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Abstract—There have been many studies in recent years using
the Textile planar Pressure Mapping (TPM) technology for
computer-human interactions and ubiquitous activity recogni-
tion. A TPM sensing system generates a time sequence of spatial
pressure imagery. We propose a novel, comprehensive and unified
feature set to evaluate TPM data from the space and time domain.
The initial version of the TPM feature set presented in this
paper includes 663 temporal features and 80 spatial features. We
evaluated the feature set on 3 datasets from past studies in the
scopes of ambient, smart object and wearable sensing. The TPM
feature set has shown superior recognition accuracy compared
with the ad-hoc algorithms from the corresponding studies.
Furthermore, we have demonstrated the general approach to
further reduce and optimise the feature calculation process for
specific applications with neighbourhood component analysis.

Index Terms—textile pressure mapping; data analysis; machine
learning algorithm.

I. INTRODUCTION

Textile Pressure Mapping (TPM) is an emerging technol-
ogy for ubiquitous and wearable activity recognition. TPM
technology measures the distribution of the planar pressure
force on a surface, which is omnipresent during all sorts of
physical interactions and activities. Dementyev et al. [1] used
a wrist-worn Force Sensitive Resistor (FSR) array to detect
hand gestures. Cheng et al. [2] proposed a system to detect
tongue control gestures with a face-worn TPM patch. Pressure
mat placed on the chair surfaces to detect seating postures
have also been studied in [3] [4]. Sundholm et al. [5] have
demonstrated that sports exercises can be recognized from a
sports mat which sense the pressure distribution. Schneegass
et al. [6] investigated using a pressure matrix as a sleeve for
the forearm to recognize writing gestures.

Many of the researches mentioned above are ad hoc de-
signed on the hardware, software, and algorithm levels. Since
each of these studies encloses many aspects, including the
hardware, software and activity recognition, none of them are
focused on discussions in the algorithm.

Efforts have been devoted to bringing forward a unified
solution to push the pressure mapping technology forward in
the field of ubiquitous computing and the internet of things.
A general hardware architecture to implement TPM sensing
systems in [7] . In [8], a framework is proposed to as a unified
solution to help developers who are new to the technology to
build and evaluate TPM-enabled activity recognition studies.

Figure 1. Illustration of the three datasets used in the evaluation: (1)
tablecloth study [11], (2) robot skin study [12], and (3) leg band study [13].

However, there lacks a comprehensive investigation into the
algorithms of processing the TPM data, especially which
features are contributing to the classification results.

TPM imagery has a spatial-temporal data format. Some
computer vision techniques for video processing has been
applied, such as the work in [9], where neural networks
trained for video classification is used to recognize identity
from footprint on a TPM carpet. However, TPM imagery is
cleaner than camera images in terms of the background scene
or objects, obstruction of view, etc. The neural networks also
require substantial computational power and are not easily ex-
plainable, i.e. which feature or part of the network contributes
more to differentiate different activities. Thus many computer
vision techniques can be considered over-engineering for pro-
cessing the TPM imagery. Maximilian et al. [10] proposed a
generic feature extraction method on time series. To the best of
our knowledge, there lacks a comprehensive and explainable
feature analysis scheme that is suitable for the spatial-temporal
TPM imagery.

In this paper, we propose the TPM feature set, which
comprehensively analyses the TPM data through the time
and space domains. The TPM feature set is evaluated with
datasets from three empirical studies with different application
scenarios. We also investigate which features are contributing
more positively to the classification through neighbourhood
component analysis. The streamlined methods proposed in this
paper can be used to analyse and optimise new datasets from
future TPM studies.
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In Section II, the general format of the pressure mapping
data and terminologies are introduced. Section III explains
the detailed generic method, the TPM feature set, to extract
information from space and time domains. In Section IV,
the spatial and temporal domains are discussed in depth to
investigate which features are more relevant with established
empirical study datasets. Section V concludes the paper.

II. TPM DATA IN THE SPATIAL-TEMPORAL DOMAINS

TPM sensors generate a multi-channel, spatial-temporal
data format, which describes the localization of the pressure
distribution along the time axis.

Every sensing point is defined as a pixel:
p(x, y, t) (1)

where x and y are the coordinates in the spatial dimensions,
and t is the specific time.

At any time t, the entire mapping M of the sensor is defined
as a Frame:

F (t) = {p(x, y, t) | (x, y) ∈ {M}} (2)
A temporal sequence from a time window T of Frames is
defined as a data Stream:

ST = {F (t) | t ∈ {T}} (3)
Individual sensing points have limited information about the

activity; therefore, some descriptive values of the frame at a
given time t are calculated as Frame Descriptors:

desi(t) = Funci(F (t)) (4)
Another approach to abstract the stream from a time window

is to perform per-pixel operations along the time axis, resulting
in individual frames that represent the stream. We call these
frames as Key Frames:

KFi(t) = Funci(ST )) (5)

III. THE TPM FEATURE SET

Figure 2 shows the general workflow of calculating the TPM
feature set from the space and time domains. Temporal features
are extracted from sequences of simple frame descriptors
desi(t). Spatial features are calculated from 2-dimensional
key frames KFi(t). The initial version of the TPM feature
set includes 663 (17× 39) temporal features and 80 (8× 10)
spatial features.

A. Frame Descriptors

Treat F (t) as a set, the TPM feature set calculates the
following desi(t):
• average value

des1(t) = mean(F (t)) =
1

|M |

{M}∑
(x,y)

p(x, y, t) (6)

• variance

des2(t) =
1

|M |

{M}∑
(x,y)

(p(x, y, t)−mean(F (t)))2 (7)

• range
des3(t) = pMAX(t)− pMIN (t) (8)

Figure 2. (1) Temporal and (2) spacial feature extraction process.

• entropy

des4(t) = −
{M}∑
(x,y)

p(x, y, t) · log2 p(x, y, t) (9)

• mean absolute deviation

des5(t) =
1

|M |

{M}∑
(x,y)

(p(x, y, t)−mean(F (t))) (10)

• the center of mass (CoM) coordinate x and y (weighted
by pixel value) des6(t) and des7(t)

• the centroid coordinate (unweighted, only considering the
contour after filtering the frame with a threshold). des8(t)
and des9(t). Here the threshold is defined as
mean(F (t))− 0.25 · (mean(F (t))− pmin(t)) (11)

• area (the count of pixels that are above the threshold)
des10(t)

• des11(t) to des17(t) Hu’s seven image moments [14]
For a matrix of binary values, the CoM is identical to the

centroid; but for a matrix with multi-values that describes a
profile, the CoM shows how the pixel value density is focused
while the centroid shows only the geometric center. des1(t),
des6(t) and des7(t) are mathematically identical to the first
three central moments in the literature on image moments.

B. Temporal Features

Any sequence of frame descriptors is denoted as desi(t) ∈
{des1(t), des2(t), ...}. Then, from the temporal sequence
within a window of length T (sliding window or spotted
event), temporal features can be calculated:
• average

tfeat1 =
1

|T |

{T}∑
t

desi(t) (12)

• variance

tfeat2 =
1

|T |

{T}∑
t

(desi(t)− tfeat1)2 (13)

• range
tfeat3 = desiMAX

− desiMIN
(14)

• skewness, that describes the asymmetry of the data

tfeat4 =

1

|T |
∑T

t (desi(t)− tfeat1)3(
1

|T |
∑T

t (desi(t)− tfeat1)2
)3/2

(15)
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• kurtosis, that measures how outlier-prone the temporal
sequence’s distribution is

tfeat5 =

1

|T |
∑T

t (desi(t)− tfeat1)4(
1

|T |
∑T

t (desx(t)− tfeat1)2
)2 (16)

• waveform length [15]

tfeat6 =

T∑
t

−1(desi(t+ 1)− desi(t)) (17)

• sum of values greater than mean

tfeat7 =

T∑
t

(desi(t) | desi(t) > tfeat1) (18)

• the power spectrum density of desi is calculated with fast
Fourier transform as PSD(n), n ∈ N is the frequency
in the spectrum. Following features are calculated from
PSD(n): average magnitude

tfeat8 =
1

N

N∑
n

PSD(n) (19)

• mean frequency

tfeat9 =

∑N
n n · PSD(n)∑N
n PSD(n)

(20)

• N is divided to 5 equal frequency bands, the average
values of each band is tfeat10, tfeat11, tfeat12, tfeat13,
tfeat14.

• A wavelet transform scalogram is calculated with the
LTFAT toolbox [16], with J = 4 filterbank iterations. The
coefficient vector of each filterbank is C(j), j ∈ [0, 4].

• tfeat15, tfeat20, tfeat25, tfeat30, tfeat35 are the mean
value of each coefficient vector;

• tfeat16, tfeat21, tfeat26, tfeat31, tfeat36 are the variance
of each coefficient vector;

• tfeat17, tfeat22, tfeat27, tfeat32, tfeat37 are the range of
each coefficient vector;

• tfeat18, tfeat23, tfeat28, tfeat33, tfeat38 are the skewness
of each coefficient vector;

• tfeat19, tfeat24, tfeat29, tfeat34, tfeat39 are the kurtosis
of each coefficient vector;

C. Key Frames

From a time window, a key frame can be one particular
frame that has special frame descriptor values, such as the
maximum or minimum of desi(t). A key frame can also be
calculated from the stream of the window through pixel-wise
operations. 8 key frames are calculated in the TPM feature
set:
• per pixel average of all frames

KF1 =
1

|T |

{T}∑
t

F (t) (21)

• sum of per pixel differences

KF2 =

{T−1}∑
t

(F (t+ 1)− F (t)) (22)

Figure 3. Feature weight distributions of different NCA division methods
(tablecloth dataset)

• sum of only the positive or negative values of per pixel
differences

KF3 =|
{T−1}∑

t

((F (t+ 1)− F (t)) > 0) | (23)

KF4 =|
{T−1}∑

t

((F (t+ 1)− F (t)) < 0) | (24)

• the frame which has the maximum mean pixel value as
KF5 and the frame with the minimum mean value as KF6

• the frame with the maximum standard deviation from the
stream as KF7

• the per pixel average of the frames, whose pixel value is
greater than the frame pixel average

KF8 =
1

|T |

{T}∑
t

(Fp(t)) (25)

Fp(t) =

{
p(x, y, t) if p(x, y, t) ≥ mean(F (t))
0 if p(x, y, t) < mean(F (t))

D. Spatial Features

Various image processing techniques can then be used to
extract information from those key frames. Image moments
are proven to be helpful shape descriptors as spatial features
sfeatj(KFi) through previous studies. In the TPM feature set,
we use the 3 central moments and Hu’s 7 invariant moments
[14], which are rotation, translation and scale invariant.

IV. EVALUATION AND FEATURE SELECTION

In this section, we evaluate how different combinations of
frame descriptors - temporal feature pairs, and key frame -
spatial feature pairs contribute to the classification accuracy.
The datasets used are from various past studies in different
setting scenarios.

A. General Approach

The evaluation process can be divided into four parts:
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1) Convert the data stream into features: From the time
domain, first, temporal sequences of the 17 frame descrip-
tors desi(t) are calculated from every stream. Within every
desi(t), a sliding window is performed. Every window is
denoted as n ∈ N . The data in the window is multiplied
with a Tukey window with r = 0.2, to bring the start and
end of the window to zero. For every sliding window, 39
temporal features tfeatj(desi), j ∈ 1, 2, ...39, i ∈ 1, 2, ...17
are calculated. In the spatial domain, first the input data stream
is cropped with the same window size and window step as the
sliding window for desi(t), but the outputs are the smaller
length of streams, and no Tuken window is applied. Within
each window of streams, 8 key frames KFi are calculated.
Overall 10 spacial features is calculated from every key frame
sfeatj(KFi), j ∈ 1, 2, ...10, i ∈ 1, 2, ...8.

2) Baseline cross-validation: To carry out balanced train-
ing, all classes are trimmed to the same amount of windows
by random selecting. The amount of windows is the class that
has the least windows. K-fold cross-validation is performed
with multiple classifiers, and the accuracy is used to compare
different classifier’s results.

3) Feature selection: The feature weight evaluation is per-
formed using neighbourhood component analysis (NCA) [17].
The method ranks the most relevant features that contribute to
the classification. Since the features are calculated from two
levels of information: temporal features are calculated first by
reducing the space domain to frame descriptors, then to the
time domain features; as spatial features are calculated first
by reducing the time domain to key frames. Thus, the feature
weight result can either be presented as a feature weight vector
or as a feature weight matrix for either the temporal or spacial
feature methods.

4) Feature reduction: The top-weighted features are se-
lected to perform the same cross-validation. For comparison,
the least weighted features are also evaluated separately.

Principle Component Analysis (PCA) [18] is another com-
monly used technique for reducing feature dimensions. The
method removes redundancy and outputs a set of eigenvectors
that best describes the variance of the dataset. Each component
is orthogonal to the preceding one so that the eigenvectors
are uncorrelated and thus without redundancy. However, PCA
itself does not take the class label information, it only analyses
the data distribution to remove redundancy but not irrelevant
features. Typically, PCA is used as a step after calculating
the features, and before feeding the information to classifiers.
Therefore, we use NCA instead of PCA to find the features
that are more contributive to distinguishing different classes.

B. Datasets

Three past studies are taken for comparison, they are code-
named as: tablecloth [11], robot skin [12], and leg band [13]
as shown in Figure 2.

In the tablecloth study [11], a TPM fabric with a 30-by-42
matrix is placed on a dining tablet to detect dining related
actions. A main dish plate, a salad bowl, and a glass are
placed on it. Participants eat various food of different textures,

that would require different actions for dining the food with
a knife and a fork. The force of the actions can propagate
through the cutlery and plates to the tablecloth surface. The
7 action classes are: stir, scoop, cut, poke, scoop, collect and
replace. The sliding window is chosen with 2 second period
and 1 second window step. 10 participants each took part in
8 recordings.

In the robot skin study [12], a TPM fabric with a 20-
by-20 matrix is used to detect 7 emotionally related touch
gestures onto a dummy arm or a surface, including grab,
poke, press, push, scratch, pinch and stroke. The gestures
are already segmented based on matrix activation, since when
there is no gesture, the matrix is not being pressed. In total, 24
participants took part in 2 recordings. Each recording includes
16 repetitions of every gesture.

In the leg band study [13], a TPM fabric with an 8-by-
16 matrix is embedded in an elastic compression band that is
placed on the thigh as users take part in gym leg exercises.
The sensor detects the surface pressure of the leg muscles as
planar pressure mechanomyography. The 5 activity classes are:
working out with a cross trainer, leg press, seated leg curl and
leg extension, plus a class contains all non-workout activities.
Based on the activity’s characteristic, the sliding window is
chosen as 4 seconds wide, the window step is 20% of the
window size. Six participants have recorded 4 sessions each.

In this paper, all the participants’ data are merged together
as one dataset for every study (person independent - inclusive
case). Every sliding window or gesture is one sample. The
tablecloth dataset has 10815 samples, robot skin 5376 samples,
and leg band 28425 samples.

C. Neighborhood Component Analysis (NCA)

This subsection briefly explains the NCA method published
in [17] and implemented in Matlab as fscnca. The NCA
method assumes a feature weight vector w as a variable to
be multiplied with the features, and uses an approximate
solver to find the optimal weight vector that maximizes the
correct classification probability (the objective function). (The
mathematical symbols for NCA explanation are not related to
the rest of this paper for the TPM feature set.)

For a d-dimensional dataset of N training points, all the
points from the dataset are taken as a query point once xi. For
each query point, the other points can be taken as its reference
point as a probability pij derived from their weighted distance
enclosed in a kernel function. The probability that this query
point xi is correctly classified is defined as the probability
summation of the reference points that has the same class,
similar to a K-nearest neighbour classifier.

The objective function is the average of all the points’
correct classification probability. After unfolding the relation-
ship, the objective function can be written as a differentiable
function of the feature weight vector, with a tunable parameter
λ which is multiplied with the weight vector’s term in the
objective function:
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Figure 4. Accuracy with varying amount of selected features comparison of four NCA division methods (tablecloth dataset)

F (w) =

N∑
i=1

 N∑
j=1,j 6=i

Pijyij − λ
d∑

l=1

w2
l

 (26)

where yij = 1 if the query point and the reference point has
the same class. Since F (w) is differentiable, its maxima can
be approximated with algorithms, such as stochastic gradient
descent (SGD) [19], to find out the feature weight vector w
that maximizes the objective function F (w). In other words,
NCA finds the best feature weight combination that yields the
highest correct classification probability.

D. NCA division approaches on high dimensional features

A problem of NCA is that when most of the features
contribute to the classification, the approximation may return
to only very few highly weighted features while the others
remain close to zero weight. This leaves the classification
result relatively low with selected high weighted features. Our
solution is to segment these features and perform NCA on
smaller batches, then combine the feature weights. In this
work, four NCA division approaches are investigated:
• All-in-One: all the features are taken under NCA as once.
• Space-time domain split: features are split into two

groups: spatial domain features and temporal domain
features.

• Branched: features are more detailed separated into
branches. In the time domain, a branch is all the temporal
features from one frame descriptor; in the space domain,
a branch is all the spatial features from one key frame.

• K-fold: all features are randomized and split into K equal
partitions. One NCA is performed for each partition.

In the segmented feature groups, the resulting feature weight
vectors are normalized within each group before being con-
catenated into one vector. The results of the four different
feature division approaches on the smart tablecloth data are
shown in Figure 3. From the result, All-in-One and domain-
split NCA return similar weight for the time domain features,
with zero weight for most of the features. The domain split
NCA gives higher weight on the spatial features as a result
of normalization before merging, but the feature indexes that
are higher than approximate zero are the same between the
two approaches. In the branched and 20-fold NCA, however,
many more features are given higher weight.

To compare which approach is better, cross-validation with
the highest ranking features, in comparison with the lowest
ranking features can be used. A better approach should meet
the following criteria:

• Higher accuracy with the same number of top ranking
features compared to other approaches.

• Greater difference between highest accuracy and the ac-
curacy with the least ranking features, than the difference
between highest accuracy and the accuracy with the top
ranking features.

• With the same amount of features, top ranking features
should in general result in higher accuracy than least
ranking features.

E. NCA Evaluation

To evaluate which approach yields better feature selection,
cross-validation from the top or least ranking features are
performed. For performance reasons, top or least 2, 5, 10, 20,
40 and 80 features are chosen. The NCA algorithm should
have greater influence on the KNN classifiers since the basic
principle is similar (Euclidean distance to the training data
samples). In this evaluation, a variety of classifiers are chosen:

1) classification tree with 100 maximum splits and Gini’s
diversity index split criterion (Fine Tree)

2) linear discriminant analysis (LDA)
3) support vector machine with a quadratic kernel (Q SVM)
4) support vector machine with a cubic kernel (C SVM)
5) K-nearest neighbor with equally weighted Euclidean

distance and K=10 (KNN 10)
6) K-nearest neighbor with squared inversely weighted

Euclidean distance and K=10 (KNN 10 W)
7) Ensemble of 30 decision tree learners (Bagged Trees)

The results are shown in Figure 4.
For many classifiers, all-in-one and domain split NCA has a

near symmetric accuracy distribution centered at all features;
sometimes with the least ranking features, there are higher
accuracy points than the corresponding top ranking features.
From this, we concluded that the feature weights derived
by these two methods are no better than random selection.
Branched and 20 Fold NCA, on the other hand, in general,
meet the criteria listed above, and have a similar trend of the
accuracy values. The highest ranking features result in higher
accuracy values than the lowest ranking features.

The top 2 ranking features already result in over 80%
accuracy for Bagged Trees and the two KNN classifiers.
While for the other classifiers, Fine Tree, LDA and SVM,
the accuracy values are significantly lower. This may because
these classifiers work by separating the feature space with
modelled boundaries, while KNN and bagged trees do not use
such boundaries to distinguish different classes. The data’s
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nature may not fit very well with the classifiers’ algorithms,
e.g., the data may not have clean-shaped boundaries, or the
same class may have several clusters. However, this cannot be
further investigated at this point due to the high dimensionality.

The least 2 ranking features result in close to chance level
(14.3% for 7 classes) accuracy values, thus means the NCA
successfully identify the less relevant features. As the number
of features taken grows, the accuracy of both top and least
ranking features increase, but the top ranking features give
higher accuracy than the least ranking ones.

As branched NCA is not a generic approach, and K-Fold
NCA can be performed on any feature sets, this work will
continue with K-Fold NCA. Figure 5 shows the top ranking
features but with more amount of taken features until all
of them are chosen. From it, the accuracy has come to a
stable level close to 90% between 10 to 160 features for
most classifiers except for LDA and Fine Tree; while from
240 features on, the accuracy has another increase that is on
the similar level with all the features. This shows that only the
top 10 features are sufficient for this dataset for moderately
high accuracy, and 240 features are adequate to explain all the
class discriminant as good as with all features.

F. Application Variance and Discussions

To be displayed only as a linear vector of values as in Figure
3 is not sufficient to tell which feature calculation method is
more relevant. Therefore, the feature weight vector is reshaped
into two 2-dimensional matrices according to the frame de-
scriptor - temporal feature combination or key frame - spacial
feature combination as a feature weight matrix (FWM ). For
the tablecloth dataset, the temporal feature weight matrix
FWMt is shown in Figure 6, and the spacial feature weight
matrix FWMs is in Figure 9(1). From FWMt, it can be
seen that some temporal features have no contribution, such
as skewness, kurtosis, including the skewness and kurtosis
for the wavelet transform. Some frame descriptors are more
important, such as des2 variance, des3 range, des5 mean
absolute deviation. All the 7 Hu’s moments des11 to des17
are less important. It is possibly a result that in this dataset,
the objects are all plates or glasses, and their footprints are all
circular. Hence, the shape descriptors are not contributing to
the activity. From FWMs, the key frames describe the static
values, such as KF1 and KF2 are less contributive, while the
key frames that describe the dynamic changes all have greater
feature weights.

Two other datasets are evaluated with the same process,
and the resulting plots of ‘number of features’ - accuracy
plots are in Figure 10. (SVM classifiers are not used for
evaluation here due to performance constraints.) Referring
to the NCA evaluation criteria, NCA has effectively located
relevant features in all datasets. Feature weight matrix are
shown in Figure 7, Figure 8, and Figure 9(2)(3). Table I
compares the accuracy of the original studies with the TPM
feature set. The top 20 features from each dataset are further
listed in Table II.

Figure 5. Top ranking features of the 20 fold NCA on the tablecloth dataset
to locate the optimal amount of features.

Figure 6. Temporal feature weight - Smart tablecloth dataset.

Comparing the FWMt and FWMs of all datasets, highest
ranking features are different for specific applications. There
are only three features that are present in all datasets’ top 40
features. For example, skewness and kurtosis have relatively
high weight for the robot skin dataset, and also have higher
weights in some of the frame descriptors for the leg band
dataset. The FFT features have almost no weight in the robot
skin dataset, while these features are significantly relevant in
the tablecloth and leg band dataset. And when FFT features
have more weight, wavelet transform features also have more

TABLE I. ACCURACY COMPARISON OF THE ORIGINAL STUDIES
AND THE TPM FEATURE SET

Dataset Original Study TPM Feature Set

Tablecloth 91.2% 91.4 %
Robot Skin 92.7% 94.7 %
Leg Band 81.7 % 98.2 %
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Figure 7. Temporal feature weight (robot skin dataset)

Figure 8. Spatial feature weight (leg band dataset)

weight. This is expected since both FFT and wavelet transform
describes frequency information. In the leg band dataset, Hu’s
7 moments as frame descriptors have significantly higher
weight than the other two dataset. Spatial features on average
have less weight in the tablecloth and robot skin datasets than
in the leg band datasets.

The key conclusion is that, for different applications, the
TPM sensor data exhibit different natures.

G. Performance Benchmark

We evaluated the computational performance with a dataset
recording file (.mat format) of 286MB (Leg Band dataset

TABLE II. TOP RANKING FEATURES

Tablecloth dataset
Ranking 1 2 3 4 5 6 7 8 9 10

Des/KF 5 2 2 3 2 1 3 2 5 3
Feature 17 10 37 37 17 17 36 3 22 17
Domain T T T T T T T T T T

Ranking 11 12 13 14 15 16 17 18 19 20

Des/KF 3 3 14 5 5 3 3 6 10 3
Feature 1 20 27 35 8 35 27 3 3 22
Domain T T T T T T T S T T

Robot Skin dataset
Ranking 1 2 3 4 5 6 7 8 9 10

Des/KF 3 3 4 4 4 3 4 6 3 4
Feature 21 16 34 8 1 31 15 7 1 22
Domain T T T S S T T S T T

Ranking 11 12 13 14 15 16 17 18 19 20

Des/KF 3 2 4 4 4 3 4 3 3 4
Feature 7 1 27 39 16 1 7 6 15 2
Domain T T T T T S S S T S

Leg Band dataset
Ranking 1 2 3 4 5 6 7 8 9 10

Des/KF 2 7 6 5 5 15 8 15 9 8
Feature 32 37 22 17 22 35 31 32 25 1
Domain T T T T T T T T T S

Ranking 11 12 13 14 15 16 17 18 19 20

Des/KF 8 9 3 15 12 15 8 4 8 6
Feature 15 35 31 3 17 22 16 3 17 32
Domain T T T T T T T T T T

person 1 recording 1). The benchmark was carried out on
a 2018 MacBook Pro with a six-core 2.6GHz Intel Core
i7 processor, and Matlab 2019a. The total frame descriptors
calculation took 43.87s and total key frames 2.47s. All the
temporal features from all frame descriptors took 350.05s
and the spatial features 0.765s. During the temporal feature
calculation, the most time consuming process is the fast
wavelet transform, which takes 281.35s out of the 350.05s.
The 20 fold NCA with all the recordings from the leg band
dataset took 926.83s.

However, since the feature set is meant to help explore the
useful features for specific data set offline, the computational
requirement is less important. With the NCA optimization
method, developers can further reduce and select the features
to be computed based on their specific requirements.

V. CONCLUSION

A generic feature calculation method, the TPM feature
set, is proposed in this paper. Built upon various relevant
studies, it can be used to extract information from both the
space and time domains for the TPM imagery. Through our
evaluation, our approach shows superior accuracy compared to
the original studies in which the datasets were published with
ad hoc algorithms. Not all features contribute equally, and the
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Figure 9. Spatial feature weight matrices of the three datasets.

Figure 10. Feature number against accuracy for the Robot Skin and Leg Band dataset with 20 fold and branched NCA.

feature weights vary with different applications. Neighborhood
component analysis can be used to locate and explain the
more contributing features and further optimise a system by
reducing feature calculation efforts.
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