queries
and conditions under which specific results will occur, and, if
necessary, step-by-step processes leading to these results. The
process model describes how to access a service and what
happens when the service is executed. The service process
model describes a service as a collection of atomic and
composite processes. An atomic process corresponds to a ”one-
step” procedure that takes input parameters, processes them,
and then returns a result. Composite processes decompose into
other processes; by defining their decomposition using control
constructs (for example, If-Then-Else, Split, Repeat-While).
The service grounding defines how the service is invoked
by the consumer of the service, including the communication
protocol and message format. In the case of the M3 archi-
tecture [18], the service foundation ontology is an optional
part, since the interaction of agents is organized using the
Smart Space Access Protocol (SSAP) protocol, which does

not require a separate description.

Figure 2. Ontological model of semantic service in SmS.

A unified ontological description of the service seman-
tics for SmS is proposed, containing a set of terminological
axioms (see Figure 2). A service profile describes a service
using Inputs, Outputs, Preconditions, Effects (IOPEs). The
has output property is used to represent the output from a
service resource to a consumer. If a service needs to specify
input data for processing by a resource or control action in
the form of notifications, then this is determined using the
has input property.

The initial state of the shared information storage for
initializing the process of constructing a service is set using
a precondition (has precondition). The desired state of the
storage is determined using the resulting condition (has result
). Preconditions and results are specified using expressions.
There are several possible approaches that allow using rules
and logic for the RDF/OWL view [19]. The main idea is to
treat expressions as literals using Protocol and RDF Query
Language (SPARQL) expressions, which are defined using the
SPARQL-Expression class.

The has category property describes service categories
based on SmS service categories. Categories are determined
based on criteria, such as impact, underlying resource, way of
integration, function performed. The category defines a typical
model of information-driven interaction of agents [1].

OWL-S ontology is very flexible, but OWL-S solutions
are not enough to use it fully to describe the semantics of
a SmS service. In order to take into account the priorities
and preferences of users (if the customer is a human being)
providing the personification of a service, the existing service
profile is expanded by the has consumer property and its
UserProfile class object, which is described both in terms
of user contextual information. Such information reflects the
state of the user’s computing environment (has context), as
well as his preferences, interests, personal information rep-
resented by part of the Friend of a Friend (FOAF) ontology
(has personinformation). The OWL-S ontology also does not
support a multi-agent approach for describing a service process
model. The vision of agents in the OWL-S ontology is reduced:
agents are considered primarily as consumers or “seekers”
of services. At the same time, the process of constructing a
service in the SmS approach is a process of interaction of
several agents.

The service process ontology is extended by introduc-
ing the ServiceAgentsModel class to describe the process of

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-811-2

UBICOMM 2020 : The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

constructing services for SmS. The process is described by
a model of information-driven interaction of agents, which
is determined depending on the service category. The inter-
action of each agent (KnowledgeProccessor), represented as
an extension of the participant’s class, is determined by its
functional role (has role property) performed in the model.
A functional role is an abstract description of the functional
properties of an agent. The role of the agent defines the general
principles of implementation of the individual internal logic of
the agent, as well as the principles of interaction with other
agents. The logic of a separate agent leads to the interaction of
agents during the construction of a service based on interaction
patterns (AgentsPattern) described using such architectural
abstractions as Provider-Consumer (PC), Pipe, Tree, Flow. The
process of interaction between agents can consist of several
patterns presented in a certain sequence (AgentsPatternBag).

IV.AUTOMATING PROGRAMMING OF MULTI-AGENT
INTERACTION BASED ON CODE GENERATION

The automation of programming processes for agents in-
volved in constructing and delivering services is achieved
through the use of a program code generator. As a result of
the design stage of SmS application, the developer has a set of
ontologies, which are divided into two groups: (1) the domain
ontology and (2) the service ontology for SmS based on OWL-
S. Ontologies provide the necessary semantics that are used to
generate code in object-oriented programming languages. The
generator uses algorithms for automating agent programming
processes to implement the structures of the object model
and for the agents interaction. The code generation procedure
for an agent data object model takes the domain ontology as
an input parameter. The code generation procedure for agent
interaction processes takes as an input parameter the service
ontology to generate blocks of agent program code.

