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Abstract—As a promising technology of efficiently utilizing
resources, network coding is capable of improving many
performance such as throughput, security, etc. The main
purpose of this paper is joining network coding and
cryptography methods. In this paper, not only we propose
a new mathematical method to use in network coding but
also a security framework with slightly increased complexity
and overhead. We use Greatest Common Divisor and Lowest
Common Multiplication instead of sending original data packets,
so as to provide additional guards against eavesdropping attack.

Keywords-Security; Network Coding; Random Linear Network Coding;
Eavesdropping attack.

I. INTRODUCTION

As wireless communication has become a part of people’s
daily life in modern society, providing efficiency, convenience
and security in communications network is becoming a
very crucial aspect of modern digital infrastructure. There
are many aspects to security, addressing a range of natural
adversaries and malicious threats. Nevertheless, one ultimate
goal of security is to remain data confidential impervious to
malicious or accidental eavesdropping.

Network coding was introduced for the first time by
Ahlswede et al. [1] and they showed that data throughput and
network robustness can be considerably improved by allowing
the intermediate nodes in a network to mix different data
flows through algebraic combinations of multiple datagrams.
In [2], Random linear Network Coding (RLNC) was studied
as a fully distributed method for performing network coding.
They mentioned there is a possibility that each node in
the network independently and randomly selects a set of
coefficients and uses them to make linear combinations of the
data symbols. In other words, RLNC allows each node in the
network to make local decisions [3]. The original data packet
represented as X is divided into n blocks X1, X2, ..., Xn

and each node computes and forwards linear combined

packet P =
n∑

i=1

CiXi with randomly chosen coefficients

C = (C1, C2, ..., Cn). When sufficient number of linearly are
received, a node would be able to decode the original X .

Security for network coding has also been an active research
area recently. The problem of secure network coding was first

studied by Cai and Yeung [4]. They proposed a secure network
coding scheme based on a given decodable linear network code
over a sufficiently large field.

Although there are a lot of works, which have been done
in security via network coding recently [5-9], network coding
is still vulnerable to eavesdropping attacks. Lima et al. [10]
have made cryptographic mechanism with maintaining the
NC properties. They have used locked and unlocked coef-
ficients through multiple paths from source to sinks. They
have showed a noticeable reduction in computational overhead
which needs for performing encryption. Motivated by gaining
supplementary security approach, in this paper, we present
a mathematical lightweight cryptography scheme. We mainly
deal with eavesdroppers which have full access to the infor-
mation about decoding and encoding. We will use properties
of number theory and finite field against eavesdropping attacks
and maintaining RLNC’s properties.

The remainder of this paper is organized as follows. Section
II presents the history of Network Coding, Preliminaries and
Definition of Greatest Common Divisor (GCD) and Lowest
Common Multiplication (LCM). Section III introduces the
new security scheme. Section IV discusses the achievable
performance. Section V concludes the paper.

II. PRELIMINARIES AND DEFINITION

In this section, we summarize the history of Network
Coding; then, we discuss GCD and LCM. Also, we explain
how to decompose a number to prime factors. Moreover, we
examine the complexity of finding GCD and LCM in the end
of this section.

A. Network Coding

After the first Max-Flow Min-Cut theorem [13], [14] presen-
tation, Ahlswede et al. [1] elaborated a version of this theorem
for information flow. Against to traditional and classical com-
modity flow, in which information is only routed or replicated,
information flow can also employ coding operations at the
nodes and we have known this method as Network Coding.
After, that Linear Network Code (LNC) was appeared. In
LNC, for all nodes (except source nodes) the outgoing packets
are always linear combinations of the incoming ones. Yeung
et al. [15] explained the relation between a linear dispersion
and a generic Network Coding; also they defined a relation on
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the sizes of the base fields of the code. A different approach
to Network Coding was presented in [16]. It proposed a com-
pletely algebraic framework, with the consequent possibility
to apply the mathematical theorems of algebra on Network
Coding. The objective of this framework is the definition of
the transfer matrix M , which includes all the characteristics of
the network itself. The translation of the Max-Flow Min-Cut
theorem into the new framework modified the Network Coding
problem into the problem of finding a point on an algebraic
variety. Ho et al. [5] provided two results for solving the LNC
multicast problem. After that and considering the results of
the previous work, they proposed Random Linear Network
Coding (RLNC) [2]. RLNC was studied as a fully distributed
method for performing network coding.

