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Abstract—Because of different designs, different text input
devices have different error patterns. If we consider these
aspects when designing an error correction mechanism, we
can obtain significantly lower error rates. In this paper, we
propose and evaluate a spelling algorithm specifically designed
for a five-key chording keyboard. It is based on the maximum
a posteriori probability (MAP) criterion, taking into account
a dictionary model and the probability that one character is
typed for another. These probabilities are determined exper-
imentally. For the considered evaluation text, the proposed
method reduced the error rate from 10.11% to 2.17%. As
comparison, MsWord and iSpell reduced the error rate to
5.15% and 6.69%, respectively.

Keywords-error correction; chording keyboard; maximum a
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I. INTRODUCTION

Most of us use mobile computing devices, such as smart-
phones or tablets, and would like to use them even more,
but there are situations when we cannot easily access their
services. For example, when walking in a crowded place,
we should focus on what happens around us rather than on
the mobile device. This limitation in usability is mainly due
to the input interface, which requires visual commitment.

A way to reduce visual constraints while typing is given
by chording keyboards. This type of keyboard enables
users to generate a character by simultaneously pressing a
combination of keys, similarly to playing a note or a chord
on a musical instrument. For a keyboard with five keys, there
are 31 combinations in which at least one key is pressed.
This is enough for the 26 letters of the English alphabet
and five other characters. If the keys are in a position that
is naturally under the fingertips, a person can type using
the fingers of one hand, without committing the eyes to the
keyboard. Therefore, we will be able to use a mobile device
even during activities for which vision is partially or entirely
committed, such as walking in crowded spaces, jogging, or
riding a bike (for example, we can place the keys around
the phone, or on a bike handlebar).

The reason why chording keyboards are not popular is that
they require training. Compared to a QWERTY keyboard,
where users can “hunt and peck” from the beginning,
for chording keyboards the mapping between keys and
characters has to be learned before being able to type.

The effort needed to do so depends on the keyboard type
and mapping and can vary by several hours. In previous
studies [1], we described a five-key chording keyboard and
a key-to-character mapping that can be learned in less than
45 minutes. After 350 minutes of practice, the average
typing rate was around 20 words per minute (wpm) with
a maximum of 31.7 wpm, comparable to iPhone, Twiddler
[2], or handwriting [3]. Without correcting the mistakes, the
average character error rate at the end of the studies was
2.69%. Automatically correcting these mistakes will prob-
ably increase the keyboard’s ease of-use and typing speed,
because users will not have to stop typing in order to correct
errors. In addition, typing in a dynamic environment will
probably lead to more errors, so efficient error correction
becomes even more important in these situations.

In this paper, we continue our work on error correc-
tion mechanisms for five-key chording keyboards [4][5].
Whereas our previous work only considered substitution
errors (when a character is replaced by another character),
now we will also consider errors such as deletions (when
a character is omitted), insertions (when an additional char-
acter is inserted), or split or merged words. The correction
mechanism is based on the maximum a posteriori probability
(MAP) principle [6] and for each typed word, it provides
a list of possible candidates and chooses the one that is
the most likely. Moreover, it takes into consideration the
particularities of the text input device. This is motivated by
the fact that different devices lead to different error patterns,
and knowledge about these patterns can be used to improve
the error correction methods.

The paper is organized as follows. Section II presents a
brief overview of existing text error correction mechanisms.
In Sections III and IV, we describe the proposed error
correction algorithm and the data set used for evaluation.
Section V presents the error correction results. In Section
VI, we conclude the paper.

II. RELATED WORK

Work on automatically correcting misspelled words in
computer-typed text began in the 1960s [7] and the algo-
rithms’ efficiency has steadily increased since then. Never-
theless, the correction rates are still far below 100% and
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improving them remains a challenge.
Traditionally, error detection and correction mechanisms

functioned at word level. Non-words are identified in a typed
text and the most likely corresponding words are suggested
from a dictionary. The appearing errors are defined at
character level and can be classified into three categories:
deletions, when a character is omitted; insertions, when
an additional character is inserted; substitutions, when a
character is substituted by another character. Other, more
complex, approaches take into account the context, gram-
matical and semantical rules, and also detect errors such as
missing words, wrong phrase structure, misused inflections,
or others.