The object model merges data and functionality into an
abstract variable type – an object. The object model provides
a more realistic representation of objects that the end user can
more easily understand. While an ontology structure contains
definitions of concepts (classes) and relationship between
concepts and attributes (properties, aspects, parameters), an
object model uses classes to represent objects and functions
to model relationships of objects and the attributes. The
similarity of concepts in an ontology with an object model
determines the applicability of an object-oriented approach
to ontology modeling. However, ontology represents a more
richer information model than Java objects by supporting
such distinctive features as inheritance of properties, sym-
metric/transitive/inverse properties, full multiple inheritances
among classes and properties [20].

The code generation procedure for an agent data object
model is presented in the flowchart (see Figure. 3). he main
idea of the ontology-object mapping is to create a set of classes
and objects in such a way that each ontological class with their
instances, properties, slots, and facets has its equivalent in the
structures of an object-oriented programming language.

Constructing SmS service can be viewed as a set of calls
to agents’ software functions. The service ontology for SmS
based on OWL-S provides a declarative, computer-interpreted
description that includes the semantics of the IOPEs model that
must be specified for each process. The process entity can be
used to generate procedures, functions and other elements of
the target programming language that implement information-

Figure 3. The code generation procedure for an agent data object model.

driven interaction and the necessary internal logic of agents.
The code generation procedure for agent interaction processes
in the flowchart is shown in Figure 4.

Instances of the AtomicProcces class are used to generate
function code. The rdf:ID attribute of the AtomicProcess class
defines the function name. Each has input property with rdf:ID
attribute corresponds to the input parameters of the function.
The type of the input parameter can be obtained by extracting
at the parameter type property.

The functions internal logic is implemented using SPARQL
queries and sets of program statements. The has precondition
property with a SPARQL expression defines a precondition
code block that describes the initial state of the information
storage. A precondition block is required to initialize the
service construction. A code block is generated that calls the
API middleware (SmS platform) to execute a SPARQL query
(usually an ASK query) and verifies the query result using
an ”if-then-else” statement. A similar generation process is
performed for a code block representing a result condition
(has result) — a set of actions performed at the end of a
function call.

The has output property with the parameter type property
corresponds to the output parameter and defines the function
return value. The required data types (string, unsignedLong,
etc.) are described using an XML Schema Definition (XSD)
schema. Elements of the object model can be used as input and
output parameters. The CompositeProcess class, by analogy
with a composite process, defines a function that calls other
functions within itself, which are described by CompositePro-
cess or AtomicProcess entities. In this case, calls to internal
functions can be specified using control constructs (If-Then-
Else, Repeat-While, etc.) which can be transformed into the
corresponding statements of the programming language.

An instance of the ServiceAgentsModel class is used by
agents to define their role in the process of constructing
and delivering services, as well as a method of information-
driven interaction based on the publish subscribe model. For
this purpose, in advance, in the code of each agent a block
is formed with the necessary subscription operations using
internal functions, handlers, and API functions. Each sub-
scription operation query is specified by a SPARQL query
that can be obtained from the has subprecondition property,
where a subscription expression is specified using SPARQL
queries that use domain classes and properties. In addition,

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-811-2

UBICOMM 2020 : The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 4. The code generation procedure for agent interaction processes.

subscription operations can be defined based on the execution
results of agent processes defined in the Result classes. Each
such class defines what domain changes are produced during
the execution of an agent. During the execution of agents,
their self-organization can occur as each agent is aware of its
purpose in the interaction model based on interaction patterns
(AgentsPattern class).

V. EFFORT ESTIMATION

Efficiency is the relationship between the results achieved,
and the resources used. Efficiency of the proposed solutions
is determined on the basis of effort estimation in automated
development of semantic services through the use of the unified
service ontology and the generator of the agent interaction
program code. For effort estimation, any unit of measurement
of the duration of ongoing processes can be used. The effort
in semantic service development are considered in two phases:
design and implementation.

The main stages in a design phase of multi-agent software
systems are:

1) defining the roles of agents and their functional
description;

2) conceptual modelling of inter-role interaction based
on the selected protocol;

3) modelling the interaction between the user and the
system, and defining the access interface;

4) creating the code structure for each agent and the
system as a whole.

