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Abstract—Android Pattern, form of graphical passwords used
on Android smartphones, is widely adopted by users. In theory,
Android Pattern is more secure than a 5-digit PIN scheme. Users’
graphical passwords, however, are known to be very skewed. They
often include predictable shapes (e.g., Z and N), biases in selection
of starting point, and predictable sequences of the points that
make them easy to guess. In practice, this decreases the security
of Android Pattern to that of a 3-digit PIN scheme for at least half
of the users. In this paper, we effectively increase the strength of
Android Patterns by using a persuasive security framework, a set
of principles to get users to behave more securely. Using these
principles, we have designed two user interfaces that persuade
users to choose stronger patterns. One of the user interfaces
is called BLINK, where the starting point of the pattern is
suggested to user, effectively nudging her to create a pattern
with a significantly less predictable starting point. The other user
interface is called EPSM, where the system gives continuous
feedback to user while she is creating a new pattern, effectively
persuading her to create a complex pattern. Security and usability
of our proposed designs evaluated by conducting a user study on
270 participants recruited from Amazon MTurk demonstrated
that while only 49% of subjects choose strong patterns in Android
Pattern user interface, our suggested designs increase it to 60%
in BLINK and 77% in EPSM version.

Keywords–Android; nudging; persuasive security; blinking.

I

I. INTRODUCTION

The rising trend of smartphones in our daily lives and the
amount of personal information being carried on these devices
call for stronger authentication measures than ever. Smart-
phones are used to perform sensitive personal and financial
tasks including online banking, messaging, and used as a two-
factor authentication. PINs have been the traditional way of
locking a phone and securing critical data on it [1]. However,
Android Pattern, a graphical password scheme, has seen a
tremendous increase in adoption due to its perceived user-
friendliness [2]. According to a recent study, 40% of Android
users are using Android Pattern to unlock their devices instead
of a PIN [3].

A pattern can be denoted by a sequence of numbers
indicating the position of points on the screen (see Figure 1). In
the Android Pattern scheme, enrollment and verification works
as in a typical password-based user authentication, where a
user chooses a secret (i.e., a pattern) in an enrollment phase
and recalls it at the time of verification. Whereas the theoretical
password-space of Android Pattern is larger than that of
a 5-digit PIN scheme, Uellenbeck et al. [4] demonstrated
biases in starting points (i.e., some points are more frequently
chosen than others) and n-grams (i.e., frequent subsequences

Figure 1. Path from point o6 to point o1. o6 − o3 − o0 − o1 indicates that
the pattern is started from o6, then moved to o3, then to o0 and then finally

ended at o1.

of patterns) that make user patterns guessable. Based on these
findings, they were able to guess about 50% of the patterns
with only 1000 guesses. In other words, the effective password-
space of Android Pattern is equivalent to that of just a 3-digit
PIN scheme for 50% of Android users! The problem is that
users do not appear to effectively use the large password-space
of Android Pattern.

Several intuitive solutions appear promising but unfortu-
nately fail to address the problem. For example, with black-
listing, the authentication system forbids frequently-chosen
patterns, but this only shifts the distribution to a new set of
frequently-chosen patterns, and does not hinder a resourceful
attacker. With random assignment, the authentication system
chooses a random pattern for the user, but this comes with a
significant cost on usability and memorability. With rearrange-
ment, Uellenbeck et al. [4] removed frequently-chosen starting
points and rearranged all points, but found that this approach
by itself does not expand the effective password-space. With
user education, users are taught the differences between weak
and strong passwords so that they may prefer the latter over
the former, but we found in a survey (described later in this
paper) that users are already aware of these differences, and
yet this awareness does not translate into choosing stronger
passwords.

In this paper, rather than overwhelming users with instruc-
tions and cumbersome security measures, or forcing them to
choose certain patterns, we use a persuasive security authenti-
cation framework to nudge or persuade users to behave more
securely [5].

We present two persuasive mechanisms that nudge users
to choose strong patterns, thereby expanding the effective
password-space, and reducing the advantage the adversary may
have from a priori knowledge of pattern distribution.
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Specifically, these user interfaces are:

1) Embedded Pattern Strength Meter (EPSM): A mech-
anism that provides realtime visual feedback based
on the pattern’s strength while it is being drawn.

2) BLINK: A mechanism that provides recommenda-
tions and nudges users at appropriate points — by
blinking — to eliminate the problem of starting point
bias, and to persuade users to create stronger patterns.

In summary, this paper makes the following research con-
tributions:

• We show that EPSM helps users to create stronger,
more complex patterns compared to Android Pattern.
EPSM dramatically reduces the success of a guessing
attack: a hypothetical attacker is able to guess 50%
of Android patterns by only 1000 guesses, whereas
the same attacker is able to guess only 22.6% of the
patterns in EPSM.

• With BLINK, we show that we can eliminate the
starting point bias. Consequently, the probability that a
point is chosen as a starting point is diffused across all
points in the unlock pattern grid. This makes patterns
stronger against guessing attacks (40% of the patterns
can be guess by 1000 guesses, 10% less than the
Android patterns).

• To derive these results, we tested BLINK and EPSM
with 270 participants recruited from the Amazon
Mechanical Turk. We show that BLINK and EPSM
improve the security of Android Pattern with only a
negligible usability and memorability impact.

The rest of the paper is organized as follows. In Section II,
we discuss background details on state-of-the-art approaches
for graphical passwords and persuasive authentication. We also
provide details from the past work which may seem plausible
options at first, however, may not help to improve the security
of Android Pattern. In Section III, we provide our persuasive
security mechanism design choices. In Section IV, we present
experimental details of our user study followed by results in
Section V. We conclude in Section VI.

II. BACKGROUND

The first type of grid-based graphical passwords called
“Draw a Secret” (DAS) was proposed by Jermyn et al. [6].
In DAS, user creates a password by drawing a pattern that
connects cells of a grid on a screen. Followup works have
proposed variations of DAS to improve on its security and
usability. Most notably, Tao et al. introduced Pass-Go [7] that
uses intersections of the cell in a grid (instead of the cells) and
improved its usability. Android Pattern is a type of Pass-Go
system and is widely adopted by Android users [3].

In this section, we briefly describe the problem of bias
in users-choices of patterns, and its effect on the security of
Android users (see Section II-A). We also list the previous
efforts taken to fortify the security of Android Pattern and
describe why they have insignificant effect (see Section II-B).
Thereafter, we describe how the persuasive security framework
can help to address the problem (see Section II-C). Finally, we
show how to calculate the strength of patterns using Markov
model (see Section II-D).

A. Biases of user-chosen patterns
Thorpe et al. [8][9] demonstrated the limitations of user

selected patterns and effective password space of DAS by
analyzing the memorable space of graphical passwords where
patterns are partially or completely symmetric. They conclude
that the effective password-space of DAS is much smaller than
theoretical password-space. Andriotis et al. [10] have studied
the biases of patterns chosen by users. They have found that
50% of the users choose the top-left point as the starting point
of their patterns. Uellenbeck et al. [4] analyzed the bias of
choosing the sequence of the points in their patterns as well.
Exploiting these biases, they have estimated that 50% of users
choose a pattern weaker than that of a 3-digit PIN.

B. Efforts to fortify the patterns
Previous efforts to increase the security of grid-based

graphical passwords can be categorized into two different
classes. The first class is focused on increasing the theoretical
password-space (and implicitly increasing the effective pass-
word space used by users), either by increasing the size of the
grid or introducing new degrees of freedom such as rotation
and layering to the user interface. The second class is focused
on developing approaches that explicitly expand the effective
password space used by user. In this section, we enumerate
significant works in both classes aimed to improve the security
of free-form graphical passwords.

