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Abstract—With the recent popularity and ubiquity of drones, 

there had been an increasing demand to deploy drones for the 

detection, localization and tracking of objects in a scene (e.g., 

pedestrians, cars, etc.). The problem with a single camera 

drone is that it is impossible to estimate distances from a single 

image. Although the drone can fly to another position to take a 

second image, the object that we are tracking may have moved 

during that time interval, rendering traditional stereo-vision 

algorithms useless. In this paper, we propose a novel system 

that instructs the drone to fly in a specific pattern so as to 

achieve a large baseline, and use three images (instead of the 

traditional two) to recover the distance to the object that is 

moving. The experimental results show that our algorithm can 

estimate depth with better or equal accuracy than other state-

of-the-art methods. This algorithm would have great 

significance for small or low cost drones which are unable to 

carry additional devices (apart from the built-in camera), thus 

enhancing their ubiquity of use.  

Keywords - computer vision; drone; stereo-vision; distance 

extraction; object detection; location mapping. 

 

I.  INTRODUCTION 

With the recent popularity and ubiquity of drones or 
Unmanned Aerial Vehicles (UAV), they have been 
increasingly deployed in various tasks such as object 
localization and tracking. Drones often carry a high-
definition camera and it can be used for surveillance, 
expedition guidance, search and rescue, etc. However, with a 
single image of an object, it is usually impossible to obtain 
the distance of the object from the camera because we 
usually do not know the size of the object. 

Traditionally, such a problem can be solved with stereo-
vision, i.e., putting a second camera some distance away and 
computing the disparity of the object in the two images. 
However, existing stereo-vision algorithms require that the 
distance between the two cameras (i.e., the baseline) be fixed 
because the image disparity is a function of the object 
distance and the baseline.  

Drones can be and have been fitted with two cameras for 
their mission. Carrillo et al. [1] showed the possibility of 
using stereo vision with inertial navigation system which can 
estimate the UAV’s position accurately. They used two 
separated fixed camera on the drone. Knoppe [2] also 
proposed a system for a drone carrying a stereo camera to get 
ground surface scanning data. Schauwecker and Zell [3] 
introduced more sophisticated method for navigating Micro 
Aerial Vehicles (MAV) using four cameras. They performed 

stereo matching separately for the downward and forward of 
the MAV. 

Certainly, the use of additional cameras could generate 
problems for a drone such as increased payload, insufficient 
power, reduced duration of flight, instability, etc. However, a 
more important problem is that the baseline between the two 
cameras is short relative to the distance of the object, 
resulting in very large errors in distance estimation. Since the 
drone can fly to any location with little or no restrictions, the 
obvious solution is to carry a single camera and fly as far as 
the environment allows (i.e., without losing sight of the 
object or crashing into an obstacle) so as to maximize the 
baseline. Traditional stereo-vision algorithms will still work, 
and it does not matter whether the two images are taken from 
two separate cameras, or from a single camera that had 
moved. This, however, works only if the target object 
remains stationary between the two views.  

Hence, in this paper, we propose a novel algorithm that 
enables a drone carrying a single camera to produce an 
accurate estimate of the distance of a stationary or moving 
object. Our algorithm works by instructing the drone to fly in 
a specific pattern so as to achieve a large baseline, and use 
three images (instead of the traditional two) to recover the 
distance to the (moving) object.  

Our proposed system is very effective for small or low 
cost drones (e.g., Parrot rolling spider [4]) which are unable 
to carry additional devices (apart from the built-in camera). 
This increases the ubiquity of using drones for object 
localization and tracking. Once the distance of the object 
from the drone is known (and angle, which can be obtained 
from a magnetic compass), we can map the object location to 
any global coordinate system (assuming that we know the 
drone’s position e.g., through Global Positioning System 
(GPS)).  

The rest of the paper is organized as follows: Section II 
discusses some related work, and Section III describes the 
proposed algorithm. Section IV discusses the implementation 
details and Section V provides the experimental results. 
Section VI concludes the paper.  