The use of the proposed solutions by the developer makes
it possible to fix the obtained design decisions (agent roles,
protocol and model of agent interaction, service interface)
while directly creating an ontological description of services
in unified terms. It is known that the use of ontologies at
the design phase increases the developer’s efforts to create
design solutions. However, some additional efforts can be
minimized, while others provide additional opportunities at
the next development phases (e.g., programming automation,
agents self-organization). One way to minimize efforts is to
use existing computer-aided design tools (such as Protégé),
which provide a software environment for rapid prototyping.

Additional design efforts allow obtaining uniform service
ontologies that define the interaction interface and describe

the execution semantics. With this unified design approach,
services across domains can interact with each other indepen-
dently of the computing environment. The use of the solutions
is not limited to the design phase. The service ontologies
are used to automate further service programming processes
(creating an object model, code functions).

TABLE I. PROPORTION OF GENERATED CODE FOR SERVICES.

Programming effort is investigated based on the ratio of the
total number of lines of agent source code to that automatically
generated using the proposed implementation of the program
code generator for the following service: user presence and
activity service (Sprs) and historical data enrichment service
(Senr). Table I provides the percentage of generated program
code for agents involved in the implementation of services.
The program code, regardless of the role of the software agent,
consists of the following blocks:

1) structures of the object data model and methods for
working with them;

2) information-driven interaction based on supported
operations for middleware;

3) internal logic, including local processing of general
information.

The average share of generated program code was 23.4%,
with the greatest results falling on the “information-driven
interaction” block. For the object data model, the generator
also shows high rates, the average coverage percentage of the
corresponding source code with the generated code is 68%.

Figure 5. Time to generate program code for service implementations.

The process of programming services imposes additional
efforts associated with the time spent on the process of generat-
ing program code. The generator accepts the developed service

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-811-2

UBICOMM 2020 : The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

ontologies and the domain ontology as input parameters. The
generation time of the program code depends on ontological
metrics (cyclomatic complexity, vocabulary size) that charac-
terize the complexity of traversing the ontology meta-model
(ontological graph). Experiments have shown (see Figure 5)
that when processing the ontology for the user presence and
activity service (Sprs), which has the highest metrics from the
developed ontologies, the time for traversing the meta-model
and generating code does not exceed 12 s.

TABLE II. QUALITY METRICS OF GENERATED CODE.

Metric Value
Total number of generated code lines 49
Cyclomatic complexity 4
Number of distinct operators: η1 13
Number of distinct operands: η2 17
Total number of occurrences of operators: N1 26
Total number of occurrences of operands: N2 41
Halstead vocabulary: η = η1 + η2 30
Halstead program length: N = N1 +N2 67
Program volume: V = N ∗ log2 η 406
Program difficulty: D =

η1
2 ∗ N2

η2
15.67

Programming effort: E = D ∗ V 6362
Programming time (seconds): T = E

18 353.5

The quality of the generated code is investigated on the
basis of calculating and evaluating the quality metrics of the
code. The following quality metrics of the generated program
code are measured: cyclomatic complexity and Halstead’s met-
rics [21]. The measured metrics made it possible to estimate:
the complexity of maintaining the generated code, efforts
to create the code manually. Table II shows the measured
metrics for one simple process of Sprs service. The cyclomatic
complexity is 4, the estimated time to create such a code
manually is 353.5 seconds.

VI.CONCLUSION

This paper proposed a solution to the problem of sim-
plifying the development and maintenance of smart space
applications by creating tools for automated code generation
of multi-agent interaction for constructing semantic services.
The general scheme of automated code generation process
of multi-agent interaction for constructing semantic services
was introduced. By expanding the OWL-S ontology, a unified
ontological description of the semantics of service constructing
processes was introduced. The code generation procedures
for agent data object model and interaction processes were
presented. The efforts in automated development of semantic
services were investigated based on estimation of time to
generate and the quality metrics of generated code.

ACKNOWLEDGMENT

The reported research study is supported by RFBR (re-
search project # 19-07-01027). The work is implemented
within the Government Program of Flagship University Devel-
opment for Petrozavodsk State University (PetrSU) in 2017–
2021.

REFERENCES

[1] D. G. Korzun, S. I. Balandin, A. M. Kashevnik, A. V. Smirnov, and A. V.
Gurtov, “Smart spaces-based application development: M3 architecture,
design principles, use cases, and evaluation,” International Journal of

Embedded and Real-Time Communication Systems (IJERTCS), vol. 8,
no. 2, 2017, pp. 66–100.

[2] D. Korzun, “On the smart spaces approach to semantic-driven design
of service-oriented information systems,” in International Baltic Con-
ference on Databases and Information Systems. Springer, 2016, pp.
181–195.

[3] J. Soldatos et al., “Openiot: Open source internet-of-things in the cloud,”
in Interoperability and Open-Source Solutions for the Internet of Things.
Springer International Publishing, 2015, pp. 13–25.

[4] J. Guia, V. G. Soares, and J. Bernardino, “Graph databases: Neo4j
analysis.” in ICEIS (1), 2017, pp. 351–356.

[5] L. Roffia et al., “Dynamic linked data: A sparql event processing
architecture,” Future Internet, vol. 10, no. 4, 2018, p. 36.

[6] J. Lanza et al., “A proof-of-concept for semantically interoperable
federation of iot experimentation facilities,” Sensors, vol. 16, no. 7,
2016, p. 1006.

[7] I. Galov, A. Lomov, and D. Korzun, “Design of semantic information
broker for localized computing environments in the Internet of Things,”
in Proc. 17th Conf. of Open Innovations Association FRUCT. IEEE,
Apr. 2015, pp. 36–43.

[8] D. Korzun, S. Yalovitsyna, and V. Volokhova, “Smart services as
cultural and historical heritage information assistance for museum
visitors and personnel,” Baltic Journal of Modern Computing, vol. 6,
no. 4, 2018, pp. 418–433.

[9] S. A. Marchenkov, A. S. Vdovenko, and D. G. Korzun, “Enhancing
the opportunities of collaborative work in an intelligent room using
e-tourism services,” Trudy SPIIRAN, vol. 50, 2017, pp. 165–189.

[10] A. Gyrard, M. Serrano, and G. A. Atemezing, “Semantic web method-
ologies, best practices and ontology engineering applied to internet of
things,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT), 2015, pp. 412–417.

[11] P. Kujur and B. Chhetri, “Evolution of world wide web: Journey from
web 1.0 to web 4.0,” International Journal of Computer Science and
Technology, vol. 6, Jan. 2015.

[12] C. W. Yang, V. Dubinin, and V. Vyatkin, “Ontology driven approach
to generate distributed automation control from substation automation
design,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2,
Feb. 2017, pp. 668–679.

[13] S. Isotani, I. I. Bittencourt, E. F. Barbosa, D. Dermeval, and R. O. A.
Paiva, “Ontology driven software engineering: a review of challenges
and opportunities,” IEEE Latin America Transactions, vol. 13, no. 3,
2015, pp. 863–869.

[14] H. Knublauch, “Ontology-driven software development in the context of
the semantic web: An example scenario with Protege/OWL,” in 1st In-
ternational workshop on the model-driven semantic web (MDSW2004),
2004, pp. 381–401.

[15] D. Elenius et al., “The owl-s editor–a development tool for semantic
web services,” in European Semantic Web Conference. Springer, 2005,
pp. 78–92.

[16] A. Lomov, “Ontology-based kp development for smart-m3 applica-
tions,” in 2013 13th Conference of Open Innovations Association
(FRUCT). IEEE, 2013, pp. 94–100.

[17] D. Martin et al., “Bringing semantics to web services with owl-s,” World
Wide Web, vol. 10, no. 3, 2007, pp. 243–277.

[18] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3 information
sharing platform,” in Proc. IEEE Symp. Computers and Communica-
tions (ISCC’10). IEEE Computer Society, Jun. 2010, pp. 1041–1046.

[19] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical owl-dl reasoner,” Journal of Web Semantics, vol. 5, no. 2,
2007, pp. 51–53.

[20] D. N. Batanov and W. Vongdoiwang, Using Ontologies to Create
Object Model for Object-Oriented Software Engineering. Boston, MA:
Springer US, 2007, pp. 461–487.

[21] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai, “Software
complexity analysis using halstead metrics,” in 2017 International
Conference on Trends in Electronics and Informatics (ICEI). IEEE,
2017, pp. 1109–1113.

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-811-2

UBICOMM 2020 : The Fourteenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

