
Object Location Estimation from a Single Flying Camera

Insu Kim and Kin Choong Yow

GIST College, Gwangju Institute of Science and Technology

Gwangju, Republic of Korea

e-mail: ahinsutime@gist.ac.kr, kcyow@gist.ac.kr

Abstract—With the recent popularity and ubiquity of drones,

there had been an increasing demand to deploy drones for the

detection, localization and tracking of objects in a scene (e.g.,

pedestrians, cars, etc.). The problem with a single camera

drone is that it is impossible to estimate distances from a single

image. Although the drone can fly to another position to take a

second image, the object that we are tracking may have moved

during that time interval, rendering traditional stereo-vision

algorithms useless. In this paper, we propose a novel system

that instructs the drone to fly in a specific pattern so as to

achieve a large baseline, and use three images (instead of the

traditional two) to recover the distance to the object that is

moving. The experimental results show that our algorithm can

estimate depth with better or equal accuracy than other state-

of-the-art methods. This algorithm would have great

significance for small or low cost drones which are unable to

carry additional devices (apart from the built-in camera), thus

enhancing their ubiquity of use.

Keywords - computer vision; drone; stereo-vision; distance

extraction; object detection; location mapping.

I. INTRODUCTION

With the recent popularity and ubiquity of drones or
Unmanned Aerial Vehicles (UAV), they have been
increasingly deployed in various tasks such as object
localization and tracking. Drones often carry a high-
definition camera and it can be used for surveillance,
expedition guidance, search and rescue, etc. However, with a
single image of an object, it is usually impossible to obtain
the distance of the object from the camera because we
usually do not know the size of the object.

Traditionally, such a problem can be solved with stereo-
vision, i.e., putting a second camera some distance away and
computing the disparity of the object in the two images.
However, existing stereo-vision algorithms require that the
distance between the two cameras (i.e., the baseline) be fixed
because the image disparity is a function of the object
distance and the baseline.

Drones can be and have been fitted with two cameras for
their mission. Carrillo et al. [1] showed the possibility of
using stereo vision with inertial navigation system which can
estimate the UAV’s position accurately. They used two
separated fixed camera on the drone. Knoppe [2] also
proposed a system for a drone carrying a stereo camera to get
ground surface scanning data. Schauwecker and Zell [3]
introduced more sophisticated method for navigating Micro
Aerial Vehicles (MAV) using four cameras. They performed

stereo matching separately for the downward and forward of
the MAV.

Certainly, the use of additional cameras could generate
problems for a drone such as increased payload, insufficient
power, reduced duration of flight, instability, etc. However, a
more important problem is that the baseline between the two
cameras is short relative to the distance of the object,
resulting in very large errors in distance estimation. Since the
drone can fly to any location with little or no restrictions, the
obvious solution is to carry a single camera and fly as far as
the environment allows (i.e., without losing sight of the
object or crashing into an obstacle) so as to maximize the
baseline. Traditional stereo-vision algorithms will still work,
and it does not matter whether the two images are taken from
two separate cameras, or from a single camera that had
moved. This, however, works only if the target object
remains stationary between the two views.

Hence, in this paper, we propose a novel algorithm that
enables a drone carrying a single camera to produce an
accurate estimate of the distance of a stationary or moving
object. Our algorithm works by instructing the drone to fly in
a specific pattern so as to achieve a large baseline, and use
three images (instead of the traditional two) to recover the
distance to the (moving) object.

Our proposed system is very effective for small or low
cost drones (e.g., Parrot rolling spider [4]) which are unable
to carry additional devices (apart from the built-in camera).
This increases the ubiquity of using drones for object
localization and tracking. Once the distance of the object
from the drone is known (and angle, which can be obtained
from a magnetic compass), we can map the object location to
any global coordinate system (assuming that we know the
drone’s position e.g., through Global Positioning System
(GPS)).

The rest of the paper is organized as follows: Section II
discusses some related work, and Section III describes the
proposed algorithm. Section IV discusses the implementation
details and Section V provides the experimental results.
Section VI concludes the paper.