1) Background: Dunphy et al. [11] suggested “Background
Draw-a-Secret” (BDAS) to improve the security of patterns
by adding a background to the grid of the DAS scheme.
Using a usability test, authors showed an increase in the
length of patterns [12]. However, Gao et al. [13] and Zhao
et al. [14] demonstrated the ease of guessing patterns based
on the detectable hot-spots in the background images in the
Window 8 graphical password, an approach similar to BDAS.

2) Rotation: Chakrabarti et al. [15] proposed a scheme
called R-DAS adding rotation as a degree of freedom to DAS.
This intuitively increases the theoretical password-space and
may increase the effective password space. By drawing the
same pattern but using rotation between several strokes, users
hypothetically can achieve a stronger pattern. However, authors
did not study the usability and effect of rotation on what
users generate as their patterns. Applying rotation on Android
Pattern is not practical because it is a single-stroke scheme. In
addition, Android Pattern is used for frequent authentication
and rotation possibly hampers its usability to a great extent.

3) Layering: Chiang et al. [16] proposed an extension
of DAS called Touch-screen Multi-layered Drawing (TMD)
where they add “wrap cells” that allow users to continuously
draw their passwords across multiple layers. This improves
the theoretical password-space. However, the usability study
shows that biases of starting point and shape of the patterns
remain pertinent.

4) Blacklisting: An intuitive approach to strengthen the
security of patterns is to blacklist certain patterns that are
used frequently (e.g., a pattern like “Z” or “N”, or any
pattern starting from the top-left point) and do not allow
users to choose them as their pattern. Uellenbeck et al. [4]
have experimented such an approach by removing the most
frequently used starting point, o0, from the Android unlock
screen (i.e., blacklisting all patterns that start from that point).
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They noticed that this resulted in a new frequently used starting
point (o1). Indeed, the blacklisting approach only shifts the
distribution of patterns, and does not transform the skewed
distribution to a uniform one.

5) Random assignment: Another option to strengthen the
security of patterns is to assign a random pattern to the user.
This resolves the problem of skewed distribution of patterns.
Nonetheless, random assignment will suffer from practical
weaknesses including usability [17] and memorability.

6) Rearrangement: Some believe that the shape of the grid
and the arrangement of cells create some inherent biases on
what users choose as their patterns (e.g., choosing straight
vertical or horizontal lines, instead of a cross line, because
of the visual effects of the grid). Therefore, rearranging of
the points of a grid in a shape other than square (e.g., circle
or random) is studied as a potential technique to remove such
biases. However, it has been observed that the biases only shift
to a new set of points and results in a new set of frequently used
sub-sequences [4]. These modifications do not help to remove
the biases of the patterns, and do not increase the security of
scheme.

C. Persuasive password security as an alternative approach

Persuasive Technology is a psychological framework which
can be defined as “interactive computing systems designed to
change people’s attitudes and behaviours” [18]. Built on top of
persuasive technology, there has been prior work on persuasive
password security which persuades users to choose strong
passwords by creating suitable user-interfaces [19][20]. A
persuasive user-interface guides user to choose options that are
desirable from the perspective of the designer of the system.
In the same way, a persuasive password user-interface guides
user to choose passwords that are strong. Chiasson et al. [21]
have proposed and studied the “cued click point” a variant of
PassPoints [22] which employs persuasive password security
techniques to reduce the biases and reduces the predictable
hotspots from 40% to 8%.

Forget et al. have proposed a persuasive authentication
framework [5] that enumerates possible techniques for persua-
sion. These include simplification, personalization, monitoring,
conditioning, and social interaction, as applied to a user-
interface. For example, personalization includes suggestions of
secure options to the user, and monitoring includes feedback
to users about the security of their choices.