A detailed overview of the commonly used correction
techniques is presented by Kukich in [8]. Research in
spelling error detection and correction is grouped in three
main categories:

1) Non-word error detection:
Groups of n letters (n-grams) are examined and looked
up in a table of statistics. The strings that contain non-
existing or highly infrequent n-grams are considered
errors.

2) Isolated-word error correction:
Each word is treated individually and considered either
correct or incorrect. In the latter case, the incorrectly
spelled word is compared to entries from a dictionary.
Based on similarities between the typed word and
dictionary words, a list of possible candidates is pro-
posed. These candidates can be provided using several
techniques:

• minimum edit distance techniques consider the
minimum number of editing operations required
to transform a string into another. A basic example
is to consider the dictionary word that can be
obtained from the typed word with a minimum
number of insertions, deletions, and substitutions;

• similarity key techniques map each string to a key
which is similar or identical for similarly spelled
strings. In this way, the key for a misspelled string
can point to similarly spelled candidates from the
dictionary. The advantage of this approach is that
the misspelled string is not compared to all entries
in the dictionary;

• rule-based techniques propose candidate words by
using knowledge of the most common errors;

• probabilistic techniques, which consider transition
and confusion probabilities. The first ones provide
the probability that a letter is followed by another
given letter (the values are language dependent).
Confusion probabilities estimate how often a letter
is typed instead of another letter (the values are
text-input device dependent);

• among other possible methods, n-gram techniques

and neural net techniques can also be efficiently
used.

Most isolated word error correction methods do not
correct errors when the erroneously typed word is in
the dictionary. For example, if farm is typed instead
of form, no error will be detected. Moreover, these
methods cannot detect the use of wrongly inflected
words (for example, they is instead of they are).

3) Context-dependent error correction:
These methods try to overcome the drawbacks of
analyzing each word individually by also considering
the context. Errors can be detected by parsing the
text and identifying incorrect part-of-speech or part-
of-sentence n-grams. Or, if enough memory and pro-
cessing power are available, tables of word n-grams
can be used. Other approaches consider grammatical
and inflectional rules, semantical context, and can also
identify stylistic errors.

Most of the methods presented above can be applied to
any typed text, regardless of the input device. As various
input techniques become more and more popular, the classic
correction techniques have been improved to consider both
the text and the device particularities. Goodman et al. [9]
presented an algorithm for soft keyboards that combines a
language model and the probabilities that the user hits a key
outside the boundaries of the desired key. Kristensson and
Zhai [10] proposed an error correction technique for stylus
typing using geometric pattern matching. The T9 text input
method for mobile phones can also be included here, as it
considers the correspondence between keys and characters
to predict words.

An error correction algorithm for chording keyboards is
presented by Sandnes and Huang [11]. Firstly, they classify
chording errors in three categories similar to the character
errors: deletions, when the user does not press one of the
required keys, insertions, when the user presses an extra key,
and substitutions, when the user makes a mistake between
adjacent fingers. Then, starting from the assumption that
most words have very few errors, they describe an algorithm
that can correct words that contain one deletion, insertion,
or substitution.

III. ALGORITHM

The algorithm that we propose focuses on individual
errors, without considering any contextual information, and
is based on the maximum a posteriori probability principle.
As we designed it to correct errors from text typed with
a five-key chording keyboard, we will name it 5keys-MAP.
The first part of the algorithm was presented in our previous
work, but, to make this paper self-contained, we will also
present it in the following.
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A. MAP Algorithm

The starting point is the noisy channel approach [12],
where the typing process is seen as sending information over
a communication channel. The symbol at the channel input,
x, is the word to be typed and the channel output, y, is what
has actually been typed (Figure 1).