II. RELATED WORK

Similar work has been done by Zhang and Liu [5]. They
proposed a system where a drone estimates relative altitude
from a ground object with (or without) movement if the size
of the object is known. In our system, we do not make the
assumption that we know the size of the object. This means
that our algorithm is more generic and can be extended to
locate and track any kind of objects. Sereewattana et al. [6]

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

did depth estimation of color markers for automatic landing
control of UAV using stereo vision with a single camera. In
their work, the color markers are static (i.e., not moving) and
are close to the drone (below 3 meters). Kendall et al. [7]
also proposed novel system for UAV which tracking an
object of known color and size to get the depth information.
For our case, our objects can be any size, moving and can be
arbitrarily far (limited by the accuracy of the object detection
algorithm).

A moving camera can also be compared to a Pan-Tilt-
Zoom (PTZ) camera. Wan and Zhou [8] introduced a novel
stereo rectification method for a dual-fixed-PTZ-camera
system that can recover distance accurately. However, their
PTZ camera pair is fixed so the object may disappear from
the cameras’ view. In comparison, our system can fly to
different positions to avoid occlusion, as well as choosing the
length of the baseline. Tran et al. [9] proposed a system that
performed face detection using dual fixed PTZ cameras for
large area security system. They showed good result for the
detection rate (99.92%) with indoor detection range (5 to
20m). However, their work is concerned about object
recognition rather than to estimate the distance of the object
from the camera.

III. PROPOSED ALGORITHM

A. System Overview

Figure 1 shows an overview of our system. Our system
consists of a drone mounted with a single camera at position
(xd, yd). Using the algorithm described later in this section,
the drone will compute the distance Z and angle 𝜃𝑑 of an
object (e.g., pedestrian) relative to itself, and then use this
distance to compute the position of the object (x, y) in global
coordinates. We assume that the position of the drone is
always known (e.g., through GPS, or WiFi positioning, or
from Inertial Navigation System (INS), if available).

Figure 1. Overview of the localization system

After calculating the position of the object, the drone

will compute a new position for it to fly to (if the object has

moved) so that it will continue to have the object in its view.

This process can be repeated as often as necessary. Figure 2

gives a flowchart of the system.

Figure 2. System flowchart

B. Object detection

Our system is not restricted to work on only one class of
objects. It can be extended to work on any class of objects,
but we need to have a reliable object detection algorithm for
it. In this paper, we demonstrate our system on pedestrians,
and we make use of the Histogram of Oriented Gradients
(HOG) pedestrian descriptor from the OpenCV 2.4.10 library
(“peopledetect.cpp”). Figure 3 shows an example of the
pedestrian detection algorithm in OpenCV, which displays a
bounding box over the detected pedestrian.

Figure 3. Example of pedestrian detection from the drone

(𝑥, 𝑦)

(𝑥𝑑 , 𝑦𝑑 , 𝜃𝑑)

Z

Object detection

Take off

Center the object in the view

Flying sideways & Taking images

Compute distance and angle

Convert to global coordinates

Fly to a new position

Land

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

The pedestrian detector from OpenCV can detect more
than one person in a scene. Like with any other tracking
algorithm, we need to make use of additional information
(e.g., color, size, motion vectors, etc.) to correctly match the
object in different scenes. However, our experiment shows
that if the pedestrian is further than 11m from the drone’s
camera, the false detection rate becomes significantly
increased. Thus in our experiments, we restrict our study to
detect pedestrians at depths below 11 meters. The design of a
more accurate pedestrian detector is not in the scope of our
work.

C. Camera Calibration

In order to obtain an accurate estimation of the depth of
an object, the camera needs to be calibrated. The basic
concept of the classical structure-from-motion algorithm is
from the geometry shown in Figure 4.

Figure 4. Classical disparity formula diagram

From Figure 4, using similar triangles, the following

relation for depth, Z, can be derived easily:

𝑍 = 𝑓
𝑇

𝑥𝑟−𝑥𝑙
 (1)

where f is the focal length, T is the baseline, and xr − xl is
the image disparity. The camera needs to be calibrated to
find f in order to be able to obtain Z based on the image
disparity.

However, in our formulation (discussed in the next
section), we need another important parameter which maps
the image offset p (position of the object in the image from

the image center) to the angle  subtended by the object
from the image center (see Figure 5). As the image offset p
is dependent entirely on the focal length, we choose to

calibrate for /p instead of the focal length f.

Figure 5. Geometry of view angle calibration

We can obtain this value by placing an object at various

positions in the drone’s field of view (Figure 6) and

measuring the image offset p and the angle subtended .