D. Pattern strength

In this section, we discuss guessing attacks on the Android
Pattern system. Assuming the attacker has a perfect knowledge
of the system and the distribution of all Android pattern
used by users, an attacker can build a probabilistic model
for computing the probability P (X) of every possible pattern
X . A pattern X1 is considered stronger than pattern X2 if
P (X2) > P (X1); resulting in an attacker tries X2 before
trying X1 to guess someone else’s pattern. In summary, more
likely patterns are guessed before less likely ones. Therefore, to
evaluate the strength of a pattern, we develop a score function
f(X) based on the probability of a given pattern X , in which,
a more likely pattern gets a low score, and a less likely one
gets a higher score.

Uellenbeck et al. [4] demonstrated that a Markov prob-
abilistic model can effectively estimate the probability of
patterns as:

P (X = o1o2 . . . om) = P (o1o2 . . . on−1)∗
m∏
i=n

P (oi|oi−n+1oi−n+2 . . . oi−1)
(1)

To compute this probability, we need an appropriate train-
ing dataset to compute the conditional probability

P (oi|oi−n+1oi−n+2 . . . oi−1)

For a 3-gram Markov model, we should compute the probabil-
ity P (oi|oi−2oi−1) for all different combinations of the nodes.
We use an estimation of this probability instead, by collecting
enough sample of patterns, using an appropriately designed
experiment. If a sequence does not occur in our dataset, the
probability of zero is assigned to that n-gram, leading to
estimation of zero as the probability of a rare pattern. To fix
this issue, we use Kneser-Ney smoothing (an advanced form
of absolute-discounting interpolation) [23]. It is considered as
the most effective method of smoothing.

We use a simple score function based on the Markov prob-
abilistic model. MM-score(X) = −log(p(X)), where proba-
bility of X, P (X) is computed by (1). We refer to this as
MM-score function in the rest of the paper. A pattern X1 is
stronger than pattern X2 iff:

MM − score(X1) > MM − score(X2)

We categorize all patterns of Android Pattern into 3 different
levels of security: weak, medium, and strong. We compute the
strength of all possible Android Pattern based on MM-score
defined above. Defining an interval for the score of the patterns
in each of these levels is subjective. A minimum security of a
4-digit PIN system is considered appropriate for authentication
in ATMs [24][25] and smartphones. Therefore, we classify the
patterns which offers the security of a 2-digit PIN as weak
patterns accounting to a total of 100 patterns. The next 900
patterns are labeled as medium security, as they provide a
maximum security of a 3-digit PIN, and all other patterns are
labeled as strong patterns, since they provide the minimum
security of a 4 to 5 digits PIN.

III. PROPOSED APPROACH

In this section, we first present our findings on what users
are aware and where they lack understanding of strength of pat-
terns (see Section III-A). Instead of assigning random pattern
to a user, imposing unreasonable restrictions or enforcing them
to not use certain blacklisted patterns/points, we propose per-
suasive security mechanisms to nudge/persuade users to choose
secure patterns, without potentially hampering the usability or
security of the system. In this paper, we propose a) EPSM
(using self-monitoring) and b) BLINK (using personalization)
to help users create stronger patterns by infusing knowledge of
the global pattern distribution to the system (see Section III-B
and Section III-C, respectively).
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A. Plausible awareness and obliviousness
To provide better security suggestions or instructions, it

is first important to understand what users are aware of and
where they are lacking. To understand this, we conducted a
short online survey using Amazon Mechanical Turk (MTurk).
From 336 total participants, we analyzed the responses from
only 266 participants. We eliminated a) anyone who provided
contradicting answers to the same question asked multiple
times with different wording. b) who completed the survey
in less than 30 seconds or took more than 5 minutes. All
participants, even those we eliminated, were paid $0.50. Par-
ticipation for this survey was restricted to only Android users
who have either used or are using Android unlock pattern as
authentication mechanism on their phones. This survey and
all the experiments reported in this paper were approved by
the Institutional Review Board of the New York University
(IRB approval reference IRB-13-9674) and Institutional Re-
view Board of the New York University Abu Dhabi. Data
collected from the participants was anonymized and protected
according to the procedures described in the corresponding
IRB submission documents.

We used a within-subjects design and asked (“How strong
is the following pattern?”) the participants to rate the strength
of six patterns as shown in Figure 2 on a 5-point Likert scale.
We chose patterns from three different security levels based
on their strength, weak, medium, and strong, as is defined
in section II-D. Patterns 2(a) and 2(b) are weak patterns,
patterns 2(c) and 2(d) are of medium security level, and
patterns 2(e) and 2(f) are strong patterns (refer to Figure 2). To
avoid biases, we randomized the order that the patterns were
shown to the participants.

(a) Weak (b) Weak (c) Medium

(d) Medium (e) Strong (f) Strong

Figure 2. Choice of different proposed patterns (based on pattern strengths)

As it can be observed from result of the survey in Figure 3,
users are aware of the relative strength of patterns and can
distinguish between complex (Figures 2(e) and 2(f)) and easy
to guess (Figures 2(a) and 2(b)) patterns.

However, this knowledge is not translated into selection
of strong patterns by a large number of users and many still
choose weak patterns. However, we exploit this awareness
and design a simple but effective feedback mechanism called
EPSM which provides feedback to users about the security

Figure 3. Perceived strength of patterns by users. It is mostly consistent with
computed strength class for patterns.

of their pattern (by updating the color of the pattern). EPSM
does not provide any hint on how to create a better pattern
because users are already aware of which patterns are more
secure.Therefor, users will be able to update their patterns to
a stronger one.

Moreover, based on this survey, we observed that the
perceived security strength of patterns 2(b) and 2(d) is almost
same (as shown in Figure 2), where their strength is not the
same in reality (because of the different starting points and
n-grams they use). We believe that this could be because of
the similar shapes of the two patterns. This suggests that even
if user chooses a pattern of a shape similar to a weaker pattern
but with a different starting point, it can increase the strength
of the pattern. For this purpose we propose BLINK in which
the system suggests a different starting point to the users.

B. EPSM: Embedded pattern strength meter
Self-monitoring is one of the persuasive security principles

helping users to adjust their security behavior [20] and was
used to design EPSM. Andriotis et al. [26] showed the promise
of this approach by providing a text-based feedback to users
about the strength of their patterns after they complete drawing
it. In their experiment, one out of five subjects changed their
patterns after knowing their patterns are not strong.

In EPSM, instead of giving a delayed feedback after users
generate their patterns and using a separate user interface
element (e.g., text-based feedback), we provide a continuous
and embedded feedback while the user is drawing a pattern.
This design choice was made because a) it is more effective
to provide continuos feedback influences the user’s decision of
what to choose as her pattern. b) smartphones have relatively
small screen size which demands a compact representation of
information and feedback. This is helpful for users to adjust
the strength of their patterns as they create the patterns.

EPSM provides a fine-grained continuous embedded feed-
back by coloring the user’s pattern according to pattern’s
strength level. The red color alarms a weak pattern, yellow
indicates moderate, and green represents a strong pattern (see
Figure 4). The system also pops-up a message describing
the meaning of each color “As you draw your pattern, the
color of your pattern changes from red to green. Red one
is bad (others can guess your pattern), yellow is good, and
green is perfect.” Regardless of the strength of the pattern the
color of the pattern remains red, until the pattern satisfies the
minimum required length (i.e., four). Thereafter, based on the
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strength of the pattern, the color of the pattern gets updated
(see Section II-D for details on pattern strength). Note that
change in the color usually goes from red to yellow to green,
however in certain cases it can sometimes goes the other way
around, i.e., from green to red. For example, a half-drawn Z
(o0 − o1 − o2 − o4 − o6 − o7) is a more secure pattern than a
full drawn Z (o0 − o1 − o2 − o4 − o6 − o7 − o8).

(a) Red (b) Yellow (c) Green

Figure 4. Sequence showing the change in colors for a single pattern, as
user draw it

C. BLINK- Nudging

Nudging, a concept in behavioral science, argues that pos-
itive reinforcement and suggestions can influence the motives,
incentives and decision making of groups and individuals [27].
Nudging can be used to suggest stronger patterns to users.
However, suggesting a random pattern hampers usability and
memorability of the Android Pattern. A more practical option
is to provide partial suggestions. For example, suggesting users
where to start their patterns is helpful to remove the bias of
starting points (e.g., more than 40% of the users use upper
most left point to start their patterns [4][10]) that can be used
by attackers to guess the patterns easily.

In a pilot study, we examined a number of techniques
to suggest a starting point to the users without hampering
the usability of Android Patterns. Based on our observations
and users suggestions, we concluded that a) suggestion by
blinking a point is very effective, and b) users need to be told
what is expected be done with the suggested point without
hampering the usability of the system. Our final design uses a
blinking point (see Figure 5) and similar to EPSM it pops-up a
recommendation message stating “It is recommended to start
your pattern with the blinking point but NOT MANDATORY”,
as it helps user to understand what to do and how to proceed
with the blinking point.

Figure 5. Suggesting a start point by blinking

During the registration phase, the system randomly rec-
ommends one of the 9 points in the screen to the user by
creating an additional circle around the recommended point
and blinking indefinitely. The circle stops blinking when the
user starts drawing a pattern.

IV. EXPERIMENTAL SETUP

To measure the efficacy of the designed persuasive security
schemes, we conducted a between-subjects usability study on
Amazon Mechanical Turk (MTurk). Subjects were assigned
randomly to three different user interfaces: a) the control
group, where users were assigned to work with the normal
Android Patterns user interface (NORMAL), b) the BLINK
group, where users were assigned to the BLINK user interface,
and c) the EPSM group, where users were assigned to the
EPSM user interface. We compare the security, memorability
and usability of our proposed user interfaces (EPSM and
BLINK) with that of the normal Android Patterns (NORMAL).

Because of Amazon’s MTurk policy, we could not ask our
participants to install an app on their smartphone to participate
in our user study, therefore, we implemented the NORMAL,
EPSM and BLINK using web technologies (HTML, CSS,
and Javascript) accessible by visiting a link on participants’
smartphones. In order to avoid the possibility of doing the
experiment on a desktop or any other device beside an Android
phone, we checked the “Browser Agent” field of the HTTP re-
quests and only permitted those requests issued by an Android
phone. Web pages are rendered differently on different devices
and browsers, and there is a possibility that users do not see the
user interface as we expected. To detect any such distortions in
users’ experience, we asked the participants about the quality
of the user interface, at the end of the user study in the post user
study survey. Any data from those who reported a distortion
in the main page is excluded from our analysis.

The user study procedure involved two main steps a)
Registration - Participants were assigned randomly to one of
the groups, i.e., NORMAL, EPSM or BLINK. After that,
they were asked to choose a pattern and then to verify it
immediately. All participants were instructed to imagine that
they have received a new phone and would like to set an
Android Pattern on it. They were asked to choose a pattern of
a minimum length four. b) Survey - After creating a pattern,
participants were asked to complete a survey. We paid $0.40
to each participant upon the completion of our user study.

TABLE I. GROUP DEMOGRAPHICS.

Group Total Participants

NORMAL 92 M (28); F (64)
EPSM 72 M(25); F(47)
BLINK 106 M(31); F(75)

We recruited a total of 270 US-based workers to participate
in our experiment. Note, that these are different participants
than the participants described in Section III-A. We also con-
fined our user study to those who are familiar with the Android
Patterns. Demographics of the participants and number of
participants are given in Table I.

V. RESULTS

In this section, we analyze the patterns obtained during our
user study, and compare the security, usability and memora-
bility of each design schemes proposed.
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A. Starting point distribution
Figure 6(a) shows the percentage of patterns starting from

each of the nine points in all three schemes. As expected in
NORMAL and EPSM, we can observe that the starting point
probabilities of the top two corner points (52.1% and 35.7%)
are much higher than the other points. This is because there
was no recommendation provided for eliminating the starting
point bias in NORMAL and EPSM.

(a) Start point distribution(%)

(b) NORMAL (c) BLINK (d) EPSM

Figure 6. Distribution of starting point of the patterns in the NORMAL,
BLINK and EPSM. BLINK removes the bias of starting points.

On the other hand, the bias of starting point probability in
BLINK is eliminated and it is distributed almost uniformly.
This happens because BLINK suggests the starting points
randomly, and 85% of users use the suggested point. For some
others, this has apparently nudged them to choose the start
point of their patterns wisely. Table II shows the percentage
of the suggestions used by users for each of the nine points in
the BLINK.
TABLE II. PERCENTAGE OF USED SUGGESTION FOR EACH POINT

IN THE BLINK USER INTERFACE. POINTS ARE SUGGESTED
UNIFORMLY AND RANDOMLY.

Point 0 1 2 3 4 5 6 7 8
Used 80% 90% 77% 100% 84% 73% 100% 81% 85%

B. Pattern strength
Theoretical password-space of the normal Android Pattern

is higher than that of a 5-digit PIN, but a large number of
users (51%) use patterns with strength level (see Section II-D)
of a 3-digit PIN (weak and medium strength patterns). We
designed EPSM and BLINK to persuade users to use patterns

Figure 7. Strength level of the patterns created by users of NORMAL,
BLINK and EPSM. Red, yellow, and green bars indicate weak, moderate,

and strong patterns respectively.

of greater strength. Figure 7 shows the strength level of the
patterns generated in our user study. The percentage of users
that create strong patterns is increased to 60% in the BLINK,
and 77.4% in the EPSM. This shows that BLINK and EPSM
are able to persuade users to choose stronger patterns.

C. Security against partial guessing attack
In this section, we study the resilient of patterns generated

by each user interface against guessing attacks. In a guessing
attack, an attacker has access to an oracle (a blackbox) that
gets a password and answers yes if it is correct. An oracle
may answer an unlimited number of queries or apply some
limitations on the amount or speed of returning the results.
For example, on Android phones, a maximum number of
20 guesses are granted before the attacker get locked out
completely. An oracle may also appear in the form of a
secure hardware module that is rate-limited for the purpose
of deterrence of attackers, and answer the queries very slowly
(e.g., iPhone [28]).

An optimal attacker tries the weak patterns before the
strong ones because they are more likely to be used by users.
Indeed, such an adversary builds a dictionary

Dpattern = {pt1, pt2, ..., ptn}

as a set of all possible patterns. Then, he computes the
probability of occurrence of each pattern based on a prob-
abilistic model (see equation 1), and then sorts the patterns
based on their probability to compute the ordered list G =
(g1, g2, ..., gn) where

• gi ∈ Dpattern ∀ 1 ≤ i ≤ n
• P (gi) ≤ P (gj) ∀ i ≤ j
The attacker tries patterns in the order in which they appear

in the ordered list G. Since guessing very strong patterns is
time consuming, and is not cost-effective in many cases, an
attacker usually guesses a portion of passwords with a reason-
ably small effort. This is called partial guessing attack and is
used to evaluate the security of text-based passwords [29] and
Android Patterns [4]. Accordingly, we evaluate the security of
our proposed user interfaces against partial guessing attack.

Figure 8 shows the success rate of guessing attack against
NORMAL, EPSM and BLINK. As we can observe, it is
evident that patterns in EPSM and BLINK are stronger than
NORMAL, and an attacker needs more effort (i.e., number
of guesses) to guess a portion of them in comparison with
patterns in NORMAL. Specifically, an attacker needs only 886
guesses to guess 50% of the patterns in NORMAL, whereas he
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needs 3344 and 1918 guesses to guess 50% of the patterns in
EPSM and BLINK, respectively. In terms of partial entropy of
patterns, this translates to 9.79 bits of entropy for the patterns
used by 50% of NORMAL, and 11.7 and 10.9 bits of entropy
for the same proportion of users in EPSM and BLINK.

Figure 8. Guessing attack against NORMAL, BLINK and EPSM. Guessing
model is built over the NORMAL version.

D. Pattern Length
Table III shows statistics about the length of patterns for

each design schemes. Even though there are minor differences
between the length of patterns in EPSM as compared to
NORMAL and BLINK, Kruskal Wallis test (This is a non-
parametric equivalent of the one-way analysis of variance
(ANOVA)) does not show any significant difference between
length of the patterns (χ2=2.5, p>0.28 ). This emphasizes that
the increased security offered by EPSM is not resulted by
longer patterns, but is because of using more complex patterns
with higher strength levels.

TABLE III. LENGTH OF PATTERNS.

Group Average length Std. Dev

NORMAL 6.13 1.61
BLINK 6.12 1.78
EPSM 6.5 1.72

E. Short-term recall rate
One of the design considerations for our new variations

is to create a strong yet easy to use pattern scheme without
hampering the users’ recall rate. In the frequent authentication
schemes (e.g. unlocking phone that is done several times a
day), the repetition of password entry helps users to recall the
pattern over long intervals. Consequently, it is reasonable to
measure the short-term memorability of the patterns [30].

Since the maximum idle timeout before the Android phone
gets locked down in normal Android Patterns is 30 minutes,
we tested the memorability of the patterns after 20 minutes.
It was not possible to guaranty that the subjects we recruited
from the Amazon Mechanical Turk will take the recall task
within 20 minutes. Therefore, we ran a between-subjects in-
lab study and recruited 60 students to evaluate the recall rate of

Figure 9. Recall accuracy (in terms of trials before success)

the proposed user interfaces. When they created their patterns
using NORMAL, BLINK, and EPSM, we asked them to return
back after 20 minutes to do a follow-up test where we asked
them to re-enter their pattern. Figure 9 shows the recall rate of
the patterns for each version after 20 minutes. We compute the
recall rate accuracy in terms of how many trials participants
took on average to verify themselves against the system. Based
on the pairwise t-test conducted we found that there is no
statistically significant difference between the the recall rate
of NORMAL and BLINK; and NORMAL and EPSM.

VI. CONCLUSION

In this paper, we proposed two Android Patterns schemes
with the goal of improving the security of patterns chosen
by users. We used the principles from persuasive security
framework to nudge users to choose starting points uniformly
and to use more complex sequence of points in their patterns.
We recruited 270 participants from Amazon Mechanical Turk
and conducted a usability user study to measure the effect of
our proposed schemes on security and usability of the system.

While only 49% of subjects choose strong patterns in
standard Android Patterns, our suggested schemes increase it
to 60% in BLINK and 77.4% in EPSM version. Accordingly,
the partial entropy of the patterns is increased from 9.79
in NORMAL to 10.9 in BLINK and 11.7 in EPSM. These
improvements are achieved without hampering the usability in
term of the length of the pattern and short-term recall rate.

VII. ACKNOWLEDGEMENT

The first, third, and fourth authors were supported by NSF
grant 1228842. We would like to thanks Markus Jakobsson
for suggestions of the design for the experiment, and all
the anonymous reviewers for their comments and feedbacks
towards this work.

REFERENCES

[1] S. Egelman, S. Jain, R. S. Portnoff, K. Liao, S. Consolvo, and
D. Wagner, “Are you ready to lock?” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 750–761.

[2] D. Van Bruggen, S. Liu, M. Kajzer, A. Striegel, C. R. Crowell,
and J. D’Arcy, “Modifying smartphone user locking behavior,” in
Proceedings of the Ninth Symposium on Usable Privacy and Security.
ACM, 2013, p. 10.

[3] D. C. Van Bruggen, “Studying the impact of security awareness efforts
on user behavior.” Ph.D. Thesis, University of Notre Dame, 2014.

74Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-418-3

UBICOMM 2015 : The Ninth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies
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