 

II. RELATED WORK 

Similar work has been done by Zhang and Liu [5]. They 
proposed a system where a drone estimates relative altitude 
from a ground object with (or without) movement if the size 
of the object is known. In our system, we do not make the 
assumption that we know the size of the object. This means 
that our algorithm is more generic and can be extended to 
locate and track any kind of objects. Sereewattana et al. [6] 
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did depth estimation of color markers for automatic landing 
control of UAV using stereo vision with a single camera. In 
their work, the color markers are static (i.e., not moving) and 
are close to the drone (below 3 meters). Kendall et al. [7] 
also proposed novel system for UAV which tracking an 
object of known color and size to get the depth information. 
For our case, our objects can be any size, moving and can be 
arbitrarily far (limited by the accuracy of the object detection 
algorithm).  

A moving camera can also be compared to a Pan-Tilt-
Zoom (PTZ) camera. Wan and Zhou [8] introduced a novel 
stereo rectification method for a dual-fixed-PTZ-camera 
system that can recover distance accurately. However, their 
PTZ camera pair is fixed so the object may disappear from 
the cameras’ view. In comparison, our system can fly to 
different positions to avoid occlusion, as well as choosing the 
length of the baseline. Tran et al. [9] proposed a system that 
performed face detection using dual fixed PTZ cameras for 
large area security system. They showed good result for the 
detection rate (99.92%) with indoor detection range (5 to 
20m). However, their work is concerned about object 
recognition rather than to estimate the distance of the object 
from the camera.  
 

III. PROPOSED ALGORITHM 

A. System Overview 

Figure 1 shows an overview of our system. Our system 
consists of a drone mounted with a single camera at position 
(xd, yd). Using the algorithm described later in this section, 
the drone will compute the distance Z and angle 𝜃𝑑 of an 
object (e.g., pedestrian) relative to itself, and then use this 
distance to compute the position of the object (x, y) in global 
coordinates. We assume that the position of the drone is 
always known (e.g., through GPS, or WiFi positioning, or 
from Inertial Navigation System (INS), if available).  
 

 
Figure 1. Overview of the localization system 

 

After calculating the position of the object, the drone 

will compute a new position for it to fly to (if the object has 

moved) so that it will continue to have the object in its view. 

This process can be repeated as often as necessary. Figure 2 

gives a flowchart of the system.  

 

 
Figure 2. System flowchart 

 

B. Object detection 

Our system is not restricted to work on only one class of 
objects. It can be extended to work on any class of objects, 
but we need to have a reliable object detection algorithm for 
it. In this paper, we demonstrate our system on pedestrians, 
and we make use of the Histogram of Oriented Gradients 
(HOG) pedestrian descriptor from the OpenCV 2.4.10 library 
(“peopledetect.cpp”). Figure 3 shows an example of the 
pedestrian detection algorithm in OpenCV, which displays a 
bounding box over the detected pedestrian.  

 

 
 

Figure 3. Example of pedestrian detection from the drone 

(𝑥, 𝑦) 

(𝑥𝑑 , 𝑦𝑑 , 𝜃𝑑) 
 
Z 

 

Object detection 

Take off 

Center the object in the view 

Flying sideways & Taking images 

Compute distance and angle 

Convert to global coordinates 

Fly to a new position 

Land 
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The pedestrian detector from OpenCV can detect more 
than one person in a scene. Like with any other tracking 
algorithm, we need to make use of additional information 
(e.g., color, size, motion vectors, etc.) to correctly match the 
object in different scenes. However, our experiment shows 
that if the pedestrian is further than 11m from the drone’s 
camera, the false detection rate becomes significantly 
increased. Thus in our experiments, we restrict our study to 
detect pedestrians at depths below 11 meters. The design of a 
more accurate pedestrian detector is not in the scope of our 
work.  
 

C. Camera Calibration 

In order to obtain an accurate estimation of the depth of 
an object, the camera needs to be calibrated. The basic 
concept of the classical structure-from-motion algorithm is 
from the geometry shown in Figure 4. 

 

 
Figure 4. Classical disparity formula diagram 

 
From Figure 4, using similar triangles, the following 

relation for depth, Z, can be derived easily: 
 

𝑍 = 𝑓
𝑇

𝑥𝑟−𝑥𝑙
                                    (1) 

 
where f is the focal length, T is the baseline, and xr − xl is 
the image disparity. The camera needs to be calibrated to 
find f in order to be able to obtain Z based on the image 
disparity. 

However, in our formulation (discussed in the next 
section), we need another important parameter which maps 
the image offset p (position of the object in the image from 

the image center) to the angle  subtended by the object 
from the image center (see Figure 5). As the image offset p 
is dependent entirely on the focal length, we choose to 

calibrate for /p instead of the focal length f. 
 
 
 

 

Figure 5. Geometry of view angle calibration 

 
We can obtain this value by placing an object at various 

positions in the drone’s field of view (Figure 6) and 

measuring the image offset p and the angle subtended . 
 

   
 

Figure 6. Images of an object taken at various positions 

 

Table I shows the data measured from Figure 6. While the 

/p ratio is not constant throughout the entire image, the 

variation was found to be quite small (0.001°/pixel) between 

the two cases where the object is in the image center and at 

the image edge.  

TABLE I.  CALIBRATION OF THE DRONE’S CAMERA 

Z (cm) P (cm) arctan(Z/P) (°) p (pixels)  /p (°/pixels) 

92 57 31.78° 320 0.099 

 
At the image edge of 320 pixels (for a 640x480 pixel image), 

the /p ratio is found to be 0.099°/pixels. 

D. Baseline calibration 

Another important parameter to calibrate is the distance 
between the drone positions at each successive image 
capture. This represents the baseline between the images. To 
obtain these distances, the drone is instructed to take a 
sequence of images at constant rate while flying with a preset 
speed to the left (or right). To reduce the error in estimating 
depth, the length of the baseline should be as long as possible. 

In our calibration experiments, we allow the drone to 
takeoff and hover for a few seconds until it has stabilized, 
and then we send an instruction to the drone to fly to the left 
(we choose ‘left’ for the ease of discussion) at the maximum 
speed (i.e., roll angle phi = -1.0, normalized), while taking 
images at 500ms interval for a total of 11 images. These 

P (cm) 

𝜃 

Z (cm) p (pix) 
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values were chosen after numerous tries to give the best 
tradeoff between distance flown and the time taken to 
complete, as the object (pedestrian) may have moved during 
that time interval.  

To measure the length of the baselines, we placed 
numerous markers on a wall, and made the drone fly parallel 
to the wall, taking images as mentioned above. From the 
images, we can determine the positions of the drone where 
the images were taken. We observe that the first image (i.e., 
at position 0) was exactly the same as the image at hovering 
(i.e., it was taken before the drone has even started to rotate 
(roll)), and the second image (i.e., at position 1) was taken 
just after the drone has completed its rotation (roll) to the left 
(but before any horizontal translation takes place – so no 
change in its position). The rest of the images (at positions 2 
to 10) were of increasing distances between each other, 
which is due to the inertial and the acceleration of the drone, 
which needed some time to accelerate to the desired speed.  

We repeated the experiment three times, and averaged 
the results of the four experiments to produce the baselines 
shown in Table II. 

TABLE II.  ELINE CALIBRATION 

position 
Average distance from previous 

position (cm) 

0            - (Hover) 

1            0 (Rotate) 

2 47.50 

3 51.75 

4 75.75 

5 91.25 

6 100.5 

7 108.75 

8 126.75 

9 146.50 

10 189.25 

 
The baseline between any two images is simply the sum 

of the values between them. For example, the baseline 
between image 0 and image 5 is 47.50+51.75+75.75+91.25 
= 266.25(cm). 
 

E. Depth estimation 

We now present our formulation for estimating the depth 
of an object from the drone’s camera images and its position. 
We will divide our discussion into 3 parts (1) stationary 
object, (2) moving object in a direction parallel to the 
drone’s flight, and (3) moving object in a direction 
perpendicular to the drone’s flight. For a moving object in an 
arbitrary direction, a similar analysis has been performed but 
the result is not shown here due to the lack of space.  

1) Stationary Object 

If the object is stationary, then our problem reduces itself 
to the classical case of stereo-vision. Figure 7 illustrates the 
geometry needed for the computation of depth Z in this case.  