Channelx = bat y = oat

noise

Figure 1. Typing seen as a sending information over a noisy channel

The MAP algorithm will find the string x̂, which is
the most likely in the sense of maximizing the posterior
probability p(x|y) over all x ∈ S. The set S contains all the
possible candidate strings. If we denote by p(x) and p(y) the
distributions for the channel input and output, respectively,
then

x̂ = argmax
x∈S

p(x|y) (1)

= argmax
x∈S

p(y|x)p(x)
p(y)

(2)

= argmax
x∈S

p(y|x)p(x), (3)

where (2) follows from Bayes’ rule.
Because our goal is to design a spelling algorithm, we

can reduce the set of candidates from all possible strings
to dictionary words. Then, assuming that the typing of each
letter depends only on the intended letter and not on previous
or successive letters, we can write

p(y|x) =
i=N∏
i=1

p(yi|xi) , (4)

where yi it the ith letter of the typed word, xi is the intended
letter, and N is the word length. The conditional probability
p(yi|xi) is the probability that the character yi is typed
in lieu of xi. The prior probability, p(x), is given by the
frequencies of the dictionary entries in English language.

For example, given the typed word y = oat and the
candidate x = bat, we need to compute the posterior prob-
ability p(bat|oat). This is proportional the product between
the likelihood p(oat|bat) and the prior probability p(bat).
We will denote this product by F (oat|bat):

F (oat|bat) = p(oat|bat)p(bat) (5)
= p(o|b)p(a|a)p(t|t)p(bat). (6)

The prior probabilities, p(x), were obtained from the
British National Corpus, containing approximately 100 mil-
lion words [13]. From this set, we only considered the

items that appeared at least five times, obtaining a dictionary
with 100 944 entries (including inflected forms, such as
declensions and conjugations). The confusion probabilities,
p(yi|xi), were estimated experimentally.

The method described so far is the same as in our previous
work on error correction, and can be applied to substitution
errors, when the intended and the typed words have the
same length. In the following, we will extend it to also
consider error types such as missing or extra characters, or
concatenated or split words. For this, besides the prior and
confusion probabilities, we will use the probabilities that
a letter is added or deleted from a word, the probability
that a space character is added, and the probability that a
space character between words is deleted. These values will
be estimated experimentally from the same data set as the
confusion probabilities.

B. Error Types

Before explaining the algorithm, it is useful to enumerate
the errors that we will consider.
• Substitutions, when one letter is replaced by another

(e.g., housa instead of house).
• Additions, when an extra letter is added to a word (e.g.,

housae instead of house). The probability to add a letter
to a word is denoted as pAdd.

• Deletions, when a letter is missing from a word (e.g.,
hous instead of house). The probability to delete a letter
is denoted as pDel.

• Extra space, when a word is split by an added space
character (e.g., hou se instead of house). The corre-
sponding probability is denoted as pSpAdd.

• Missing space, when the space between
consecutive words is missing (e.g.,
thehouse instead of the house). The corresponding
probability is denoted as pSpDel.

• Replacing a letter by a space (e.g., ho se instead of
house).

• Replacing a space by a letter (e.g., theohouse instead
of the house).

• Any combination of two of the above-mentioned errors.

C. Error Correction Algorithm

For every typed word, where by typed word we mean a set
of letters separated by space characters, we will consider as
candidates the words or bigrams obtained through the above
mentioned operations. Then, we will determine the posterior
probabilities using the MAP rule, and choose the most likely
candidate. In case of substitutions, the algorithm is the same
as in the previous subsection. For other error types, we
also use the probabilities of the corresponding operations.
In (8) and (10), we provide two examples for computing the
posterior probabilities. As now we also analyze sets of two
words, we need to know word bigram frequencies. These
will also be estimated from the British National Corpus.
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If we want to consider split words too, we have to go one
step further and analyze groups of two consecutively typed
words. For example, if the two words are dictio and nary,
a candidate will be dictionary, and the posterior probability
is given in (12).

The algorithm can be summarized in three steps, enu-
merated below. To make things clearer, we also provide
an example, when the typed text is “the dict ionary istoo
heavty”, and the intended text is “the dictionary is too
heavy”.

1) Analyze each individual word:
For each of the, dict, ionary, istoo, and heavty, we
find the most likely candidates, named individual
candidates, and the posterior probabilities. The results
are given in lines 2 and 3 of Table I. We mention that
the posterior probabilities from the table have been
scaled to avoid working with very small numbers.