Figure 6. Images of an object taken at various positions

Table I shows the data measured from Figure 6. While the

/p ratio is not constant throughout the entire image, the

variation was found to be quite small (0.001°/pixel) between

the two cases where the object is in the image center and at

the image edge.

TABLE I. CALIBRATION OF THE DRONE’S CAMERA

Z (cm) P (cm) arctan(Z/P) (°) p (pixels)  /p (°/pixels)

92 57 31.78° 320 0.099

At the image edge of 320 pixels (for a 640x480 pixel image),

the /p ratio is found to be 0.099°/pixels.

D. Baseline calibration

Another important parameter to calibrate is the distance
between the drone positions at each successive image
capture. This represents the baseline between the images. To
obtain these distances, the drone is instructed to take a
sequence of images at constant rate while flying with a preset
speed to the left (or right). To reduce the error in estimating
depth, the length of the baseline should be as long as possible.

In our calibration experiments, we allow the drone to
takeoff and hover for a few seconds until it has stabilized,
and then we send an instruction to the drone to fly to the left
(we choose ‘left’ for the ease of discussion) at the maximum
speed (i.e., roll angle phi = -1.0, normalized), while taking
images at 500ms interval for a total of 11 images. These

P (cm)

𝜃

Z (cm) p (pix)

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

values were chosen after numerous tries to give the best
tradeoff between distance flown and the time taken to
complete, as the object (pedestrian) may have moved during
that time interval.

To measure the length of the baselines, we placed
numerous markers on a wall, and made the drone fly parallel
to the wall, taking images as mentioned above. From the
images, we can determine the positions of the drone where
the images were taken. We observe that the first image (i.e.,
at position 0) was exactly the same as the image at hovering
(i.e., it was taken before the drone has even started to rotate
(roll)), and the second image (i.e., at position 1) was taken
just after the drone has completed its rotation (roll) to the left
(but before any horizontal translation takes place – so no
change in its position). The rest of the images (at positions 2
to 10) were of increasing distances between each other,
which is due to the inertial and the acceleration of the drone,
which needed some time to accelerate to the desired speed.

We repeated the experiment three times, and averaged
the results of the four experiments to produce the baselines
shown in Table II.

TABLE II. ELINE CALIBRATION

position
Average distance from previous

position (cm)

0 - (Hover)

1 0 (Rotate)

2 47.50

3 51.75

4 75.75

5 91.25

6 100.5

7 108.75

8 126.75

9 146.50

10 189.25

The baseline between any two images is simply the sum

of the values between them. For example, the baseline
between image 0 and image 5 is 47.50+51.75+75.75+91.25
= 266.25(cm).

E. Depth estimation

We now present our formulation for estimating the depth
of an object from the drone’s camera images and its position.
We will divide our discussion into 3 parts (1) stationary
object, (2) moving object in a direction parallel to the
drone’s flight, and (3) moving object in a direction
perpendicular to the drone’s flight. For a moving object in an
arbitrary direction, a similar analysis has been performed but
the result is not shown here due to the lack of space.

1) Stationary Object

If the object is stationary, then our problem reduces itself
to the classical case of stereo-vision. Figure 7 illustrates the
geometry needed for the computation of depth Z in this case.

Figure 7. Classical stereo vision method for the stationary pedestrian

We will first instruct the drone to takeoff, and then hover

for a few seconds for it to stabilize itself. Then, we will call
the object detector function to find any objects within its
view. For the ease of discussion, let us use the example of
pedestrian detection. After the drone is stabilized, we call the
HOG pedestrian detector from the OpenCV library. If more
than one pedestrian is found, we need to choose which
pedestrian is the one that we are trying to localize. After we
have found the pedestrian, we rotate the drone (yaw) so that
the pedestrian (i.e., the centroid of the bounding box) is in
the center of the image (see Figure 2 for an overview of the
system).

The next step is the most important step of the algorithm.
The drone is instructed to fly left and take 11 images using
the same parameters as in the baseline calibration. After the
images are taken, the drone will return to its hovering state
and then examine whether the pedestrian is detected in each
image. For example, if the pedestrian disappears at image 6,
then the drone will use image 0 and image 5 to calculate the
baseline (otherwise use the last image so as to obtain the
largest baseline). From the image offset p of the pedestrian in

image 5, we can also use our calibrated /p to find the angle

 at image 5.
From Figure 7 we can obtain the equation:

𝑍 =
𝑇

tan𝜃 (2)

from which we can compute the depth Z.