 
 
 
 

 

 
Figure 7. Classical stereo vision method for the stationary pedestrian  

 
We will first instruct the drone to takeoff, and then hover 

for a few seconds for it to stabilize itself. Then, we will call 
the object detector function to find any objects within its 
view. For the ease of discussion, let us use the example of 
pedestrian detection. After the drone is stabilized, we call the 
HOG pedestrian detector from the OpenCV library. If more 
than one pedestrian is found, we need to choose which 
pedestrian is the one that we are trying to localize. After we 
have found the pedestrian, we rotate the drone (yaw) so that 
the pedestrian (i.e., the centroid of the bounding box) is in 
the center of the image (see Figure 2 for an overview of the 
system).  

The next step is the most important step of the algorithm. 
The drone is instructed to fly left and take 11 images using 
the same parameters as in the baseline calibration. After the 
images are taken, the drone will return to its hovering state 
and then examine whether the pedestrian is detected in each 
image. For example, if the pedestrian disappears at image 6, 
then the drone will use image 0 and image 5 to calculate the 
baseline (otherwise use the last image so as to obtain the 
largest baseline). From the image offset p of the pedestrian in 

image 5, we can also use our calibrated /p to find the angle 

  at image 5.  
From Figure 7 we can obtain the equation:  
 

𝑍 =
𝑇

tan𝜃                                (2) 

 
from which we can compute the depth Z. 
 

2) Object moving parallel to drone’s flight 

Here, we assume that the object (pedestrian) is moving at a 
constant speed in a straight line. If he is not, we can 
approximate the pedestrian movement as piecewise linear. 
The loop in Figure 2 needs to be repeated for more accurate 
localization results. Figure 8 illustrates the geometry needed 
for the computation of depth Z in this case. 

 

𝜃 
Z 

T 
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Figure 8. Geometry for pedestrian moving parallel to the baseline 

 
The key idea here is that we now need three images, at 

position 0, 1 and n (the last image where the pedestrian can 

still be seen) to compute the depth Z. Due to the fact that at 

position 1 the drone has just completed its rotation (roll) to 

the left, the drone has not moved yet but the pedestrian had 

moved by a distance C. This gives us the very important 

image offset p1 that allows us to calculate 1. At the nth 

position, at angle 2, we know that the pedestrian has moved 

by an additional distance of C × (n − 1) . So from the 

geometry, we can generate the following relation: 
 

𝑍tan𝜃2 = 𝑇 − 𝐶 × 𝑛                        (3) 
 

𝐶 = 𝑍tan𝜃1                                (4) 
 

Eliminating ‘C’, we obtain the following equation. 

 

𝑍 =
𝑇

(𝑡𝑎𝑛𝜃 )2 +𝑛(𝑡𝑎𝑛𝜃1)
                          (5) 

 
from which we obtain the depth Z.  

If the pedestrian moves to the right instead, equation (5) 

is still valid. In that case, the pedestrian may disappear from 

the image much sooner. To overcome this, we can simply 

make the drone fly to the right for a second computation.  

 

3) Object moving perpendicular to drone’s flight 

In the case of a pedestrian moving perpendicular to the 

baseline of the drone, the computation is very simple. Figure 

9 illustrates the geometry needed for the computation of 

depth Z in this case. Assuming that the pedestrian starts 

from a distance of 𝐶 × 𝑛 + 𝑍 from position 0, after n images, 

he would be at a distance Z away from position 0. This is 

the same as the stationary case and we simply need equation 

(2) to obtain the depth Z.  

 

 
 

Figure 9. Geometry for pedestrian moving perpendicular to the baseline 

 

F. Transformation to global coordinates 

After we have obtained the depth Z and angle , we can 

use them together with the drone position to calculate the 

global coordinates of the pedestrian. Figure 10 shows the 

geometry for calculating the coordinate transformation for 

each of the 3 cases. 
 

 
 

Figure 10. Coordinate transformation 

 

In Figure 10,  (𝑥𝑑2, 𝑦𝑑2, 𝜃𝑑) 𝑎𝑛𝑑 (𝑥𝑑1, 𝑦𝑑1, 𝜃𝑑)  refers the 

positions of the drone (which is assumed to be known). 

(𝑥𝑠, 𝑦𝑠), (𝑥𝑝, 𝑦𝑝), (𝑥𝑣, 𝑦𝑣) are the positions of the pedestrian 

in each of the three cases of stationary, moving parallel, or 

moving perpendicular (vertical) to the baseline, respectively. 

Note that the initial coordinate of the drone (𝑥𝑑1, 𝑦𝑑1, 𝜃𝑑) is 

vital which is used as boundary condition for coordinate 

transformation. From this geometry, we can directly 

C 

Z 𝜃2 𝜃1 

T 

C × (n − 1) 

C 

𝜃 
Z 

T 

C × (n − 1) 

(𝑥𝑝, 𝑦𝑝) 

𝜃 

(𝑥𝑑2, 𝑦𝑑2, 𝜃𝑑) 

𝜃𝑑 

T 

Drone′s coordinates 

Global coordinates 

(𝑥𝑑1, 𝑦𝑑1, 𝜃𝑑) 

(𝑥𝑠, 𝑦𝑠) 

(𝑥𝑣, 𝑦𝑣) 
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calculate the position of a pedestrian’s position using one of 

the three following equations. 

 

(𝑥𝑠, 𝑦𝑠) = (𝑥𝑑1 +
tan𝜃

𝑇
sin𝜃𝑑  , 𝑦𝑑1 + 

tan𝜃

𝑇
cos𝜃𝑑)               (6) 

 

(𝑥𝑝, 𝑦𝑝) = (𝑥𝑑1 + (𝑇 −
𝑇(𝑡𝑎𝑛𝜃)

(𝑡𝑎𝑛𝜃 )2 +𝑛(𝑡𝑎𝑛𝜃1)
) cos𝜃𝑑, 

𝑦𝑑1 + (𝑇 −
𝑇(𝑡𝑎𝑛𝜃)

(𝑡𝑎𝑛𝜃 )2 +𝑛(𝑡𝑎𝑛𝜃1)
) sin𝜃𝑑)                (7) 

 

(𝑥𝑣, 𝑦𝑣) = (𝑥𝑑1 + (
tan𝜃

𝑇
− C × n) sin𝜃𝑑, 

𝑦𝑑1 + (
tan𝜃

𝑇
− C × n) cos𝜃𝑑)                           (8) 

 

IV. IMPLEMENTATION 

A. Hardware 

The drone used in this study is the Parrot AR.Drone2 
GPS edition [10]. It has a forward-looking 720p HD camera 
and a vertical QVGA camera. The drone is controlled from 
an Intel i5 laptop running Windows 8.1 with 4GB of RAM.  

 

 
 

Figure 11. Parrot AR.Drone2.0 

B. Software 

The software we used to control the drone is the “CV 
Drone” package which is available from Github [11]. The 
image processing routines were from the OpenCV 2.4.10 
library, and the entire system was developed in Microsoft 
Visual Studio 2013.  

 

V. EXPERMENTAL RESULTS 

A. Experiments 

To evaluate our proposed algorithm, we conduct 

experiments for each of the three cases of stationary, 

moving parallel and moving perpendicular pedestrians. For 

each case, we perform the experiment four times with the 

pedestrian at 2.75, 5.5, 7.25, and 9 meters from the drone. 

As the HOG pedestrian detection from the OpenCV library 

did not work well from 11 meters and beyond, we stopped 

the experiment at 9 meters. 

For the moving cases, the pedestrian was asked to move 

in the required direction at a speed of 0.6 m/s, covering a 

distance of about 3m in the 11 images that was captured. 

Examples of the images captured by the drone (at 5.5m, 

stationary) are shown in Figure 12. Notice that between the 

first and second image, there is only a rotation of the drone 

and there is no horizontal movement.  

 

  

First image Second image (rotate) 

  
nth image Last detected image 

 
Figure 12. Examples of Image Sequence and pedestrian detection (5.5m, 

stationary pedestrian) 

 

For each of the experiments, we compute depth error 

 

Depth error (%) = |𝑍 − 𝑍′|/𝑍                     (9) 

 

where Z refers to the actual depth while 𝑍′  indicates 

measured depth. Also, since we compute the pedestrian 

position in global coordinates, we also compute the position 

error using the following equation: 

 

Position error (%) = (√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)/𝑍    (10) 

 

Here, (𝑥, 𝑦) refers the actual position of a pedestrian while 

(𝑥′, 𝑦′)  indicates the measured position. The results are 

shown in Tables III to V. 