TABLE I. THE MOST LIKELY CANDIDATES AND THE POSTERIOR
PROBABILITIES FOR EACH TYPED WORD AND FOR GROUPS OF TWO

TYPED WORDS

Typed word the dict ionary istoo heavty
Individual candidate the diet i nary is too heavy
Posterior probability 99.99 0.66 0.01 0.86 0.45

Split candidate theodicity -
Posterior probability 0.001 -

Split candidate dictionary -
Posterior probability 0.04 -

2) Analyze groups of two consecutive words:
At this step, we take groups of two consecutive words
and check if they can be part of a split original word.
The possible candidates (named split candidates) and
the corresponding probabilities are provided in lines 4
- 7 of Table I. A “-” sign means that there were no
candidates.

3) Decide if a word was split:
The last step is to decide between the candidates from
the previous steps, by comparing the individual and
split probabilities from Table I. If the probability of
the split candidate is higher than at least one of the

individual probabilities, we decide that a word was
split. The probability for theodicity is smaller than
both the probabilities for the and diet, so we decide
that there was no split. However, the probability for
dictionary is higher then the probability for i nary, so
we decide that for the typed bigram dict ionary, the
intended word was dictionary. The candidates in bold
font from the table are the most likely.
Assume now that the probability of the individual can-
didate diet is 0.0001. This is lower than the probability
for theodicity, but the typed word dict cannot be part
of two split words. To solve this, we will assign it to
the split candidate with higher probability, in our case
this being dictionary.

IV. EVALUATION DATA

In order to gather enough data to evaluate the proposed
algorithm, we asked 10 students from our university to type
using a chording keyboard prototype. The prototype has the
keys placed around a computer mouse and is presented in
Figure 2. We designed the prototype in this way because
we wanted the subjects to see a practical application of a
chording device: allowing typing and screen navigation at
the same time, with only one hand. The buttons are placed
so that they can be easily operated while holding the mouse
with the palm. The keyboard is designed using an Arduino
Pro Mini microcontroller board and communicates with the
computer by Bluetooth.

The participants were asked to type for 10 sessions of 30
minutes each, while sitting at a desk. Each session consisted
of three rounds of 10 minutes, separated by breaks of two
minutes. In the beginning of each round, the participants
warmed up by typing each letter of the alphabet. During the
warm-up, a help image showing the key combination for the
letter to be typed was displayed. Afterwards, the help image
was no longer available and the participants typed sentences
chosen from a set considered representative for the English
language [14]. These sentences were pre-prepared before the
experiment to contain only small letters and no punctuation

F (housse|house) = p(housse|house)p(house) (7)
= p(h|h)p(o|o)p(u|u)p(s|s)pAddp(e|e)p(house) (8)

F (thedob|the dog) = p(thedob|the dog)p(the dog) (9)
= p(t|t)p(h|h)p(e|e)pSpDelp(d|d)p(o|o)p(b|g)p(the dog) (10)

F (dictio nary|dictionary) = p(dictio nary|dictionary)p(dictionary) (11)
= p(dictio|dictio)pSpAddp(nary|nary)p(dictionary) (12)
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Figure 2. Chording keyboard prototype used during the typing study

signs (for example, “February is the shortest month.” was
changed to “february is the shortest month”).

A Java application was designed to display the text to
be typed and to monitor the pressed keys. A screenshot of
the application is shown in Figure 3. The top-left window
contains the text to be typed and the bottom-left window
represents the typing area. The help image is displayed on
the right.

Figure 3. The interface of the Java application used during the study

Because we wanted to evaluate an error correction mecha-
nism, we instructed the participants not to correct their mis-
takes (however, this was not enforced and they could delete
typed text). As a reward for the time commitment during the
experiment, they received a fixed monetary compensation
for the first nine typing sessions. To provide additional
motivation, for the last session, the reward was proportional
to the number of typed words and to the typing accuracy.

The total amount of data gathered during the experiment
consists of 40 640 words, of which 4109 (10.11%) contain
errors. Of these, 3120 (75.93%) are substitution errors. The
remaining 989 errors occurred when people did not type
a letter (e.g., hous instead of house), typed an extra letter
(housee instead of house), the space between words was
missing (thehouse instead of the house), or when whole
words were missing, added, or the topic of the sentence
changed.

The total number of typed characters is 220 910, from
which 6428 (2.91%) are errors. We used these characters to
determine the confusion matrix, which is a square matrix
with rows and columns labeled with all the characters that
can be typed. The value at position ij shows the frequency of
character j being typed when i was intended. The values are
given as percentages from the total number of occurrences
for character i and represent the confusion probabilities used
by the algorithm.

V. CORRECTION RESULTS

The error correction mechanism was implemented in
MATLAB and Python. To avoid overfitting, we used 10-fold
cross-validation when determining the confusion matrix and
evaluating the algorithm. As references, we used MsWord
and iSpell. For each typed word, these algorithms return an
ordered list of candidates. We considered the first one, which
is the most likely, as the correction result. In addition, we
compared the results with those from our previous work,
which only focuses on substitution errors.

The results for both all-error-types and substitution-only
scenarios are shown in Figure 4. The error rate after ap-
plying the algorithm is 2.17%, and, as expected, is lower
than when considering only substitution errors (3.69%). For
MsWord, considering all error types does not bring such a
big improvement, the error rates being 5.15% and 5.57%,
respectively. It is surprising that when we consider more
error types, the error rates increase for iSpell. The most
probable explanation is that for each typed word there are
more candidates now, some of different lengths, and it
is more difficult to choose the correct one. Or that more
correctly typed words are changed by this algorithm.

In Table II, we show the initial error distribution and
how many errors of each type were not corrected by the
algorithm. It can be noticed that the correction method is
less efficient for deletions, when a word has been split, and
for combined error types. In the case of deletions, the typed
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Figure 4. Overall error rates for the 5keys-MAP, MsWord, and iSpell
algorithms, when considering all error types and only substitution errors,

respectively
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TABLE II. ERROR DISTRIBUTION FOR THE EVALUATION TEXT, BEFORE AND AFTER APPLYING THE CORRECTION ALGORITHM

Error type Substitutions Additions Deletions Extra space Missing space
Before 3120 248 187 12 93
After 522 17 77 8 14

Error type Letter → space Space → letter Combined Other Added errors
Before 134 156 130 29
After 66 6 69 29 68

word length becomes smaller, and shorter words are usually
more difficult to correct [5]. The same reasoning can be
applied in the case of split words: the two components are
considered as individual words, and their length is obviously
smaller than the length of the correct word.

The results of the 5keys-MAP algorithm are clearly better
than for MsWord and for iSpell. However, one should not
forget that the dictionaries used by the three methods are
not the same, and this can affect the results. Moreover, our
algorithm is specifically designed for a five key chording
keyboard, while MsWord and iSpell can be applied to any
text input device with the same results.

VI. CONCLUSION

In this paper, we presented a MAP-based error correction
mechanism for five-key chording keyboards. It is an isolated-
word correction method, focusing on individual words with-
out considering the context.

For the evaluation text, the algorithm reduced the error
rate from 10.11% to 2.17%. This is more than two times
lower than for MsWord (5.15%) and more than three times
lower than for iSpell (6.69%). This advantage is due to
the MAP algorithm, which takes into account the prior
distribution of words and the device-dependent confusion
probabilities.

The comparison between our algorithm, MsWord, and iS-
pell was done by only analyzing the first proposed candidate.
We chose this approach because one possible use of chording
keyboards is in dynamic environments, such as walking in
crowded places or riding a bike, when users cannot continu-
ously look at the typed text. Therefore, the error correction
mechanism should run automatically, without requiring user
supervision. In more static situations (for example when the
keys are placed around a computer mouse), the most likely
candidates can be displayed and the user will choose the
desired one.

The correction algorithm was designed for a specific key-
board and mapping, but can be easily adapted to other input
devices by updating the confusion matrix. One possibility to
improve the algorithm is to implement an adaptive approach,
starting with a general confusion matrix and update it based
on what one types. Words that are typed more often can
have their prior probability increased, becoming more likely
than other candidates. Another natural improvement is to
consider the typing context.
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