UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Verifying Scenarios of Proximity-based Federations among Smart Objects
through Model Checking

Reona Minoda
Graduate School of Information Science
and Technology, Hokkaido University
Sapporo, Hokkaido 060-8628, Japan
Email: minoda@meme.hokudai.ac.jp

Abstract—In this paper, we show a formal approach of ver-
ifying ubiquitous computing scenarios. Previously, we proposed
“a proximity-based federation model among smart objects”,
which is intended for liberating ubiquitous computing from
stereotyped application scenarios. However, we faced challenges
when establishing a verification method for this model. This
paper proposes a verification method of this model through
model checking. Model checking is one of the most familiar
formal verification approaches and it is often used in various
fields of industry. Model checking is conducted using a Kripke
structure which is a formal state transition model. We introduce
a context catalytic reaction network (CCRN) to handle this
federation model as a formal state transition model. We also
give an algorithm to transform a CCRN into a Kripke structure
and we conduct a case study of ubiquitous computing scenario
verification, using this algorithm and the model checking.

Keywords—ubiquitous computing; catalytic reaction network;
Jormal verification; model checking; smart object.

I. INTRODUCTION

Today, we are surrounded by a lot of devices with computa-
tion and communication capabilities. These devices are called
Smart Objects (SOs). SOs include PCs, smart phones, embed-
ded computers, sensor devices and radio frequency identifier
(RFID) tags. Here, we use the term federation to denote the
definition and execution of interoperation among resources that
are accessible either through the Internet or through peer-to-
peer ad hoc communication. SOs’ communication capabilities
make it possible to form federations of SOs. Our real world
environment is now steadily laying the foundation for the
concept of ubiquitous computing which Mark Weiser had
foreseen [1].

It has been almost quarter of century since Weiser proposed
the notion of ubiquitous computing. In the meantime, a lot of
different frameworks have been proposed to realize ubiquitous
computing. However, regardless of specific research areas in
ubiquitous computing, these researches typically only consider
two types of application scenarios. One is “location trans-
parent service continuance” (i.e., a user can use a service
wherever the user goes). The other one is “context-aware
service provision” (i.e., a user can use different kinds of
services depending on where the user is). Robin Milner
thought that the lack of models for describing ubiquitous
computing application scenarios limited application scenarios
to these two types [2]. Besides, according to Milner [2], it is

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

Yuzuru Tanaka
Meme Media Laboratory
Hokkaido University
Sapporo, Hokkaido 060-8628, Japan
Email: tanaka@meme.hokudai.ac.jp

Shin-ichi Minato
Graduate School of Information Science
and Technology, Hokkaido University
Sapporo, Hokkaido 060-8628, Japan
Email: minato @ist.hokudai.ac.jp

not possible to describe all concepts of ubiquitous computing
by using a single model. Milner argued that the hierarchy
structure of models (Milner called it “a fower of models™) was
necessary. In a tower of models, each higher model should be
implemented by a lower model.

Following the notion of a tower of models, Yuzuru Tanaka
once proposed the basic idea for describing ubiquitous com-
puting application scenarios using a catalytic reaction network
model [3]. This idea includes the following three models:

o At the first (lowest) level, the port matching model
describes the federation mechanism between two SOs in
close proximity to each other.

o At the second (middle) level, the graph rewriting model
describes the dynamic change of federation structures
among SOs.

o At the third (highest) level, the catalytic reaction network
model describes application scenarios involving mutually
related multiple federations.

In our previous work, Julia and Tanaka brushed up these
three models and established a concrete tower of models
by proving that a higher model surely implements a lower
model [4]. Moreover, Julia’s model implementation has error
handling mechanisms assuming unexpected situations such as
the connection failures between two SOs. Therefore, we can
focus on the catalytic reaction network model for describing
application scenarios of ubiquitous computing.