TABLE III.  STATIONARY PEDESTRIAN 

Actual depth, 

Z(m) 

Measured 

depth, Z’(m) 

Depth error 

rate (%) 

Position error 

rate (%) 

2.75 2.35 14.5 16.5 

5.50 6.01 9.3 18.0 

7.25 7.51 3.6 12.2 

9.00 8.96 0.4 7.2 

TABLE IV.  PERPENDICULARLY MOVING PEDESTRIAN 

Actual depth, 

Z(m) 

Measured 

depth, Z’(m) 

Depth error 

rate (%) 

Position error 

rate (%) 

 4.50 4.08 9.3 9.4 

7.60 6.69 12.0 12.9 

 5.45 5.33 2.2 5.86 

6.90 6.75 2.2 2.2 

TABLE V.  PARALLELLY MOVING PEDESTRIANS 

Actual 

depth, Z(m) 

Measured 

depth, Z’(m) 

Depth error 

rate (%) 

Position error 

rate (%) 

2.75 3.43 24.7 27.7 

5.50 6.20 12.3 12.7 

7.25 8.28 14.2 22.8 

9.00 9.82 9.1 11.7 
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We can see from the tables that with the exception for the 
parallel case at the nearest distance (i.e., 2.75), all the 
experiments yield good results at < 15% depth error rate.  
 

B. Comparison with other techniques 

In this section, we compare our algorithm with the 
classical stereo-vision technique of computing image 
disparity and then calculating the distance using equation 
(1). Table VI shows the results. 

TABLE VI.  COMPARISON WITH THE CLASSICAL METHOD 

(STATIONARY PEDESTRIAN) 

 Classical method Our method 

Actual 

depth, 

Z(m) 

Measured 

depth, Z’(m) 

Depth error 

rate (%) 

Measured 

depth, Z’(m) 

Depth error 

rate (%) 

2.75 2.45 11.0 2.35 14.5 

5.50 7.18 31.4 6.01 9.3 

7.25 8.79 21.2 7.51 3.6 

9.00 10.01 11.2 8.96 0.4 

 
While our method performs worse at short depth (2.75m), 

it actually works better than the classical method for the 

larger depths. We further compare our method with the 

method proposed by Sereewattana et al. [6], which is only 

evaluated for stationary objects less than 3m in depth. Table 

VII shows the results.  

TABLE VII.  COMPARISON WITH OTHER SYSTEMS (STATIONARY CASE) 

System Accuracy (%) 

M. Sereewattana et al. [6] 

(Only for stationary object below 3m) 
3.9 ~ 12.4 

Classical stereo vision depth extraction 11.0 ~ 31.4 

Our system 0.4 ~ 14.5 

 
The results showed that our algorithm can estimate depth 
with better or equal accuracy than other state-of-the-art 
methods. 

VI. CONCLUSION AND FUTURE WORKS 

This paper proposed a novel system to estimate the 
location of an object from a single moving camera mounted 
on a drone. The proposed algorithm instructs the drone to fly 
in a specific pattern, which allows us to estimate the 
baselines between images so as to obtain depth. The 
algorithm is not restricted to any particular class of objects 
and can be easily extended to any class of objects. In 

addition, our formulation makes the novel use of three 
images, which allows us to extract depth even when the 
object is moving (with the assumption of constant speed and 
in a straight line). Experiments showed that our algorithm 
can estimate depth with better or equal accuracy than other 
state-of-the-art methods. 

In this paper, we only reported the analysis and results of 
a pedestrian moving either parallel or perpendicular to the 
drone’s flight, due to the lack of space. We already have the 
analysis of a pedestrian moving in an arbitrary direction, and 
our future work will be directed to complete the experiments 
for it. In addition, we will expand the capability of the 
system to cope with non-linear and non-constant pedestrian 
motion, and also occlusion (e.g., the pedestrian had turned 
round the corner of a building).  
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