2) Object moving parallel to drone’s flight

Here, we assume that the object (pedestrian) is moving at a
constant speed in a straight line. If he is not, we can
approximate the pedestrian movement as piecewise linear.
The loop in Figure 2 needs to be repeated for more accurate
localization results. Figure 8 illustrates the geometry needed
for the computation of depth Z in this case.

𝜃
Z

T

85Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

Figure 8. Geometry for pedestrian moving parallel to the baseline

The key idea here is that we now need three images, at

position 0, 1 and n (the last image where the pedestrian can

still be seen) to compute the depth Z. Due to the fact that at

position 1 the drone has just completed its rotation (roll) to

the left, the drone has not moved yet but the pedestrian had

moved by a distance C. This gives us the very important

image offset p1 that allows us to calculate 1. At the nth

position, at angle 2, we know that the pedestrian has moved

by an additional distance of C × (n − 1) . So from the

geometry, we can generate the following relation:

𝑍tan𝜃2 = 𝑇 − 𝐶 × 𝑛 (3)

𝐶 = 𝑍tan𝜃1 (4)

Eliminating ‘C’, we obtain the following equation.

𝑍 =
𝑇

(𝑡𝑎𝑛𝜃)2 +𝑛(𝑡𝑎𝑛𝜃1)
 (5)

from which we obtain the depth Z.

If the pedestrian moves to the right instead, equation (5)

is still valid. In that case, the pedestrian may disappear from

the image much sooner. To overcome this, we can simply

make the drone fly to the right for a second computation.

3) Object moving perpendicular to drone’s flight

In the case of a pedestrian moving perpendicular to the

baseline of the drone, the computation is very simple. Figure

9 illustrates the geometry needed for the computation of

depth Z in this case. Assuming that the pedestrian starts

from a distance of 𝐶 × 𝑛 + 𝑍 from position 0, after n images,

he would be at a distance Z away from position 0. This is

the same as the stationary case and we simply need equation

(2) to obtain the depth Z.

Figure 9. Geometry for pedestrian moving perpendicular to the baseline

F. Transformation to global coordinates

After we have obtained the depth Z and angle , we can

use them together with the drone position to calculate the

global coordinates of the pedestrian. Figure 10 shows the

geometry for calculating the coordinate transformation for

each of the 3 cases.

Figure 10. Coordinate transformation

In Figure 10, (𝑥𝑑2, 𝑦𝑑2, 𝜃𝑑) 𝑎𝑛𝑑 (𝑥𝑑1, 𝑦𝑑1, 𝜃𝑑) refers the

positions of the drone (which is assumed to be known).

(𝑥𝑠, 𝑦𝑠), (𝑥𝑝, 𝑦𝑝), (𝑥𝑣, 𝑦𝑣) are the positions of the pedestrian

in each of the three cases of stationary, moving parallel, or

moving perpendicular (vertical) to the baseline, respectively.

Note that the initial coordinate of the drone (𝑥𝑑1, 𝑦𝑑1, 𝜃𝑑) is

vital which is used as boundary condition for coordinate

transformation. From this geometry, we can directly

C

Z 𝜃2 𝜃1

T

C × (n − 1)

C

𝜃
Z

T

C × (n − 1)

(𝑥𝑝, 𝑦𝑝)

𝜃

(𝑥𝑑2, 𝑦𝑑2, 𝜃𝑑)

𝜃𝑑

T

Drone′s coordinates

Global coordinates

(𝑥𝑑1, 𝑦𝑑1, 𝜃𝑑)

(𝑥𝑠, 𝑦𝑠)

(𝑥𝑣, 𝑦𝑣)

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

calculate the position of a pedestrian’s position using one of

the three following equations.