However, there are still challenges of establishing the veri-
fication method of the catalytic reaction network model. So
far, when we made a scenario using the catalytic reaction
network model, we could not prove easily whether a particular
federation would occur because federations of multiple devices
are formed by proximity sensitive connections between SOs.
So when we discuss a scenario using the catalytic reaction
network, we also need to consider the proximity relations of
SOs.

In this paper, we propose a verification method of device-
federation model based on catalytic reaction network. Ba-
sically we transform a scenario into a well-known state-
transition model such as Kripke structure. This enables us to
apply existing model checking verifiers. With this method, we
can discuss the following things:

o Determining whether a property described in a linear

65



UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

(i1) ¢1 makes a and b federated.
(This action.is triggered by s.)

S =
N
S
~

| A

% Gate

C1

Phone a

(i) A user enters into
the scope of c¢;.

(iii) Phone @ and headset b
are federated (denoted by ab ).

\y7
Ny,

expressed as ab

Figure 1. Example of a Catalytic Reaction

temporal logic (LTL) specification (e.g., a particular
federation finally occured) is satisfied or not in the
given scenario described by the catalytic reaction network
model.

o Showing a counterexample if there is any case violating
the property described above.

In a scenario using original catalytic reaction network
model, there are so many proximity relations among SOs
(n SOs would have 2™ proximity relations). This sometimes
causes the state explosion problem in the model checking.
We need to constrain the proximity relations in the original
catalytic reaction network model. For this reason, we will first
define the constrained model called “Context Catalytic Reac-
tion Network (CCRN).” Then, we will propose the method to
transform CCRN into a well-known state transition model such
as a Kripke structure that can apply existing model checking
verifiers.

The rest of this paper is organized as follows. The rest of
this section introduces related work of our research. Section II
provides preliminaries of this paper, such as basic definitions
and notations. Using them, we define a CCRN in Section
III. Then, we propose the verification method of a CCRN
in Section IV. Section V introduces the case study of the
verification. Finally, we summarize the results of this paper
in Section VI.

A. Related Work

1) Formal Verification of Cyber Physical Systems: Sim-
ilarly to ubiquitous computing, a lot of devices such as
sensors measure physical phenomena such as temperature,
humidity, acceleration and so on, while actuators manipulate
the physical world, like in automated robots. The combination
of an electronic system with a physical process is called cyber
physical system (CPS). In the field of CPS, Drechsler and
Kiihne use timed automata [5] as a state transition model to
conduct formal verifications of given systems’ properties [6].

2) Context Inconsistency Detection: In the field of ambient
computing, Xu and Cheung propose a method of context in-
consistency detection [7]. This method detects inconsistencies
from a series of gathered events such as “a user entered a
room” and “the temperature of room is 30°C” by logical

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

deduction. Unlike a formal verification, this method can be
applied only after the system begins to work. Instead, a formal
verification can find the failed cases from a given system in
advance.

II. PRELIMINARIES

In this section, we give definitions and notations which is
necessary for this paper.

A. Basic Definitions and Notations

Let X and Y be any two sets, we use X UY, X NY and
X \'Y to denote the union, intersection and difference of X
and Y respectively. For a set X, we denote its power set (i.e.,
all subsets) by 2% and its cardinality by |X|. For a family
M of sets (i.e., a set of sets), we denote the union and the
intersection of all sets in M by |JM and (| M respectively.

B. Catalytic Reaction Network

A catalytic reaction network was originally proposed by
Stuart Kauffman in the field of biology to analyze protein
metabolism [8]. Based on this model, Tanaka applied it to
the field of ubiquitous computing as the way to describe
an application scenario involving mutually related multiple
federations among SOs [3]. In this paper, we mean the latter
by the term “catalytic reaction network”.

A catalytic reaction network is a set of catalytic reactions.
Each catalytic reaction takes input materials and transforms
them into output materials. And each catalytic reaction has
a catalyst which is called confext. It may be also possible
to include a catalyst in input materials. We call this kind of
catalyst stimulus. A catalytic reaction occurs when all required
SOs are in the proximity of each other. We use the term
“scope” to denote the inside of the proximity area (we assume
a range of Wi-Fi radiowave, and so on). The scope of a SO
o is represented as a set of SOs which are accessible from
the SO o. Tanaka assumed that all scopes of the context
and SOs involved in a catalytic reaction are considered [3].
However, as we mentioned in previous section, this causes
the state explosion problem during the model checking. For
this reason, in this paper, we assume that only the scopes of
contexts are considered instead. In other words, we consider

66



UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

b ) b

a
a a

ab ab

(ii) (iv)

Figure 2. Four Types of a Catalytic Reactions

that the catalytic reaction occurs if all required SOs just enter
into the scope of the corresponding context.

Fig. 1 shows an example of single catalytic reaction. In this
example, there is a gate c; regarded as a context and a user
has three SOs i.e., a phone a, a headset b and an IC card
s. If the user enters into the scope of ¢;, ¢c; makes a and b
federated. This action is triggered by s. After that, phone a
and headset b are federated. We denote federated SOs such
as a and b by a concatenation of a and b, i.e., ab. During
this process, c; and s work as catalysts. In particular, s is a
stimulus in this reaction. We express this reaction as the right
hand side diagram of Fig. 1.

In catalytic reaction networks, there are four types of
catalytic reactions as we show in Fig. 2. We categorize these
four types of reactions into two groups. One group is the
composition reaction group (Fig. 2 (i) and (ii) ), the other
group is the decomposition reaction group (i.e., Fig. 2 (iii)
and (iv) ). A catalytic reaction of Fig. 1 is a type (i) catalytic
reaction. We also consider the catalytic reaction without a
stimulus such as Fig. 2 (ii). In type (ii), if a user who has
SO a and SO b enters into the scope of context ¢y, co makes
a and b federated without a stimulus. In a similar way, we
consider the decomposition reactions such as Fig. 2 (iii) and
(@iv). In type (iii), if a user who has two SOs that are federated
into ab enters into the scope of context cs, ¢z decomposes
these SOs ab into a and b triggered by SO s. Type (iv) is a
decomposition reaction without a stimulus.

The output SO of a reaction may promote other reactions
as a stimulus or become an input SO of other reactions. In
this way, catalytic reactions form a network of reactions.

Now we define a catalytic reaction network formally. First,
let O be a set of SOs, we give a definition of a federated SO
oy by oy € 29\ () where |of| > 1. If |of| = 1, we treat of as
a single SO. Next, we define a catalytic reaction as follows:

Definition 1 (Catalytic Reaction): Let O and C be a set of
SOs and a set of contexts respectively, a catalytic reaction is
defined as a tuple (¢, M, N') where

e c€EC, M C29\0, NC29\0
. VofVo:fGM.(of#o/}%ofﬁol}:Q))
o VosVo, € N.(of # 0y — of N0} =10)

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

e UM =N, and
e (|[MNN|+1=|N|,|M|>|N|)V
(IMAN[+1=|M]|,[M]<|N) (%)

The former of the last condition (signed by (x)) and the latter
of the last condition correspond to a necessary condition for
composition reaction and decomposition reaction respectively.

We give some examples of catalytic reactions. Given C =
{c1,¢3},0 = {a,b, s}, a catalytic reaction of Fig. 2 (i) and
(iii) can be defined by (c1,{{a}, {b},{s}}, {{a, b}, {s}}) and
(cs,{{a, b}, {s}}, {{a}, {b}, {s}}) respectively.

Finally, a catalytic reaction network is defined as follows:

Definition 2 (Catalytic Reaction Network): A catalytic re-
action network is a set of catalytic reactions.

C. Model Checking

A model checking is a method to verify a property of a
state transition system. It has been often used in various fields,
which range from electronic-circuit-design verification [9] to
secure-network-protocol (e.g., Secure Sockets Layer (SSL)
protocol) design verification [10]. In the model checking, it is
typically assumed to use a Kripke structure as a state transition
system. The property of a Kripke structure is described by a
modal logic. There are two kinds of commonly used modal
logics such as linear temporal logic (LTL) and computational
tree logic (CTL). In this paper, we use LTL to describe the
property of the Kripke structure.

1) Kripke Structure: Before we consider the details of a
model checking, we give the definition of a Kripke struc-
ture [11] which is necessary for a modal logic and a model
checking.

Definition 3 (Kripke Structure): Let AP be a set of atomic
propositions, a Kripke structrue M is a tuple (S,I,R, L),
where

e S is a finite set of states,

e I C S is a set of initial states,

e R C S xS is a set of transition relation such that R is

left-total, i.e., Vs € S, 3¢’ € S such that (s, s’) € R, and

e L:S — 24P is a labeling function.

2) Linear Temporal Logic: LTL is a well-known modal
logic. LTL was first proposed for the formal verification of
computer programs by Amir Pnueil in 1977 [12]. First, we
give a definition of LTL syntax.

Definition 4 (Linear Temporal Logic Syntax): Let AP be a
set of atomic propositions, a linear temporal logic formula ¢
is defined by the following syntax recursively.

pu=T|L|p[—¢[oVe[XG[Go|Fo[oUg¢

where p € AP.
These right-hand terms denote true, false, p, negation, disjunc-
tion, next time, always, eventually and until respectively.
Next, we define a transition path 7 of a Kripke structure
M.
Definition 5 (Transition Path): Let M be a Kripke structure,
m = (mg, 71, Ta,...) i a transition path in M if it respects
M’’s transition relation, i.e., Vi.(m;, m;41) € R. ©* denotes 7’s
ith suffix, i.e., = (71'2‘, i1, Mgty - - - )

67



UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Also it can be shown that

(") = (i, Tige1, Tty oo )?
= (7Ti+j77ri+j+177ri+j+27 cen)
=
Now we focus on the semantics of linear temporal logic.
First, we define the binary satisfaction relation, denoted by
k=, for LTL formulae. This satisfaction is with respect to a
pair — (M, 7), a Kripke structure and a transition path. Then
we enumerate LTL semantics as follows:

e M,7 =T (true is always satisfied)

o M, 7 [~ L (false is never satisfied)

o (M,m [ p) iff (p € L(m)) (atomic propositions
are satisfied when they are members of the path’s first
element’s labels)

And there are two LTL semantics of boolean combinations as
follows:

° (Maﬂ- ': —¢) iff (Maﬂ- % ¢)

o (M,m=oVy)iff (M7= ¢)V (M=)

And there are four LTL semantics of temporal operators as
follows:

o« (M,7mEX ¢)iff (M,7! = ¢)
o (M,7 =F ¢)iff [Ji.(M, 7" = ¢)
o (M,m EG 9¢) iff [[Vi.(M,wi = qS)]]
(M, 7 = ¢ U ) iff
(V) <i(M, 77 |= ¢)) AN (M, 7" [= )]

3) Model Checking Problem: Intuitively saying, a model
checking problem is to judge whether a given Kripke structure
M satisfies a given property described in a modal logic
formula ¢. A model checking problem is formally stated as
follows.

Definition 6 (Model Checking Problem): Given a desired
property described by a modal logic formula ¢ (in this paper,
we use LTL) and a Kripke structure M, a model checking
problem is a decision problem whether the following formula

Vr.(M, 7 E @)

is satisfied or not. Note that a set {w | (M,n [~ &)} is
particularly called counterexamples.

It is known that a model checking problem can be reduced to
a graph search if M has finite states.

There are several implementations of the model checking
verifier such as Simple Promela INterpreter (SPIN) [13], Label
Transition System Analyzer (LTSA) [14], New Symbolic
Model Verifier version 2 (NuSMV2) [15] and so on. In this
paper, we use a model checking verifier NuSMV2.

III. CONTEXT CATALYTIC REACTION NETWORK

In this section, we introduce a segment graph and a CCRN.

A. Segment Graph

As we discussed in the previous section, a catalytic reaction
occurs when the required SOs enter into the scope of the
corresponding context. To analyze the property of a given

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

Context
&1

a i A user can walk around a path o3

(i) Given Situation

<

Scope of ci Scopeof ¢y

(i) Correspondmg Segment Graph

Figure 3. Example of Segment Graph

catalytic reaction network as a state transition system, it is
necessary to formalize the movement of SOs. For example, in
Fig. 3 (i), there are contexts c; and ¢, and these scopes have an
overlap. A user can walk around the path o8 shown in Fig.
3 (i). This situation can be represented as a segment graph
shown in Fig. 3 (ii). We consider that the user walks around
this segment graph and the user is always located at one of the
nodes of this segment graph. Each node of a segment graph
has a corresponding set of scopes of contexts. In this way, the
given situation like Fig. 3 (i) including overlaps of scopes of
contexts can be represented as a discrete structure.
Now we define a segment graph as follows.
Definition 7 (Segment Graph): Let C' be a set of contexts,
a segment graph G is a tuple (S, E, F), where
o S is a finite set of segments,
e« E C S x S is a set of directed edges between two
segments, and
e F:S — 2C is a function returning scopes of contexts at
corresponding segments.

B. Context Catalytic Reaction Network

A context catalytic reaction network (CCRN) is a discrete
structure of a situation involving SOs in a catalytic reaction
network. A CCRN is defined as a conbination of a segment
graph and a catalytic reaction network.

Definition 8 (Context Catalytic Reaction Network): A CCRN
is a tuple (O,C, R, G, Lpix, lo), where

e O is a set of smart objects,

o C'is a set of contexts,

68



UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

e R is a set of catalytic reactions,
o G is a segment graph (S, E, F),
o Lpx C O x S is the locations of fixed SOs, and
e lp € S is the initial segment locating mobile SOs (mobile
SOs can be represented as O \ {o € O | Is € S.((o, s) €
Lex) D).
IV. VERIFICATION METHOD OF A CCRN

In this section, we propose a verification method of a
CCRN. Before discussing the details of the method, we assume
that all mobile SOs are carried together (by a single user).
A state of a CCRN can be represented as a combination of
the location of mobile SOs (e.g., mobile SOs are located at
segment s) and the presence of federated SOs (e.g., federated
SOs oy and o’f are existing) and we regard these two kind
of facts as atomic propositions. We use the following atomic
propositions (AP):

e loco,,,;(s): mobile SOs are located at segment s

o fed(oy): federated SOs oy is existing

While mobile SOs move around a segment graph, more
than one federated SOs may appear. For example, federated
SOs {a,b} and {c,d} may appear at the same time. For that
reason, we define a single state of the presence of federated
SOs as the subset of 29 (e.g., {{a, b}, {c,d}} is a subset of
2la:b.c.dby Byt each SO can not be a part of more than one
federated SOs. For example, we do not permit federated SOs
like {a,b} and {b,c} are presented at the same time because
SO b is a part of both of these two federated SOs. Considering
this constraint, a set of states of presence of federated SOs
can be represented as Op = {0} U {oF | oF C 2O,V0f,0} IS
op.(of # oy — oy N0}y = 0,Yos € op.(|og| > 1)}. Finally,
we represent a state of a CCRN as state(s,op) where s is
the segment at which mobile SOs are located and of is the
set of federated SOs. For example, state(so, {{a, b}, {c,d}})
means mobile SOs are located at segment sy and federated
SOs {a,b} and {c¢,d} are existing.

Using the above representation of a state of a CCRN and
atomic propositions, we conduct verification of a CCRN by
constructing a Kripke structure from a given CCRN. Here we
give an algorithm in Fig. 4 to construct a Kripke structure
from a given CCRN. After constructing a Kripke structure
from a CCRN, now we describe properties of a CCRN by
LTL formulae. We enumerate examples of LTL formulae:

e G(~fed(oy) — F(fed(oy)))

Informally and intuitively saying, federated SOs oy fi-
nally exists if oy does not exist at the beginning and this
always happens.

o G((~fed(oy) — F(fed(oy)))V (~fed(0}) — F(fed(0}))))
This means federated SOs oy finally exists if oy does not
exist at the beginning. Similarly, federated SOs o’f finally
exists if o’f does not exist at the beginning. At least one
of these phenomena always happens.

Finally, we conduct the model checking, giving a Kripke
structure and LTL formulae. This can be done by various
implementations of model checking verifiers which we intro-
duced in previous section.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

Il’lpllt: CCRN (O, C, R, (57 E, F), LF[)(, lo)
Output: Kripke Structure (S,Z,R, L)
Initialization :
1: Opop = O \ {0 €0 | ds € S.((O,S) S LFIX)}
2: O = {0} U{oF | or C ZO,Vof,o} €op.(of # 0} —
of Mo =0),Yoy € op.(log| > 1)}
30 AP = {loco,,,(s) | s € ST U
{fed(oy) | 0y € op,0r € O}
4: § = {state(s,or) | s € S,or € Op}
5. T = state(lp, )
6: R=10
Loop Process :
7: for each or € Op do
8: for each s € S do
9: L(state(s,0r)) = {l0co,y,(s)} U
{fed(og) | oy € or}

10: S ={s"|(s,s) € E}
11: for each s’ € S’ do
12: R ={(¢,M,N)€e R|ce F(s),

{of € MAN | |of[ > 1} C op, O(c) 2 UM}
where O(c € C) = Oypp U
{o0€0|3s" € S(ce F(s"),(0,8") € Lpix)}

13: if R’ # () then
14: for each (¢, M,N) € R’ do
15: choose 0 € Op s.t.

or \ o = {oy € M\ N | |og| > 1},
o\ or = {oy € N\ M | |of| > 1}

16: R = RU{(state(s, oF), state(s’,0’)) }
17: end for

18: else

19: R = R U {(state(s, o), state(s',or))}

20: end if

21: end for

22: end for

23: end for

24: return (S,Z, R, L)

Figure 4. Algorithm for transforming CCRN into Kripke structure

V. CASE STUDY OF THE VERIFICATION

We have conducted a case study of a verification of a given
CCRN, using a model checking. We assume that a CCRN is
given by the designer who intend to design applications of
ubiquitous computing. Here, we use an example of museum
as shown in Fig. 5. A CCRN of this example is represented
as a tuple (O,C, R, (S, E,F), Lrx,lo) where

e O=/{a,b,d,e,s},

o C={c1,co,c3,C4,C5,¢6},

o B={(c1,{{a}, {b},{s}}, {{a, b}, {s}}),

(CQ, {{av b}v {d}}v {{a7 b, d}}):
(63, {{a’v b? d}}’ {{av b}v {d}})v
(C4a {{aa b}a {6}}a {{aa b, 6}}),
(057 {{a, b, 6}}7 {{a7 b}7 {e}})v
(c6; {{a, 0}, {s}}, {{a}, {b}, {s}}) },

« 5= {817 52,53, 54, S5, 56,57, 58, 89},

69



UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

- Catalytic Reactions:
I s S
c3
A a 9 : a
< ‘.85
A ” ab ab
o6 l T b b
ance) ) ]i,l hibit b ab
l T >GD—> abd abd *)GX
< < 5 d d
‘o &o ab ab
M (Room A)j ° abe abe
I
N : e

S1
(Outside)

a, b and s are mobile SOs.

d and e are fixed SOs located at s4 and s7 respectively.

: a scope of a context.

Figure 5. Example of Museum

), ( 53,52), (53,54), (54, 53),
55,8 4),(55,59 ,(39735)a(52,56)7(36a52)>
), (87, 88), (s8,57), (88, 59), (59, 88),

(
(867 {04})7 (577 {647 65})7 (887 {05})7 (897 {CG})}’
. LFIX = {(d 84)7 (6,57)}, and

. lo = S1.

In this example, a user enters the entrance of a museum,
carrying a phone a, a headset b and a ticket s. Once the
user entered the entrance, the phone a and the headset b are
federated by a reaction associated with the scope of c;, which
is triggered by the ticket s. Then, the federated SOs ab are
worked as a voice guide of the museum. Next, if the user
enters into room A, the federated SO ab and an exhibit d are
federated by a reaction associated with the scope of cz. By
the federated SO abd, an explanation of the exhibit d can be
provided to the user. After this, the user leaves the room A and
the federated SO abd is decomposed and becomes ab again by
a reaction associated with the scope of cs. A similar reaction
occurs in the room B, which is for an explanation of an exhibit
e. If the user leaves one of the exhibition rooms and returns
to the entrance, the federated SO ab is decomposed before
leaving the museum.

Now we verify a CCRN of this example. Using an algorithm
shown in Fig. 4, we can obtain a Kripke structure M. Then,
the designer may give desired properties of the given CCRN
by LTL formulae such as:

o ¢1 = G(—(fed({a,b,d}) A fed({a,b,e}))), and
o 92 = G( (Hed({a,b,d}) = F(fed({a,b,d}))) v
(fed({a,b,e}) = F(fed({a, b, e}))) ).
Intuitively saying, ¢; means that no more than one federation
for the explanation of exhibits exists at the same time and ¢o

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

25 {Cl}) (337 {02})’ (84, {623 03})7 (357 {03})7

—

™

hibit

el [

C2
(Room A)}

]

i

Figure 6. A Counterexample of Museum Example

S1

means that if a user enters into one of the exhibition rooms,
an explanation of each exhibit is always provided to a user.

Now we verify a CCRN using a generated Kripke struc-
ture M, ¢1 and ¢o. To conduct model checking, we used
NuSMV2 as a model checking verifier. We have confirmed that
Vr.(M,m |= ¢1) is satisfied. However, Vrr.(M, 7 = ¢2) is not
satisfied. A model checking verifier also give a counterexample
7. such as

7. = (state(s1,0), state(s2,{{a,b}}), state(ss, {{a,b,d}}),
state(sy,{{a,b}}), state(ss, {{a,b}}), state(sg, D),
state(ss, D), state(s4, D), state(ss, D), state(s4,0) ... ).

A bold line in Fig. 6 is the visualization of m.. First, the

70



UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

:l -

Xhibit

(Entrance) S4

S3

Cq T ¢1 T (&)
(Room B) 1|1 (Room A

Y

Figure 7. Revised Museum Example

&
A
N
@<
Y

user enters the entrance of the museum, then, the user goes
to room A and goes away from room A. But the user enters
the room A again from where the user goes away. Finally, the
user stays there. In this situation, we never obtain the federated
SO abd again since the user stays in the room A. To resolve
this problem, we need appropriate constraints on the segment
graph not to cause any counterexamples of ¢o during model
checking.

Now we debug the system to satisfy all properties of a given
CCRN given by LTL formulae. To do so, we need to revise
the segment graph of a given CCRN of this example. We
have rewritten E of the given CCRN as follows (Fig. 7 is the
visualization of this revision):

E = {(s1,52), (s2,53), (53,54), (54, 55), (55, 59), (52, 56),
(367 57)7 (87’ 58)7 (587 89)’ (597 51)}

This revision indicates that the user should follow the regular
route of the museum.

Then, we have conducted the model checking again using
the revised Kripke structure M, ¢; and ¢-. Finally, we have
confirmed that both Vrr.(M, 7 = ¢1) and Vrr.(M, 7 |= ¢2) are
satisfied. If all of these two LTL formulae are satisfied, this
museum meets all of requirements defined by the designer of
this museum. Of course, the designer can try other properties
within range of LTL, using a combination of two kinds of
atomic propositions.

In this case study, we show that our method actually helps
designers of applications to find exceptions of the design of
applications and to debug these exceptions using counterex-
amples provided by model checking verifiers through trial
and error. Using our method, we can discuss the property
such as the validity and the safety of applications consisting
of mutually related multiple federations among SOs. Formal
approaches, such as this kind of verification, are important
because they can avoid specifications errors of ubiquitous
computing applications in advance of actual implementations
of these applications, which may incur additional costs.

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-505-0

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a verification method of appli-
cations which is described by a CCRN using model check-
ing. Using our framework, various properties of scenarios of
ubiquitous computing can be discussed by logic such as LTL.
At this time, we have considered only the case of a single
user but in future work, we will also consider the case of
multiple users. Namely, more than one user moves around,
carrying SOs simultaneously. This will enable us to consider
more complex applications of ubiquitous computing.

ACKNOWLEDGMENT
Our work is partly supported by JSPS KAKENHI(S)
15HO05711.
REFERENCES

[11 M. Weiser, “The Computer for the 21st Century,” Scientific American,
vol. 265, no. 3, pp. 94-104, sep 1991.

[2] R. Milner, “Theories for the global ubiquitous computer,”
in  Foundations of  Software  Science and  Computation
Structures. Springer, 2004, pp. 5-11. [Online]. Available:

http://www.springerlink.com/index/h0261v5xdeOqgegef.pdf

[3] Y. Tanaka, “Proximity-based federation of smart objects: liberating
ubiquitous computing from stereotyped application scenarios,” in
Knowledge-Based and Intelligent Information and Engineering
Systems. Springer, 2010, pp. 14-30. [Online]. Available:
http://www.springerlink.com/index/103TL30123728248.pdf

[4] J. Julia and Y. Tanaka, “Proximity-based federation of smart objects,”
Journal of Intelligent Information Systems, vol. 46, no. 1, pp. 147-178,
feb 2016. [Online]. Available: http://link.springer.com/10.1007/s10844-
015-0357-4

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183-235, apr 1994. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/0304397594900108

[6] R. Drechsler and U. Kiihne, Eds., Formal Modeling and Verification of
Cyber-Physical Systems. Wiesbaden: Springer Fachmedien Wiesbaden,
2015. [Online]. Available: http://link.springer.com/10.1007/978-3-658-
09994-7

[71 C. Xu and S. C. Cheung, “Inconsistency Detection and Resolution
for Context-aware Middleware Support,” Proceedings of the 10th
European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of
Software  Engineering, pp. 336-345, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1081706.1081759

[8] S. Kauffman, Investigations. ~ Oxford New York: Oxford University
Press, 2002.

[91 J. Burch, E. Clarke, K. McMillan, and D. Dill, “Sequential
circuit  verification using symbolic model checking,” in
27th  ACM/IEEE Design  Automation  Conference, vol. 13,
no. 4. 1IEEE, 1994, pp. 46-51. [Online].  Available:

http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.htm?arnumber=114827
[10] J. C. Mitchell, V. Shmatikov, and U. Stern, “Finite-state Analysis
of SSL 3.0,” in Proceedings of the 7th Conference on USENIX
Security Symposium - Volume 7, ser. SSYM’98. Berkeley, CA,
USA: USENIX Association, 1998, p. 16. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267549.1267565
S. A. Kripke, “Semantical Analysis of Modal Logic I Normal Modal
Propositional Calculi,” Zeitschrift fiir Mathematische Logik und Grund-
lagen der Mathematik, vol. 9, no. 5-6, pp. 67-96, 1963.
A. Pnueli, “The temporal logic of programs,” 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pp. 46-57, 1977.
G. Holzmann, “The model checker SPIN,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279-295, may 1997.
[14] J. Magee and J. Kramer, Concurrency State Models and Java Programs.
New York, New York, USA: John Wiley and Sons, 1999.
A. Cimatti, E. Clarke, and E. Giunchiglia, “Nusmv 2: An
opensource tool for symbolic model checking,” Computer Aided
Verification, vol. 2404, pp. 359-364, 2002. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-45657-0_29

[11]

[12]

[13]

[15]

71