B. LCM and GCD

In concept of arithmetic and number theory, we can
define the least common multiple of two integers a and
b that usually denoted by LCM(a, b), as the smallest
positive integer that is divisible by both a and b. Also
greatest common divisor (GCD) of two integers is the
largest positive integer that divides the numbers without
a remainder. According to the fundamental theorem of
arithmetic we can have a positive integer number which is
the product of prime numbers [11], and it could be defined as:

n = 2n2 ∗ 3n3 ∗ 5n5 ∗ ... =
∏

pnp (1)

2, 3, 5, ... are prime numbers and n2, n3, n5, ... are the
exponents of those prime number, which are non-negative
integers (ni ≥ 0). By considering two integer numbers, e.g.,
a =

∏
pap , b =

∏
pbp , we can define GCD and LCM as the

following relations:

GCD(a, b) =
∏

pmin(ap,bp) (2)

LCM(a, b) =
∏

pmax(ap,bp) (3)

LCM(a, b) = (a ∗ b)/(GCD(a, b)) (4)

Crandall et al. [11] explained above equations in details.
Finally we have to mention that prime factorization is the
decomposition of a composite number into smaller non-trivial
divisors, whose multiplied result equals the original integer.
We need to decompose the LCM and GCD at the end of the
process which we will explain in the next section.

C. Time Complexity of LCM and GCD

In the following of this section, we present two pseudo
codes for calculating GCD and also for finding prime factors
of two integer numbers. LCM can be obtained from Equation
(4) using a, b and GCM(a, b). Regarding these two algorithms
which we want to use in source and sink nodes, we can
calculate the time complexity of our method.

Homer and Selman [17] have shown a lot of methods for
calculating time complexity in different algorithms. According
to their approach, we have one loop in both algorithms
(Algorithm 1 and Algorithm 2), and all the steps of each loop

can be calculated according to logarithmic-scale. Considering
to the time complexity of Gaussian Elimination which is
exponential-scale; it is clear that the time complexity of both
algorithms which have been used in source and sink nodes, are
less than exponential-scale. So our noticeable result is that the
time complexity is close to the logarithmic-scale behaviour,
and we can consider O(logn) as the time complexity of our
approach.

Algorithm 1 Algorithm for calculating Greatest Common
Divisor

GCD(x,y)
if y == 0 then

return x;
else

return GCD( y, x MOD y )
end if

Algorithm 2 Algorithm for finding prime factors
Input(A)
for all i = 2 to i = A do

if A MOD I == 0 then
write A
A = A / i

else
Continue

end if
end for

Algorithm 3 Algorithm for recovering original numbers
Input(G,L,S)
if (G==L) then

return (G,L)
else

X= The difference prime numbers
for all i = 1 to i = X do

Choosing P1, P2
if S == P1+P2 then

return P1,P2
exit

else
Continue

end if
end for

end if

D. Finding unique result

As recovering the original data, the two integer a and b,
through the GCD , LCM does not have a unique result, so
we need to use addition information for having the unique
result. Thus we want to send the summation of the original
numbers before calculating GCD , LCM. So, by having three
parameters, i.e., GCD, LCM, and summation of a and b, we
could recover original numbers.
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III. OUR SCHEME: Mathematical Secure Network Coding
(MeNo)

It is about twelve years after the emergence of the first
example of network coding and specifically the butterfly
network coding; a lot is already known about network
in particular for the case of network multicast. Network
multicast refers to simultaneously transmitting the same
information to multiple receivers in the network [1][12]. The
Secure Practical Network Coding (SPOC) which has been
proposed in [10] is a secure algorithm with keeping the RLNC
properties. The authors have tried to achieve confidentiality
by protecting the locked coefficients without impairing any
of the operations of practical network coding protocols. They
could reduce the complexity of their algorithm in comparing
to the traditional end to end encryption approaches. They
have used two kinds of coefficients (locked and unlocked),
but as we want to maintain the RLNC properties. It’s clear
whenever one node acts as an eavesdropper and hears all or
part of the information which send to the sink so there is
possibility that he discovers the original packet. We show the
packet format scheme in Fig. 1. For instance, we suppose
the basic scheme which has been used in Fig. 2. If node 4
appears as an eavesdropper so he has this chance that finds
original data.