(𝑥𝑠, 𝑦𝑠) = (𝑥𝑑1 +
tan𝜃

𝑇
sin𝜃𝑑 , 𝑦𝑑1 +

tan𝜃

𝑇
cos𝜃𝑑) (6)

(𝑥𝑝, 𝑦𝑝) = (𝑥𝑑1 + (𝑇 −
𝑇(𝑡𝑎𝑛𝜃)

(𝑡𝑎𝑛𝜃)2 +𝑛(𝑡𝑎𝑛𝜃1)
) cos𝜃𝑑,

𝑦𝑑1 + (𝑇 −
𝑇(𝑡𝑎𝑛𝜃)

(𝑡𝑎𝑛𝜃)2 +𝑛(𝑡𝑎𝑛𝜃1)
) sin𝜃𝑑) (7)

(𝑥𝑣, 𝑦𝑣) = (𝑥𝑑1 + (
tan𝜃

𝑇
− C × n) sin𝜃𝑑,

𝑦𝑑1 + (
tan𝜃

𝑇
− C × n) cos𝜃𝑑) (8)

IV. IMPLEMENTATION

A. Hardware

The drone used in this study is the Parrot AR.Drone2
GPS edition [10]. It has a forward-looking 720p HD camera
and a vertical QVGA camera. The drone is controlled from
an Intel i5 laptop running Windows 8.1 with 4GB of RAM.

Figure 11. Parrot AR.Drone2.0

B. Software

The software we used to control the drone is the “CV
Drone” package which is available from Github [11]. The
image processing routines were from the OpenCV 2.4.10
library, and the entire system was developed in Microsoft
Visual Studio 2013.

V. EXPERMENTAL RESULTS

A. Experiments

To evaluate our proposed algorithm, we conduct

experiments for each of the three cases of stationary,

moving parallel and moving perpendicular pedestrians. For

each case, we perform the experiment four times with the

pedestrian at 2.75, 5.5, 7.25, and 9 meters from the drone.

As the HOG pedestrian detection from the OpenCV library

did not work well from 11 meters and beyond, we stopped

the experiment at 9 meters.

For the moving cases, the pedestrian was asked to move

in the required direction at a speed of 0.6 m/s, covering a

distance of about 3m in the 11 images that was captured.

Examples of the images captured by the drone (at 5.5m,

stationary) are shown in Figure 12. Notice that between the

first and second image, there is only a rotation of the drone

and there is no horizontal movement.

First image Second image (rotate)

nth image Last detected image

Figure 12. Examples of Image Sequence and pedestrian detection (5.5m,

stationary pedestrian)

For each of the experiments, we compute depth error

Depth error (%) = |𝑍 − 𝑍′|/𝑍 (9)

where Z refers to the actual depth while 𝑍′ indicates

measured depth. Also, since we compute the pedestrian

position in global coordinates, we also compute the position

error using the following equation:

Position error (%) = (√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2)/𝑍 (10)

Here, (𝑥, 𝑦) refers the actual position of a pedestrian while

(𝑥′, 𝑦′) indicates the measured position. The results are

shown in Tables III to V.

TABLE III. STATIONARY PEDESTRIAN

Actual depth,

Z(m)

Measured

depth, Z’(m)

Depth error

rate (%)

Position error

rate (%)

2.75 2.35 14.5 16.5

5.50 6.01 9.3 18.0

7.25 7.51 3.6 12.2

9.00 8.96 0.4 7.2

TABLE IV. PERPENDICULARLY MOVING PEDESTRIAN

Actual depth,

Z(m)

Measured

depth, Z’(m)

Depth error

rate (%)

Position error

rate (%)

 4.50 4.08 9.3 9.4

7.60 6.69 12.0 12.9

 5.45 5.33 2.2 5.86

6.90 6.75 2.2 2.2

TABLE V. PARALLELLY MOVING PEDESTRIANS

Actual

depth, Z(m)

Measured

depth, Z’(m)

Depth error

rate (%)

Position error

rate (%)

2.75 3.43 24.7 27.7

5.50 6.20 12.3 12.7

7.25 8.28 14.2 22.8

9.00 9.82 9.1 11.7

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

We can see from the tables that with the exception for the
parallel case at the nearest distance (i.e., 2.75), all the
experiments yield good results at < 15% depth error rate.

B. Comparison with other techniques

In this section, we compare our algorithm with the
classical stereo-vision technique of computing image
disparity and then calculating the distance using equation
(1). Table VI shows the results.

