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Abstract—Recent progress in Sensorics and Internet of Things
(IoT) enables real-time data analytics based on data from multiple
sensors covering the target industrial production system and
its manufacturing processes. Diagnostics and prognosis can be
implemented using the neural network approach on top of
vibration and other sensed data. Neural network methods lead to
high accuracy in fault detection and fault evolution. Nevertheless,
transferring a neural network model to edge devices leads to
performance issues and platform limitations. In this paper, we
discuss the edge computing opportunities for diagnostics of
industrial rotary machinery using well-known neural network
methods.
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I. INTRODUCTION

The recent progress in Sensorics and Internet of Things
(IoT) enables real-time data analytics for industrial sys-
tems [1]. The analytics—diagnostics and prognosis—is based
on data coming in from multiple sensors [2] (i.e., multi-
parametric monitoring). Many sensors cover the target indus-
trial production system to monitor its technical state, utilization
conditions, and underlying manufacturing processes.

In this paper, we focus on the fault diagnostics problem
for industrial rotary machinery. Mechanical parts (e.g., rolling
bearings and electric motor rotors) are monitored in real-
time [3]. First, we study the problem of applying the Con-
volutional Neural Network (CNN) methods to detect faults
and to evaluate fault characteristics [4]. Second, we study how
low-capacity edge IoT devices can be useful to perform data
analysis in real-time [5].

Diagnostics and prognosis can be implemented using the
CNN methods on top of vibration and other sensed data [6].
The CNN methods lead to high accuracy in fault detection
and evaluation [7]. The topical practical problem in industrial
rotary machinery fault diagnosis is bearing fault detection. The
diagnostics could be done by analysis of vibration data from
sensors installed at the unit under monitoring. We consider the
case when a CNN is applied for bearing fault classification,
based on raw vibration signal analysis.

To obtain diagnostics results in real-time the network la-
tency and traffic volume should be reduced in transferring data
to the processing center. Data processing must be implemented
near the machinery in real-time. We consider an industrial
monitoring system with edge CNN computing devices. Flow
data from the sensors go to an edge CNN computing device
either directly through wired/wireless interfaces or through
aggregator IoT devices. Deploying a CNN model to edge
devices has platform limitations and leads to the performance
issues. We experiment with the performance estimation of such
edge device. We show that low-capacity edge IoT devices have
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enough performance to make data analysis based on CNN in
industrial monitoring tasks.

The rest of the paper is organized as follows. Section II
considers existing approaches to rotating machinery fault di-
agnosis: Condition Monitoring (CM) and Prognostic Health
Monitoring (PHM). Section III defines the problem of vibra-
tion diagnostics in rotary machinery. Section IV shows the
possible methods to solve the problem of vibration diagnostics
in rotary machinery. Section V presents positive results of our
feasibility study on the applicability. Section VI summarizes
the results of this study.

II. RELATED WORK

There are two approaches to rotating machinery fault
diagnosis: CM and PHM.

The first technique is a condition monitoring using feature
extraction from the raw signal. In the study [3], there is a
method for CM based on feature extraction from the raw
signal. The raw signal is divided into frames, and the set of
features from each frame is extracted. The feature set for each
frame includes time, frequency, and time-frequency domain
features. The extracted features are used for machine learning
algorithms to classify the rolling bearing condition state.

In [8] Remaining Useful Life (RUL) criterion is pro-
posed to estimate bearing condition in the future. The pro-
posed method includes filtering the raw signals using Discrete
Wavelet Transform (DWT), then extracting time, frequency,
and time-frequency domain features. An autoregressive model
is then established for each of the extracted features. The
optimum features are then selected using a kernel-based Ex-
treme Learning Machine (ELM) algorithm and Performance
Evaluation Criterion (PEC). In the training stage of the method,
the selected features are used as inputs to the PHM algorithm,
while the RUL is used as the target vector. A degradation
model is obtained after the training stage, which is used
together with the testing input features to predict the fractional
RUL of the test data.

Another approach is a raw signal analysis using Deep
Learning (DL) algorithms. In [6], CNN is used to evaluate
the rolling bearing fault type. The vibration signal presented
as a vector of N-samples is selected as an input for CNN.
Plenty of convolution layers extracts features from the raw
signal that is analyzed by fully-connected layers. The output
of the proposed model presents an M-length vector, where M
— is the number of condition states. Additionally, data fusing
is applied to evaluate more performance from the proposed
method. In this case, the input data presented as a set of
vectors: vibration signal vector, and two-phase motor current
vector, that spins the shaft with installed bearing.

Palossi et al. demonstrated a navigation engine for au-
tonomous nano-drones capable of closed-loop end-to-end
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CNN-based visual navigation [9]. They deployed DroNet
neural network to the GAPS processor and achieved power
consumption of CNN processing of only 64 mW on average.

In [10], a real-time fault detection system called LiReD was
implemented for an industrial robot manipulator. The system
consisted of a Raspberry Pi single-board computer and a piezo-
electric accelerometer. The Long Short-Term Memory (LSTM)
recurrent neural network was used to analyze the vibration sig-
nal with the aim of vacuum ejector fault detection. The LSTM-
based fault detection model was compared with k-Nearest
Neighbor with Dynamic Time Warping (k-NN+DTW), Ran-
dom Forest (RF), and Support Vector Machine (SVM). The
LSTM-based fault detection model showed the best perfor-
mance, among others. The authors note that more complex
analysis and more complex neural networks will require more
efficient hardware, and retraining and compression techniques
that reduce the size of the model but increase or maintain its
performance.

III.  VIBRATION DIAGNOSTICS IN ROTARY MACHINERY

To keep industrial machinery in appropriate condition, the
methods of technical condition monitoring (diagnostics) and
predictive maintenance are applied. The diagnostics are based
on the current machinery state by obtaining signals from var-
ious sensors. The predictive maintenance aims at forecasting
behavior mechanisms at a certain point in time with the current
state. Both of these methods found application in the Industrial
Internet of Things (IIoT) diagnostic systems. The utilization
of condition diagnostics and predictive maintenance services
establishes an effective equipment machinery operation mode
and personnel timetable.

A. Condition monitoring for rolling bearing

Rotary machinery and their mechanical parts, such as
bearings and electric motor rotors, must be monitored online.
CM with offline-based systems performs post-processing oper-
ations on a remote server. Hence the results of the diagnostics
could not be obtained instantly. To get this result near the
machinery online, the special methods and hardware should
be applied. This possibility could be obtained by using edge
computing devices. These devices are portable apparatus in-
stalled near the machinery for online condition diagnostics.
The raw data from various sensors, installed on an object, are
collected by the edge device for analysis. The flow-based data,
in case of continuous sensing and processing of different data
types, are performed for:

e mechanical parts vibration, position, speed;
° electric motor current;

° temperature;

e  acoustic signals.

The methods need to analyze data from various sensors
by applying special techniques to increase performance on an
edge computing device. Especially for bearings, the condition
state could be obtained by a vibration signal analysis. Some ap-
proaches include envelope spectrum analysis with Fast Fourier
Transform (FFT) and neural network methods with feature
extraction. The vibration signal and its spectrum includes the
most important information about bearing condition state. For
example, the vibration signal, in case of inner ring defect,
presents a normal noise, modulated by hight order rotary speed
harmonics. When developing a mobile device for CM, the
selected hardware must provide an effective implementation of
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the diagnostic method through the use of dedicated hardware
processing units, such as Digital Signal Processing (DSP)
unit and neural network accelerator. Hence, in this work,
edge computing opportunities were applied to rolling bearing
diagnosticians with the proposed model based on CNN.

B. The dataset description

The big dataset should be used to train a CNN. For online
condition diagnostic, it is important to know a bearing state:
“healthy” or ”damaged”. The causes and types of damages
could be studied with server-class computers. To evaluate the
applied model performance, the Paderborn University Bearing
Dataset was selected as a dataset for train and test data [3].
The dataset consists of MatLab files with measurements from
various sensors, such as accelerometer, current sensor, torque
sensor, and thermometer. The experimental dataset was ob-
tained using a specific test rig, see Figure 1, which was
designed and operated at the Chair of Design and Drive
Technology, Paderborn University.

The test rig is a modular system to ensure the flexible
use of different defects in an electrically driven mechanical
drive train. The test rig consists of several modules: an electric
motor (1), a torque-measurement shaft (2), a rolling bearing
test module (3), a flywheel (4), and a load motor (5).

The ball bearings with different types of damage are
mounted in the bearing test module to generate the experi-
mental data. For the generation of the measurement data, the
current signals of the electric motor are recorded. The vibration
and current signal were measured with a 64 kHz sample rate
under different conditions for 32 bearings with four-digit code.

The dataset provides four types of bearings, described in
Table I: “healthy” — with no damages, “IR” — inner ring defect,
“OR” — outer ring defect, “IR+OR” — both inner and outer ring
defects.

TABLE I. THE DATASET BEARINGS.

Healthy "IR” "OR” "IR+OR”
K001 KAO1 KI01 KB23
K002 KAO03 K103 KB24
K003 KA04  KIO4 KB27
K004 KAO05  KIO5
K005 KAO06  KIO7
K006 KA07  KIO8

KAO8  KIl14

KA09  KII16

KA15  KI17

KAl6  KII8

KA22  KI21

KA30

According to the nature of the defect, damaged bearings
belong to two main groups, which are described in Table II:
artificially damaged bearings and bearings with real damages.
Artificial damages were made by electric discharge machining,
drilling, and manual electric engraving with a different extent.
Real damages were generated by accelerated lifetime tests.

Each bearing used to run under different speed, torque and
radial load — 20 measurements of 4 seconds each for each
operating condition, saved as a MatLab file (80 in total) with a
name consisting of the code of the operating condition and the
four-digit, bearing code (e.g., N15_MO0O7_F10_KAO1_1.mat).

IV. EDGE-CENTRIC NEURAL NETWORK COMPUTING

In this section, we suggest the concept of an industrial
monitoring system and describe its prototype used in this
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Figure 1. Test rig setup: (1) — electric motor, (2) — torque-measurement shaft, (3) — rolling bearing test module, (4) — flywheel, (5) — load motor [3].

TABLE II. DAMAGED BEARINGS TYPES.

Artificially damaged ~— With real damages

KAO1 KA04
KAO03 KA15
KAO05 KAl6
KA06 KA22
KA07 KA30
KAO08 KB23
KA09 KB24
KI01 KB27
K103 K104
KI05 KI14
K107 KI16
K108 K117
KI18
K121

paper. Also, we provide a description of CNN for bearings fault
detection, training and validation datasets, and used software
tools and frameworks.

A. Edge-Centric Neural Network Computing Device

The rotating machinery fault diagnosis as a part of the
industrial monitoring system could extract information from
various sensors to make desitions about technical condition of
equipment. Such sensors could be accelerometers, encoders,
thermosensors, current and acoustic sensors. The data from
sensors could flow to neural network computing device di-
rectly through wired or wireless interfaces or through aggre-
gation devices. In our experiment, we simulate dataflow from
sensors by a personal computer reading files from bearing
vibration signal dataset and send frames of this signal via
Universal Asynchronous Receiver-Transmitter (UART) to the
neural network computing device. As such a device, we use
Kendryte K210 system-on-chip, which has build-in dual-core
Central Processing Unit (CPU) to execute a control algorithm,
peripheral interfaces to interact with different sensors and
communication modules, including digital accelerometers and
wireless adapters, and CNN hardware accelerator unit designed
for efficient CNN inference [11]. These properties make it well
suited for IoT applications. And as we show in Section V, its
performance enough for edge-centric rotating machinery fault
diagnosis. However, this device has the next limitations that
should be considered during application development. First, the
built-in static random access memory (SRAM) is limited down
to 8 MB, two of which are dedicated to the CNN accelerator.
This means that neural network runtime data must not exceed 2
MB and executable code of control algorithm along with neural
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network weights should not exceed 6 MB. For sequential CNN,
the runtime data could be estimated as a maximum sum of
feature maps of two sequential layers. Second, as this device
designed to be low-power and mobile, its performance is
restricted, and standard CPU frequency is reduced down to 400
MHz. To reach maximum performance, most of the operations
should be expressed through convolution to be processed by
the CNN hardware accelerator.

Below we describe CNN developed to perform rotating
machinery fault diagnosis running on the edge neural network
computing device.

B. CNN for vibration signal based bearings fault detection

In this paper, we use the CNN for vibration signal based
bearings fault detection. The input data of purposed CNN is
raw vibration signal from the accelerometer installed close to
the bearing. The CNN is composed of the sequence of three
1-D convolutional and pooling layers, followed by two fully-
connected layers. The last layer consists of three nodes, cor-
responding to three detected classes: healthy bearing, damage
of the outer ring, and damage of the inner ring. The concept
of application of CNN to vibration signal classification, as a
special case of time series classification, consists of follows.

The first convolutional layer applies multiple filters to the
input 1-D tensor. Each filter has an individual convolution
kernel for each channel of the input tensor. As the input of
the first layer is only a vibration signal, input tensor has only
one channel, so each filter has one kernel and applies one
convolution to the input tensor. As there are multiple filters in
the layer, this produces multiple outputs. In the case of a 2-D
convolutional layer applied to spatial data (such as an image),
the outputs are also is two-dimensional and represent spatial
feature distribution, so the set of these outputs is referred
to as a feature map, where each channel corresponds to the
certain feature. In the case of raw vibration signal processing,
we convolve signal (1-D vector) along the time axis by 1-D
convolutions and obtain a set of 1-D vectors represented time
distribution of features. We will refer to this set as a feature
map and distinguish individual 1-D vector as a channel, to
preserve common terminology.

Each convolution could be treated as filtering, or as a cross-
correlation between raw signal and certain pattern. The form
of filter kernel or cross-correlation pattern is defined during
the training process. This allows CNN to automatically learn
and extract features that best describe the data.

After the convolutional layer, the pooling layer is applied.
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It performs down-sampling of the feature map. We use max-
pooling for all layers. It allows us to preserve the most
important information and significantly reduce feature map
size and computation amount.

The next two couple of convolutional and max-pooling
layers performs extraction features of an ever-higher level of
abstraction. Finally, the last two fully-connected layers perform
classification based on the extracted features.

The hyperparameters of CNN, such as the number of
layers, number of units in fully-connected layers, number
of filters and size of kernels in convolutional layers, have
been selected through manual search and tuning with the aim
to maximize accuracy on the validation set and prevent the
overfitting.

The input of CNN is the 1-D tensor of 8192 samples of
normalized vibration signal recorded at 64 kHz sample rate,
which equals to 128 ms. Considering that the lowest rotation
speed is 900 rpm, the full revolution takes approximately 67 ms
or less. Thus, 128 ms should be sufficient to detect distinctive
vibration produced by defects. The output of CNN is the 1-D
tensor of three elements corresponded to the probabilities of
detected classes. To train CNN we use Adam optimizer [12]
with learning rate 0.00001 and categorical cross-entropy loss
function. The number of training epoch is determined during
the training process by monitoring the validation loss and when
it has stopped decreasing the training process is terminated.
The detailed description of used CNN is shown in Table III.

TABLE III. DESCRIPTION OF CNN HYPERPARAMETERS.

Layer Shape Parameters
Input (8192)
1D Convolutional Layer (8192, 2) Activation ReLU
Filters 2
Kernel Size 64
Stride 1
Padding Same
1D Pooling Layer (512, 2) Pool size 16
1D Convolutional Layer (512, 12) Activation ReLU
Filters 12
Kernel Size 32
Stride 1
Padding Same
1D Pooling Layer 32, 12) Pool size 16
1D Convolutional Layer (32, 32) Activation ReLU
Filters 32
Kernel Size 16
Stride 1
Padding Same
1D Pooling Layer (2, 32) Pool size 16
Fully-connected layer (150) Activation Sigmoid
Units 150
Fully-connected layer 3) Activation Softmax
Units 3

For the training and evaluation of CNN, we use Paderborn
University Dataset [3]. We select five bearings for each class.
For outer ring damage and inner ring damage classes, the bear-
ings with real damages have been chosen. The categorization
of the dataset is given in Table IV. On the basis that, in the
practical application, the monitored physical objects (bearings)
differ from ones used in the training process, the validation
split has been made by bearing’s name rather than random
examples splitting. We split the dataset into two parts: training
set (set 2-5 in Table IV) and validation set (set 1 in Table IV).
As recorded signal length in each file in the used dataset is
4 seconds, but CNN input length is 128 ms, at each training
step a random frame of 128 ms is selected from random file
from the dataset.
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TABLE IV. CATEGORIZATION OF DATASET.

Set No. Healthy Outer ring damage  Inner ring damage
(Class 1) (Class 2) (Class 3)

1 K001 KA04 KI04

2 K002 KA15 K114

3 K003 KA16 KI16

4 K004 KA22 KI18

5 K005 KA30 KI21

To implement CNN, we use Keras with TensorFlow back-
end. To deploy CNN to Kendryte K210 system-on-chip, we
convert our CNN to the TensorFlow Lite FlatBuffer file
(.tflite) [13], and next, we compile it by nncase utility [14]
to KModel format, which could be executed on the Kendryte
K210 with hardware acceleration of convolution.

V. FEASIBILITY STUDY

In this section, to test the applicability of proposed CNN for
bearings fault detection and classification, we train and test on
Paderborn University Bearing Dataset [3]. We analyze obtained
learning curves and confusion matrices. To test the portability
of proposed CNN to edge devices, we deploy trained CNN to
Kendryte K210 system-on-chip and evaluate its performance.

A. CNN training and testing

The set of training trials with fixed hyperparameters and
random weights initialization has been conducted and the best
one had been selected. The learning curves of CNN accuracy
and loss on the training and validation datasets are shown in
Figures 2 and 3. The result shows that after approximately 60
training epochs the validation loss is steady at the same level,
so the training process had been terminated. The validation
accuracy steady at 88%.

CNN accuracy
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Figure 2. Training and validation accuracy curves of CNN.

The confusion matrices on training and validation data are
shown in Figures 4 and 5, respectively. It could be noticed that
obtained CNN shows the high classification accuracy both on
training and validation data. This result allows us to use CNN
not only for fault detection tasks, but also for determine the
fault type.

B. CNN performance evaluation on the Edge Device

After CNN had been trained used Keras framework with
TensorFlow backend, it had been deployed to Kendryte K210
system-on-chip. Obtained CNN requires 23 660 bytes to store
its structure and weights as well as 81 920 bytes to store
intermediate features maps and other runtime data during the
forward pass. Consequently, the method is lightweight enough
to run on the edge device like Kendryte K210.
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Figure 3. Training and validation loss curves of CNN.
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Figure 4. Confusion matrix of CNN on training data normalized over all

population.
- 0.20
- 015
- 0.10
- 0.05
- 0.00

Figure 5. Confusion matrix of CNN on validation data normalized over all
population.
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The measured neural network execution time was 212 ms,
which is approximately 1.66 times larger than the used frame
size of the signal. Since in real applications, depending on
the monitoring object, it is sufficient to carry out diagnostics
once every 1...10 seconds, the purposed system could be able
to monitor up to 50 units in real-time. In case the units are
different and different CNN have to be used, it is possible to
store in SRAM more than one CNN and use them in turn.

Depending on memory consumption by other applications,
more than 200 CNNss like the one used in this paper could store
simultaneously in SRAM. However, in this case, additional
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time would be spent on resources initialization and releasing.
In our experiments, the initialization time of CNN and re-
sources releasing time are about 3 ms and 90 us, respectively,
which are significantly less than the CNN execution time.

The detailed analysis of the computation graph of CNN
ported to Kendryte K210 revealed that only matrix multipli-
cation in the first fully-connected layer is accelerated by the
CNN hardware accelerator. This acceleration is possible by
replacing of matrix multiplication by multiple convolutions,
which is performed by neural network compiler nncase. The
replacing consist in the conversion of matrix product of the
weight matrix of shape (IV, K) by the activation matrix of
shape (K, 1) to convolutional layer, whose number of filters
is equal N and input is activation matrix of shape (K,1,1),
where the first dimension is channel number.

However, convolutional layers are processed by CPU with-
out hardware acceleration, while those layers include most of
the calculations. This is because CNN accelerator unit is only
able to perform 1 x 1 or 3 x 3 convolution, while convolutional
layers of our CNN have 1 x 64, 1 x 32, and 1 x 16 kernels, and
there is no an algorithm in nncase utility to transform arbitrary
convolution into a set of 1 x 1 or 3 x 3 convolutions. Hence,
to further improve the performance, we need to develop CNN
consist only of 1x 1 or 3 x 3 convolutions or develop a method
of transformation of arbitrary convolution into a set of 1 x 1
or 3 x 3 convolutions.

VI. CONCLUSION

This paper discussed the edge computing opportunities for
fault diagnostics in industrial rotary machinery using CNN
methods. We showed that the edge IoT device capacity is
enough to make data analysis based on CNN. The analysis can
be implemented in real-time, so online data analytics services
can be provided to personnel near or remote the industrial
production system.
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