Fig. 1. Proposed packet format

In this work, not only we show that our scheme does
not bring more complexity but also we create more security
framework to ensure that data are sent completely in secure
condition. We propose Mathematical Secure Network Coding
(MeNo), a more secure framework for improving security
mechanism. As we considered that eavesdrop attacker is a
person who can hear information and also he has full access
to all the information about coding and decoding, in this case
eavesdrop attacker knows that source node has used RLNC
properties and has made a linear combination of original
packets, so there is possibility that this node decodes original
packets. In our work, we want to use GCD and LCM instead
of sending original packets. For instance if we want to send
two data, e.g., a = 4 and b = 10, the first step is calculating
the GCD and LCM and for this, we need using the algorithm
was explained in Section II-B. In fact, we can calculate
GCD = 2 and LCM = 20.

These values are all sent to the receiver to guarantee
correctly recovering the original data. Having the knowledge
of GCD(a, b) and LCM(a, b), we could have two possible
recovering results (a = 4, b = 10), and (a = 2, b = 20). Aided
with the additional knowledge of sum of a and b, it is evident
that the original value of (a, b) can only be 4 and 10. Now

Fig. 2. Basic scheme (Encrypted information are in Gray color)

TABLE I
SUMMARY OF MENO

Node Operation
Source Calculation GCD , LCM and generating RLNC

Intermediate Combination by maintaining RLNC properties
Sink Gaussian Elimination ,Recovering and Finding original data

we can use RLNC to create random linear equations and also
use locked and unlocked coefficients. For recovering unique
results over GCD and LCM we have to send the summation of
original numbers to the sink. But, if attacker wants to discover
data, by knowing (2,20), in fact he knows nothing or in the
other word he realizes meaningless data, and it is the advantage
of our algorithm. So, we can protect the native information
from eavesdrop attackers and we can guarantee we will have
completely security method without noticeable overhead. We
summarize our algorithm in table I.

According to Vilela et al. [10], the stream of packets divides
into some generations of size h, and just those packets which
belong to the same generation number could be combined
with each other. Before moving to next section and presenting
performance evaluation, we have to mention again that the
kind of attack which we have considered in our approach is an
eavesdropping attack which has the ability of hearing to all the
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TABLE II
TIME COMPLEXITY OF MENO

Node Operation Detailed cost Total Cost
Generation O(h2)

Source GCD and LCM O(Log(h)) O(h2)
Intermediate Combination O(nh) O(nh)

Gaussian Elimination O(n3)
Sink Recovering O(Log(h)) O(n3)

Original data Negligible

information and it has full access to information of coding and
decoding. On the other hand, considering to RLNC properties,
they know source node has generated random coefficients, but
as if they can recover these coefficients, solve the equations
and recover packets, but they do not know about the process
which we need to find original packets through GCD, LCM
and summation of original data. We show the process for
recovering original data for instance for node 6 as follows:

2 0 6 4
4 2 22 10

Then by implementing Gaussian elimination:

1 0 3 2
0 1 5 1

=⇒ (3, 2), (5, 1)

2(3G+ 2L) = 92 (5)

4(3G+ 2L) + 2(5G+ L) = 244 (6)

Equation (5) and (6), we have G = 2, L = 20. G represents
the GCD value, and L represents the LCM value. In addition
with the knowledge of sum value S, we could recover the
original data a = 4, b = 10.

IV. PERFORMANCE EVALUATION

Although the proposed algorithm needs to calculate GCD
and LCN, the additional complexity is in log-scale, and
is much smaller compared to Guassian Elimination in
exponential-scale, Hence, the complexity of the proposed
scheme is slightly higher than the one proposed in [10]. The
detail information is summarized in Table II.

V. CONCLUSION AND FUTURE WORK

We proposed a new mathematical secure framework in
additional to the lightweight secure network coding by uti-
lizing GCD and LCM. The proposed scheme is capable of
providing additional security against eavesdrop attack, with
slightly increased computational complexity only at the source
and sink nodes.

For future work, as homomorphic hash function brings more
computational overhead, we are going to join our model with
this approach for providing authentication and lower overhead.
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