TABLE VI. COMPARISON WITH THE CLASSICAL METHOD

(STATIONARY PEDESTRIAN)

 Classical method Our method

Actual

depth,

Z(m)

Measured

depth, Z’(m)

Depth error

rate (%)

Measured

depth, Z’(m)

Depth error

rate (%)

2.75 2.45 11.0 2.35 14.5

5.50 7.18 31.4 6.01 9.3

7.25 8.79 21.2 7.51 3.6

9.00 10.01 11.2 8.96 0.4

While our method performs worse at short depth (2.75m),

it actually works better than the classical method for the

larger depths. We further compare our method with the

method proposed by Sereewattana et al. [6], which is only

evaluated for stationary objects less than 3m in depth. Table

VII shows the results.

TABLE VII. COMPARISON WITH OTHER SYSTEMS (STATIONARY CASE)

System Accuracy (%)

M. Sereewattana et al. [6]

(Only for stationary object below 3m)
3.9 ~ 12.4

Classical stereo vision depth extraction 11.0 ~ 31.4

Our system 0.4 ~ 14.5

The results showed that our algorithm can estimate depth
with better or equal accuracy than other state-of-the-art
methods.

VI. CONCLUSION AND FUTURE WORKS

This paper proposed a novel system to estimate the
location of an object from a single moving camera mounted
on a drone. The proposed algorithm instructs the drone to fly
in a specific pattern, which allows us to estimate the
baselines between images so as to obtain depth. The
algorithm is not restricted to any particular class of objects
and can be easily extended to any class of objects. In

addition, our formulation makes the novel use of three
images, which allows us to extract depth even when the
object is moving (with the assumption of constant speed and
in a straight line). Experiments showed that our algorithm
can estimate depth with better or equal accuracy than other
state-of-the-art methods.

In this paper, we only reported the analysis and results of
a pedestrian moving either parallel or perpendicular to the
drone’s flight, due to the lack of space. We already have the
analysis of a pedestrian moving in an arbitrary direction, and
our future work will be directed to complete the experiments
for it. In addition, we will expand the capability of the
system to cope with non-linear and non-constant pedestrian
motion, and also occlusion (e.g., the pedestrian had turned
round the corner of a building).

REFERENCES

[1] L. R. G. Carrillo, A. E. D. Lopez, R. Lozno, and C. pegard,

“Combining Stereo Vision and Inertial Navigation System for
a Quad-Rotor UAV,” Journal of Intelligent & Robotic
Systems, vol. 65(1-4), 2011, pp. 373-387.

[2] K. Knoppe, “A Lightweight Digital Stereoscopic Camera
System,” Institute for Geoinformatics Unsiversity of Munster,
Matriculation No. 341901, 2013, pp. 1-58.

[3] K. Schauwecker and A. Zell, “On-Board Dual-Stereo-Vision
for the Navigation of an Autonomous MAV,” Journal of
Intelligent & Robotic Systems, 2014, pp. 1-16.

[4] Parrot Rolling Spider. [Online]. Retreived from:
http://www.parrot.com/usa/products/rolling-spider/ on 2015. 6. 9.

[5] R. Zhang and H. H. T. Liu, “Vision-Based Relative Altitude
Estimation of Small Unmanned Aerial Vehicles in Target
Localization,” American Control Conference, June. 2011, pp.
4622-4627, ISBN: 978-1-4577-0080-4

[6] M. Sereewattana, M. Ruchanurucks, and S. Siddhichai,
“Depth Estimation of Markers for UAV Automatic Landing
Control Using Stereo Vision with a Single Camera,”
ICICTES, 2014.

[7] A. G. Kendall, N. N. Salvapantula, and K. A. Stol, “On-Board
Object Tracking Control of a Quadcopter with Monocular
Vision,” International Conference on Unmanned Aircraft
Systems, 2014, pp. 404-411.

[8] D. Wan and J. Zhou, “Stereo vision using to PTZ cameras,”
Computer Vision and Image Understanding, vol. 112(2),
2008, pp. 184–194.

[9] D. X. Tran et al, “Dual PTZ Cameras Approach for Security
Face Dectection,” Communications and Electronics, July.
2014, pp. 478-483, ISBN: 978-1-4799-5049-2

[10] Parrot AR.Drone2.0: Technical specifications. [Online].
Retrieved from: http://ardrone2.parrot.com/ardrone-
2/specifications/ on 2015. 6. 9.

[11] CV Drone: OpenCV + AR.Drone. [Online]. Retrieved from:
https://github.com/puku0x/cvdrone/ on 2015. 6. 9.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies

